Novel Crystalline Salts of 4-Piperidyl- and 4-Pyridylmethylamines Prepared by Catalytic Hydrogenation of 4-Pyridinecarbonitrile: Crystallographic Unit Cells Based on Powder XRD Patterns by Using the DASH Program Package
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Characterization Methods
2.2.1. Powder X-Ray Diffraction (XRD)
2.2.2. FT-IR Spectroscopy
3. Results and Discussion
3.1. FT-IR Investigations
3.1.1. Comparison of the Completely Hydrogenated 4PIPA·H2SO4 and 4PIPA·2HCl Product Salts
3.1.2. Comparison of the Partially Hydrogenated 4PA·0.5H2SO4·xH2O (x = 0 or x = 0.5) and 4PA·H2SO4 Product Salts
3.2. Powder X-Ray Diffraction Examinations
3.2.1. Estimation and Modeling of the Crystallographic Unit Cells of 4PIPA·H2SO4 and 4PIPA·2HCl Product Salts
3.2.2. Estimation of the Crystallographic Unit Cell of 4PA·0.5H2SO4·xH2O (x = 0.5 or x = 0) Intermediate Salts
3.2.3. Estimation and Modeling of the Crystallographic Unit Cell of 4PA·H2SO4 Intermediate Salt
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lévay, K.; Madarász, J.; Hegedűs, L. Tuning the chemoselectivity of the Pd-catalysed hydrogenation of pyridinecarbonitriles: An efficient and simple method for preparing pyridyl- or piperidylmethylamines. Catal. Sci. Technol. 2022, 12, 2634–2648. [Google Scholar] [CrossRef]
- Sagara, Y.; Sagara, T.; Uchiyama, M.; Otsuki, S.; Kimura, T.; Fujikawa, T.; Noguchi, K.; Ohtake, N. Identification of a Novel 4-Aminomethylpiperidine Class of M3 Muscarinic Receptor Antagonists and Structural Insight into Their M3 Selectivity. J. Med. Chem. 2006, 49, 5653–5663. [Google Scholar] [CrossRef] [PubMed]
- Steffan, R.J.; Ashwell, M.A.; Solvibile, W.R.; Matelan, E.; Largis, E.; Han, S.; Tillet, J.; Mulvey, R. Novel Substituted 4-Aminomethylpiperidines as Potent and Selective Human β3-Agonists. Part 1: Aryloxypropanolaminomethylpiperidines. Bioorg. Med. Chem. Lett. 2002, 12, 2957–2961. [Google Scholar] [CrossRef]
- Steffan, R.J.; Ashwell, M.A.; Solvibile, W.R.; Matelan, E.; Largis, E.; Han, S.; Tillet, J.; Mulvey, R. Novel Substituted 4-Aminomethylpiperidines as Potent and Selective Human β3-Agonists. Part 2: Arylethanolaminomethylpiperidines. Bioorg. Med. Chem. Lett. 2002, 12, 2963–2967. [Google Scholar] [CrossRef]
- Malhotra, D.; Page, J.P.; Bowden, M.E.; Karkamkar, A.; Heldebrant, D.J.; Glezakou, V.-A.; Rousseau, R.; Koech, P.K. Phase-Change Aminopyridines as Carbon Dioxide Capture Solvents. Ind. Eng. Chem. Res. 2017, 56, 7534–7540. [Google Scholar] [CrossRef]
- Allen, F.H. The Cambridge Structural Database: A Quarter of a Million Crystal Structures and Rising. Acta Crystallogr. Sect. B Struct. Sci. 2002, 58, 380–388. [Google Scholar] [CrossRef]
- Schutte, M.; Visser, H.G.; Roodt, A. 2-(Ammoniomethyl) pyridinium sulfate monohydrate. Acta Crystallogr. Sect. E Struct. Rep. Online 2012, 68, o914. [Google Scholar] [CrossRef]
- Marouani, H.; Rzaigui, M.; Al-Deyab, S.S. Synthesis and Crystal Structure of (3-NH3CH2C5H4NH)SO4·H2O. X Ray Struct. Anal. Online 2011, 27, 25–26. [Google Scholar] [CrossRef]
- Junk, P.C.; Kim, Y.; Skelton, B.W.; White, A.H. The Structural Systematics of Protonation of Some Important Nitrogen-Base Ligands. V. Some Univalent Anion Salts of Mono- and Bis(2-picolyl)amine. Z. Anorg. Allg. Chem. 2006, 632, 1340–1350. [Google Scholar] [CrossRef]
- Liang, W.-X.; Wang, G.; Qu, Z.-R. Redetermination of 3-(ammoniomethyl) pyridinium dichloride. Acta Crystallogr. Sect. E Struct. Rep. Online 2009, 65, o1814. [Google Scholar] [CrossRef]
- de Vries, E.J.C.; Oliver, C.L.; Lloyd, G.O. (4-Pyridylmethyl) aminium chloride. Acta Crystallogr. Sect. E Struct. Rep. Online 2005, 61, o1577–o1578. [Google Scholar] [CrossRef]
- El Glaoui, M.; Kefi, R.; Amri, O.; Jeanneau, E.; Ben Nasr, C. 4-(Ammoniomethyl) pyridinium dichloride. Acta Crystallogr. Sect. E Struct. Rep. Online 2008, 64, o2204. [Google Scholar] [CrossRef] [PubMed]
- Gan, X.; Tang, Z.; Wang, Y.; Zhang, W.; Sun, X.; Wu, Y.; Gao, Z.; Cai, H.-L.; Wu, X.S. Molecular Ferroelectric Piperidine-4-ylmethanaminium Perchlorate with Superior Switchable Dielectric Properties. ChemistrySelect 2019, 4, 2903–2907. [Google Scholar] [CrossRef]
- Deniau, G.; Moraux, T.; O’Hagan, D.; Slawin, A.M.Z. An efficient synthesis of (R)-and (S)-2-(aminomethyl)piperidine dihydrochloride. Tetrahedron Asymmetry 2008, 19, 2330–2333. [Google Scholar] [CrossRef]
- David, W.I.F.; Shankland, K.; van de Streek, J.; Pidcock, E.; Motherwell, W.D.S.; Cole, J.C. DASH: A program for crystal structure determination from powder diffraction data. J. Appl. Crystallogr. 2006, 39, 910–915. [Google Scholar] [CrossRef]
- CCDC-Opensource/Dash. Available online: https://github.com/ccdc-opensource/dash/releases (accessed on 15 October 2024).
- David, W.I.F.; Shankland, K. Structure determination from powder diffraction data. Acta Crystallogr. Sect. A Found. Crystallogr. 2008, 64, 52–64. [Google Scholar] [CrossRef]
- Shankland, K.; Spillman, M.J.; Kabova, E.A.; Edgeley, D.S.; Shankland, N. The principles underlying the use of powder diffraction data in solving pharmaceutical crystal structures. Acta Crystallogr. Sect. C Cryst. Struct. Commun. 2013, 69, 1251–1259. [Google Scholar] [CrossRef]
- Kabova, E.A.; Cole, J.C.; Korb, O.; Lopez-Ibáñez, M.; Williams, A.C.; Shankland, K. Improved performance of crystal structure solution from powder diffraction data through parameter tuning of a simulated annealing algorithm. J. Appl. Crystallogr. 2017, 50, 1411–1420. [Google Scholar] [CrossRef]
- Kabova, E.A.; Cole, J.C.; Korb, O.; Williams, A.C.; Shankland, K. Improved crystal structure solution from powder diffraction data by the use of conformational information. J. Appl. Crystallogr. 2017, 50, 1421–1427. [Google Scholar] [CrossRef]
- Kaduk, J.A.; Crowder, C.E.; Zhong, K.; Fawcett, T.G.; Suchomel, M.R. Crystal Structure of Atomoxetine Hydrochloride (Strattera), C17H22NOCl. Powder Diffr. 2024, 29, 269–273. [Google Scholar] [CrossRef]
- Kaduk, J.A.; Dosen, A.; Blanton, T.N. Crystal structure of ribociclib hydrogen succinate, (C23H31N8O)(HC4H4O4). Powder Diffr. 2024, 39, 1–8. [Google Scholar] [CrossRef]
- Florence, A.J.; Shankland, N.; Shankland, K.; David, W.I.F.; Pidcock, E.; Xu, X.; Johnston, A.; Kennedy, A.R.; Cox, P.J.; Evans, J.S.O.; et al. Solving molecular crystal structures from laboratory X-ray powder diffraction data with DASH: The state of the art and challenges. J. Appl. Crystallogr. 2005, 38, 249–259. [Google Scholar] [CrossRef]
- Bánhegyi, D.F.; Madarász, J.; Fogassy, E.; Pálovics, E.; Pokol, G. Crystalline Forms of 4, 4’-Methylenediantipyrine: Crystallographic Unit Cell for the Anhydrous Form, from Laboratory Powder XRD Pattern by DASH Program Package. Period. Polytech. Chem. Eng. 2023, 67, 557–564. [Google Scholar] [CrossRef]
- Boultif, A.; Louër, D. Indexing of powder diffraction patterns for low-symmetry lattices by the successive dichotomy method. J. Appl. Crystallogr. 1991, 24, 987–993. [Google Scholar] [CrossRef]
- Markvardsen, A.J.; David, W.I.F.; Johnson, J.C.; Shankland, K. A probabilistic approach to space-group determination from powder diffraction data. Acta Crystallogr. Sect. A Found. Crystallogr. 2001, 57, 47–54. [Google Scholar] [CrossRef]
- Markvardsen, A.J.; Shankland, K.; David, W.I.F.; Johnson, J.C.; Ibberson, R.M.; Tucker, M.; Nowell, H.; Griffin, T. ExtSym: A program to aid space-group determination from powder diffraction data. J. Appl. Crystallogr. 2008, 41, 1177–1181. [Google Scholar] [CrossRef]
- Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds: Part A: Theory and Applications in Inorganic Chemistry, 6th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2009; p. 194. [Google Scholar]
- Le Bail, A. Monte Carlo indexing with McMaille. Powder Diffr. 2004, 19, 249–254. [Google Scholar] [CrossRef]
- Hofmann, D.W.M. Fast estimation of crystal densities. Acta Crystallogr. Sect. B Struct. Sci. 2002, 58, 489–493. [Google Scholar] [CrossRef]
Salt Samples/Formula Unit Features of Crystallographic Unit Cells | 4PIPA
2HCl 4-Piperidiniummethyl- ammonium Dichloride C6H14N2·2HCl = C6H16N22+ 2Cl– | 4PIPA·H2SO4 4-Piperidiniummethyl- ammonium Monosulfate C6H14N2·H2SO4 = C6H16N22+ SO42– |
---|---|---|
Crystal system | orthorhombic | triclinic |
Space group (s.g. No.) | Pcab (No. 61) | P-1 (No. 2) |
a (Å) | 17.601 | 10.431 |
b (Å) | 15.936 | 8.405 |
c (Å) | 7.188 | 5.978 |
α (°) | 90 | 86.70 |
β (°) | 90 | 106.40 |
γ (°) | 90 | 104.24 |
V (Å3) | 2016.06 | 487.30 |
Z/Z’ (–) | 8/1 | 2/1 |
Vm (Å3) | 252.01 | 243.65 |
Merit of Pawley refinement fitting (χ2) | 26.98 | 22.2 |
Estimated zero-point shift (°) | 0.0898 | 0.0378 |
Salt Samples/Formula Unit Features of Crystallographic Unit Cell | 4PA·0.5H2SO4·0.5H2O (Fresh, Hydrated) 4-Pyridylmethyl- ammonium Hemisulfate Hemihydrate C6H8N2·0.5H2SO4·0.5H2O | 4PA·0.5H2SO4 (Aged, Anhydrous) 4-Pyridylmethyl- ammonium Hemisulfate C6H8N2·0.5H2SO4 |
---|---|---|
Crystal system | monoclinic | triclinic |
Space group (s.g. No.) | P21/n (No. 14) | P-1 (No. 2) |
a (Å) | 17.194 | 10.273 |
b (Å) | 5.874 | 11.403 |
c (Å) | 15.393 | 16.134 |
α (°) | 90 | 53.65 |
β (°) | 101.43 | 107.86 |
γ (°) | 90 | 106.71 |
V (Å3) | 1523.83 | 1434.96 |
Z/Z’ (–) | 8/2 | 8/4 |
Vm (Å3) | 190.48 | 179.37 |
Merit of Pawley refinement fitting (χ2) | 234 | 80.4 |
Estimated zero-point shift (°) | –0.1238 | –0.067 |
Salt Samples/Formula Unit Features of Crystallographic Unit Cell | 4PA·H2SO4 4-Pyridylmethyl- ammonium Monosulfate C6H8N2·H2SO4 = C6H10N22+ SO42– |
---|---|
Crystal system | orthorhombic |
Space group (s.g. No.) | Pbca (No. 61) |
a (Å) | 17.101 |
b (Å) | 14.372 |
c (Å) | 7.819 |
α (°) | 90 |
β (°) | 90 |
γ (°) | 90 |
V (Å3) | 1921.64 |
Z/Z’ (–) | 8/1 |
Vm (Å3) | 240.21 |
Merit of Pawley refinement fitting (χ2) | 44.65 |
Estimated zero-point shift (°) | 0.144 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Madarász, J.; Hegedűs, L. Novel Crystalline Salts of 4-Piperidyl- and 4-Pyridylmethylamines Prepared by Catalytic Hydrogenation of 4-Pyridinecarbonitrile: Crystallographic Unit Cells Based on Powder XRD Patterns by Using the DASH Program Package. Crystals 2024, 14, 938. https://doi.org/10.3390/cryst14110938
Madarász J, Hegedűs L. Novel Crystalline Salts of 4-Piperidyl- and 4-Pyridylmethylamines Prepared by Catalytic Hydrogenation of 4-Pyridinecarbonitrile: Crystallographic Unit Cells Based on Powder XRD Patterns by Using the DASH Program Package. Crystals. 2024; 14(11):938. https://doi.org/10.3390/cryst14110938
Chicago/Turabian StyleMadarász, János, and László Hegedűs. 2024. "Novel Crystalline Salts of 4-Piperidyl- and 4-Pyridylmethylamines Prepared by Catalytic Hydrogenation of 4-Pyridinecarbonitrile: Crystallographic Unit Cells Based on Powder XRD Patterns by Using the DASH Program Package" Crystals 14, no. 11: 938. https://doi.org/10.3390/cryst14110938
APA StyleMadarász, J., & Hegedűs, L. (2024). Novel Crystalline Salts of 4-Piperidyl- and 4-Pyridylmethylamines Prepared by Catalytic Hydrogenation of 4-Pyridinecarbonitrile: Crystallographic Unit Cells Based on Powder XRD Patterns by Using the DASH Program Package. Crystals, 14(11), 938. https://doi.org/10.3390/cryst14110938