Effect of DC Micro-Pulsing on Microstructure and Mechanical Properties of TIG Welded Ti-6Al-4V
Abstract
:1. Introduction
2. Experimental Details
3. Results and Discussion
3.1. Base Metal Microstructure
3.2. Macrostructure
3.3. Microstrcutre
3.4. Mechanism of Grain Refinement
3.5. Post Weld Heat Treatment
4. Mechanical Properties
4.1. Hardness
4.2. Tensile Properties and Fractography
5. Conclusions
- Micro-pulsing significantly influences the weld bead geometry of GTA-welded Ti-64 alloy. As the micro-pulsing frequency increases, the FZ and HAZ’s average width decreases, attributed to the reduced heat input at higher frequencies;
- The micro-pulsing during the GTA welding has resulted in mild grain refinement of prior β grains in the HAZ and FZ. This is due to dendrite fragmentation, which induces undercooling ahead of the S/L interface, allowing more nucleation sites to survive, disrupting columnar growth, and promoting finer grains in the FZ;
- The microstructure of the as-welded FZ in Ti-64 welds, regardless of the welding conditions, features an acicular martensitic α′ phase that forms due to the elevated thermal cycles experienced during welding. However, after PWHT, the microstructure shows coarsening of the α phase due to the transformation of martensitic α′ into α and β phases through a diffusional process;
- In the as-welded condition, the hardness, ductility, and UTS have shown a significant improvement in the micro-pulsed condition (125 Hz and 250 Hz) compared to the un-pulsed condition due to grain refinement in the FZ;
- Welds subjected to PWHT exhibited reduced strength but improved ductility in all samples due to the transformation of martensitic α′ into α and β phases;
- During the tensile test, all the samples failed in BM, indicating the higher strength of FZ than BM. The dimples in the fracture surface indicate ductile failure.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Domone, P.; Biggs, B.; McColl, I.; Moon, B. METALS AND ALLOYS. In Construction Materials: Their Nature and Behaviour, 4th ed.; CRC Press: Boca Raton, FL, USA, 2018; pp. 53–54. ISBN 9781351988872. [Google Scholar]
- O’Brien, A.; Sinnes, K. Materials and Application. Weld. Handb. 2015, 5, 2. [Google Scholar]
- Polmear, I.; StJohn, D.; Nie, J.-F.; Qian, M. 7—Titanium Alloys. In Light Alloys, 5th ed.; Butterworth-Heinemann: Boston, MA, USA, 2017; pp. 369–460. ISBN 978-0-08-099431-4. [Google Scholar]
- Choi, J.W.; Aoki, Y.; Ushioda, K.; Fujii, H. Effect of the Welding Parameters on Microstructure and Mechanical Properties of Linear Friction Welded Ti-6Al-4V Alloy. J. Manuf. Process 2022, 75, 651–663. [Google Scholar] [CrossRef]
- Wang, B.; Peng, H.; Chen, Z. Microstructure and Mechanical Properties of a Laser Welded Ti-6Al-4V Titanium Alloy/FeCoNiCrMn High Entropy Alloy with a Cu Filler Layer. J. Mater. Res. Technol. 2021, 12, 1970–1978. [Google Scholar] [CrossRef]
- Wang, S.H.; Wei, M.D. Tensile Properties of Gas Tungsten Arc Weldments in Commercially Pure Titanium, Ti-6Al-4V and Ti-15V-3Al-3Sn-3Cr Alloys at Different Strain Rates. Sci. Technol. Weld. Join. 2004, 9, 415–422. [Google Scholar] [CrossRef]
- Dewangan, S.; Mohapatra, S.K.; Sharma, A. An Assessment into Mechanical Properties and Microstructural Behavior of TIG Welded Ti-6Al-4V Titanium Alloy. Grey Syst. 2020, 10, 281–292. [Google Scholar] [CrossRef]
- Pasang, T.; Sánchez Amaya, J.M.; Tao, Y.; Amaya-Vazquez, M.R.; Botana, F.J.; Sabol, J.C.; Misiolek, W.Z.; Kamiya, O. Comparison of Ti-5Al-5V-5Mo-3Cr Welds Performed by Laser Beam, Electron Beam and Gas Tungsten Arc Welding. Procedia Eng. 2013, 63, 397–404. [Google Scholar] [CrossRef]
- Babu, N.K.; Raman, S.G.S. Influence of Current Pulsing on Microstructure and Mechanical Properties of Ti-6Al-4V TIG Weldments. Sci. Technol. Weld. Join. 2006, 11, 442–447. [Google Scholar] [CrossRef]
- Oh, J.; Kim, N.J.; Lee, S.; Lee, E.W. Correlation of Fatigue Properties and Microstructure in Investment Cast Ti-6Al-4V Welds. Mater. Sci. Eng. A 2003, 340, 232–242. [Google Scholar] [CrossRef]
- Balasubramanian, T.S.; Balakrishnan, M.; Balasubramanian, V.; Manickam, M.A.M. Influence of Welding Processes on Microstructure, Tensile and Impact Properties of Ti-6Al-4V Alloy Joints. Trans. Nonferrous Met. Soc. China (Engl. Ed.) 2011, 21, 1253–1262. [Google Scholar] [CrossRef]
- Mi, G.; Wei, Y.; Zhan, X.; Gu, C.; Yu, F. A Coupled Thermal and Metallurgical Model for Welding Simulation of Ti-6Al-4V Alloy. J. Mater. Process Technol. 2014, 214, 2434–2443. [Google Scholar] [CrossRef]
- Reddy, A.N. Effect of Frequency of Pulsing in Gas Tungsten Arc Welding on the Microstructure and Mechanical Properties of Titanium Alloy Welds: A Technical Note. J. Mater. Sci. Lett. 1996, 15, 626–628. [Google Scholar]
- Mohandas, T.; Reddy, G.M. Materials Processing Technology A Comparison of Continuous and Pulse Current Gas Tungsten Arc Welds of an Ultra High Strength Steel. J. Mater. Process. Technol. 1997, 69, 222–226. [Google Scholar] [CrossRef]
- Sundaresan, S.; Ram, G.D.J.; Reddy, G.M. Microstructural Refinement of Weld Fusion Zones in α-β Titanium Alloys Using Pulsed Current Welding. Mater. Sci. Eng. A 1999, 262, 88–100. [Google Scholar] [CrossRef]
- Kishore Babu, N.; Ganesh Sundara Raman, S.; Mythili, R.; Saroja, S. Correlation of Microstructure with Mechanical Properties of TIG Weldments of Ti-6Al-4V Made with and without Current Pulsing. Mater. Charact. 2007, 58, 581–587. [Google Scholar] [CrossRef]
- Yang, M.; Zheng, H.; Li, L. Arc Shape Characteristics with Ultra-High-Frequency Pulsed Arc Welding. Appl. Sci. 2017, 7, 45. [Google Scholar] [CrossRef]
- Chai, D.; Wu, D.; Ma, G.; Zhou, S.; Jin, Z.; Wu, D. The effects of pulse parameters on weld geometry and microstructure of a pulsed laser welding Ni-base alloy thin sheet with filler wire. Metals 2016, 6, 237. [Google Scholar] [CrossRef]
- Balasubramanian, V.; Jayabalan, V.; Balasubramanian, M. Effect of Current Pulsing on Tensile Properties of Titanium Alloy. Mater. Des. 2008, 29, 1459–1466. [Google Scholar] [CrossRef]
- Yuan, T.; Li, Y.; Ren, X.; Jiang, X.; Zhao, P. Effect of pulse current on grain refinement in Ti6Al4V welds during pulsed plasma arc welding. J. Mater. Eng. Perform. 2023, 33, 8904–8915. [Google Scholar] [CrossRef]
- Balasubramanian, M.; Jayabalan, V.; Balasubramanian, V. Effect of Pulsed Current Gas Tungsten Arc Welding Parameters on Microstructure of Titanium Alloy Welds. J. Manuf. Sci. Eng. 2009, 131, 064502. [Google Scholar] [CrossRef]
- Mehdi, B.; Badji, R.; Ji, V.; Allili, B.; Bradai, D.; Deschaux-Beaume, F.; Soulié, F. Microstructure and Residual Stresses in Ti-6Al-4V Alloy Pulsed and Unpulsed TIG Welds. J. Mater. Process Technol. 2016, 231, 441–448. [Google Scholar] [CrossRef]
- Ma, S.; Xu, K.; Jie, W. Wear behavior of the surface of Ti–6Al–4V alloy modified by treating with a pulsed dc plasma-duplex process. Surf. Coat. Technol. 2004, 185, 205–209. [Google Scholar] [CrossRef]
- Yang, M.; Zheng, H.; Qi, B.; Yang, Z. Effect of Arc Behavior on Ti-6Al-4V Welds during High Frequency Pulsed Arc Welding. J. Mater. Process Technol. 2017, 243, 9–15. [Google Scholar] [CrossRef]
- Yang, Z.; Qi, B.; Cong, B.; Liu, F.; Yang, M. Microstructure, Tensile Properties of Ti-6Al-4V by Ultra High Pulse Frequency GTAW with Low Duty Cycle. J. Mater. Process Technol. 2015, 216, 37–47. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, M.; Wu, C. High-Frequency Pulse-Modulated Square Wave AC TIG Welding of AA6061-T6 Aluminum Alloy. Weld. World 2020, 64, 1749–1762. [Google Scholar] [CrossRef]
- Wu, J.; Wang, Z.; Lin, S.; Xie, Z.; Xu, M.; Tian, J.; Guo, C. Effect of Fast-Frequency Pulsed Waveforms on the Microstructure and Mechanical Properties of Ti-6Al-4V Alloy Welded by FFP-TIG. J. Mater. Res. Technol. 2022, 20, 516–531. [Google Scholar] [CrossRef]
- Wei, L.I.; Gaochong, L.V.; Qiang, W.A.; Huang, S. Arc characteristics and weld bead microstructure of Ti-6Al-4V titanium alloy in ultra-high frequency pulse gas tungsten arc welding (UHFP-GTAW) process. J. Mater. Sci. 2020, 26, 426–431. [Google Scholar] [CrossRef]
- Yang, M.; Yang, Z.; Cong, B.; Qi, B. How ultra-high frequency of pulsed gas tungsten arc welding affects weld porosity of Ti-6Al-4V alloy. Int. J. Adv. Manuf. Technol. 2015, 76, 955–960. [Google Scholar] [CrossRef]
- Arivarasu, M.; Devendranath Ramkumar, K.; Arivazhagan, N. Comparative Studies of High and Low Frequency Pulsing on the Aspect Ratio of Weld Bead in Gas Tungsten Arc Welded AISI 304L Plates. Procedia Eng. 2014, 97, 871–880. [Google Scholar] [CrossRef]
- Zhang, H.; He, J.; Tang, L.; Zhang, J. High frequency characters of arc light radiation in micro plasma arc welding with pulsed current. Results Phys. 2019, 13, 102259. [Google Scholar] [CrossRef]
- Dong, Z.; Li, Y.; Wu, H.; Babkin, A.; Chang, Y. Effect of TIG arc characteristics on weld morphology and structure of AISI444 ferritic stainless steel under pulse current. Weld. World 2021, 65, 2093–2104. [Google Scholar] [CrossRef]
- Pederson, R.; Niklasson, F.; Skystedt, F.; Warren, R. Microstructure and mechanical properties of friction and electron beam welded Ti–6Al–4V and Ti–6Al–2Sn–4Zr–6Mo. Mater. Sci. Eng. A 2012, 552, 555–565. [Google Scholar] [CrossRef]
- Krishna, K.V.; Krishna, C.G.; Polamarasetty, N.; Talari, M.K.; Nadakuduru, V.N.; Nagumothu, K.B. Microstructural Characterization and Mechanical Properties of Metastable Beta and α+β Titanium Alloy Electron Beam Weldments. Fusion Sci. Technol. 2023, 80, 82–97. [Google Scholar] [CrossRef]
- Tsai, C.J.; Wang, L.M. Improved Mechanical Properties of Ti-6Al-4V Alloy by Electron Beam Welding Process plus Annealing Treatments and Its Microstructural Evolution. Mater. Des. 2014, 60, 587–598. [Google Scholar] [CrossRef]
- Kabir, A.S.H.; Cao, X.; Gholipour, J.; Wanjara, P.; Cuddy, J.; Birur, A.; Medraj, M. Effect of Postweld Heat Treatment on Microstructure, Hardness, and Tensile Properties of Laser-Welded Ti-6Al-4V. Met. Mater. Trans. A Phys. Met. Mater. Sci. 2012, 43, 4171–4184. [Google Scholar] [CrossRef]
- Kumar, A.; Sundarrajan, S. Effect of Welding Parameters on Mechanical Properties and Optimization of Pulsed TIG Welding of Al-Mg-Si Alloy. Int. J. Adv. Manuf. Technol. 2009, 42, 118–125. [Google Scholar] [CrossRef]
- Mishra, S.; DebRoy, T. Measurements and Monte Carlo simulation of grain growth in the heat-affected zone of Ti-6Al-4V welds. Acta Mater. 2004, 52, 1183–1192. [Google Scholar] [CrossRef]
- Hadadzadeh, A.; Ghaznavi, M.M.; Kokabi, A.H. The effect of gas tungsten arc welding and pulsed-gas tungsten arc welding processes’ parameters on the heat affected zone-softening behavior of strain-hardened Al–6.7 Mg alloy. Mater. Des. 2014, 55, 335–342. [Google Scholar] [CrossRef]
- Sattar, A.; Hussain, A.; Abbas, M.; Azam, M.N.; Mehmood, K.; Wakeel, A.; Ali, S. Optimization of TIG welding parameters for Ti-6Al-4V titanium alloy using the Taguchi design of experiment. NUST J. Eng. Sci. 2022, 15, 65–77. [Google Scholar] [CrossRef]
- David, S.A.; Vitek, J.M. Correlation between solidification parameters and weld microstructures. Int. Mater. Rev. 1989, 34, 213–245. [Google Scholar] [CrossRef]
- Reda, R.; Hussein, A.H.; Nofal, A.; Sobih, M.; El-Banna, E.S. Effect of welding processes and postweld heat treatment on the mechanical properties of ti-6al-4v castings. Int. J. Mater. Eng. Technol. 2015, 13, 1. [Google Scholar] [CrossRef]
- Li, W.; Wu, H.; Ma, T.; Yang, C.; Chen, Z. Influence of Parent Metal Microstructure and Post-Weld Heat Treatment on Microstructure and Mechanical Properties of Linear Friction Welded Ti-6Al-4V Joint. Adv. Eng. Mater. 2012, 14, 312–318. [Google Scholar] [CrossRef]
- Thomas, G.; Ramachandra, V.; Ganeshan, R.; Vasudevan, R. Effect of pre-and post-weld heat treatments on the mechanical properties of electron beam welded Ti-6Al-4V alloy. J. Mater. Sci. 1993, 28, 4892–4899. [Google Scholar] [CrossRef]
Element | Al | V | Cr | Fe | H | C | Ni | O | Ti |
---|---|---|---|---|---|---|---|---|---|
Wt. % | 6.26 | 4.04 | 0.17 | 0.05 | 0.001 | 0.013 | 0.008 | 0.16 | Balance |
Parameters | Values |
---|---|
Electrode Dia (mm) | 2.4 |
Peak current (A) | 130 |
Background current (A) | 42 |
Micro-pulsing frequency (Hz) | 125, 250 |
Travel speed (cm/min) (both un-pulsed and micro-pulsed) | 15 |
Argon gas flow rate (L/min) (both un-pulsed and micro-pulsed) | 20 |
Average un-pulsed current (A) | 100 |
Voltage (V) (both un-pulsed and micro-pulsed) | 10.5 |
Arc length (mm) (both un-pulsed and micro-pulsed) | 2 |
Condition | Width of FZ + HAZ (mm) | Width of FZ (mm) | Width of HAZ (mm) | Average Grain Size in FZ (µm) | Average Grain Size in HAZ (µm) | Heat Input (J/mm) |
---|---|---|---|---|---|---|
Un-pulsed | 14.64 | 11.22 | 3.42 | 374 ± 5 | 105 ± 5 | 70 |
Micro-pulsed-125 Hz | 11.77 | 10.14 | 0.81 | 303 ± 6 | 85 ± 6 | 60.2 |
Micro-pulsed-250 Hz | 10.5 | 9.57 | 0.75 | 272 ± 5 | 64 ± 6 | 55 |
Condition | Yield Strength (YS), MPa | Ultimate Tensile Strength (UTS), MPa | %Elongation (%El) |
---|---|---|---|
As-welded un-pulsed | 980 ± 4 | 1014 ± 5 | 14 ± 0.5 |
As-welded 125 Hz | 994 ± 6 | 1048 ± 4 | 16 ± 0.6 |
As-welded 250 Hz | 1020 ± 5 | 1089 ± 5 | 18 ± 0.5 |
PWHT un-pulsed | 944 ± 6 | 967 ± 6 | 22 ± 0.4 |
PWHT 125 Hz | 957 ± 5 | 989 ± 6 | 23 ± 0.5 |
PWHT 250 Hz | 972 ± 4 | 998 ± 4 | 23 ± 0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vypana, J.; Babu, N.K.; Talari, M.K.; Krishna, K.V.; Krishna, C.G.; Rehman, A.U. Effect of DC Micro-Pulsing on Microstructure and Mechanical Properties of TIG Welded Ti-6Al-4V. Crystals 2024, 14, 919. https://doi.org/10.3390/cryst14110919
Vypana J, Babu NK, Talari MK, Krishna KV, Krishna CG, Rehman AU. Effect of DC Micro-Pulsing on Microstructure and Mechanical Properties of TIG Welded Ti-6Al-4V. Crystals. 2024; 14(11):919. https://doi.org/10.3390/cryst14110919
Chicago/Turabian StyleVypana, Jose, Nagumothu Kishore Babu, Mahesh Kumar Talari, Karni Vamsi Krishna, Chakravarthula Gopi Krishna, and Ateekh Ur Rehman. 2024. "Effect of DC Micro-Pulsing on Microstructure and Mechanical Properties of TIG Welded Ti-6Al-4V" Crystals 14, no. 11: 919. https://doi.org/10.3390/cryst14110919
APA StyleVypana, J., Babu, N. K., Talari, M. K., Krishna, K. V., Krishna, C. G., & Rehman, A. U. (2024). Effect of DC Micro-Pulsing on Microstructure and Mechanical Properties of TIG Welded Ti-6Al-4V. Crystals, 14(11), 919. https://doi.org/10.3390/cryst14110919