Empirical Analysis of Stability of An+1BnO3n+1 Ruddlesden–Popper Phases Using Reciprocal n-Values
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
- As follows from Figure 1b (inset), the accuracy of the approximation of ΔG1/n by Equation (4) is higher than the uncertainty of its experimental determination. Thus, Equation (5) can be used to estimate the Gibbs energy of formation of any member of the RP family, which cannot be determined experimentally, and to verify the values obtained experimentally.
- Let us consider the possibility of the disproportionation reaction of an RPn phase into RP(n − 1) and RP(n + 1) phases by Equations (2) and (6):
- 3.
- The absolute value of the change in the Gibbs free energy of reaction (6) of interconversion of the RP phases is small. In particular, in the case of strontium titanates, it does not exceed 281 J/mol at 1200 K. This is exactly what causes the difficulty of synthesizing the RP phases An+1BnO3n+1 with a high n value. On the other hand, low values of ΔGr,n make it possible to influence the relative stability of the RP phases and, accordingly, to shift the equilibrium of their interconversion, using a factor that affects the thermodynamics of compounds with different n to varying extents. Oxygen non-stoichiometry, for instance, can act as such a factor for systems based on transition metals (Co, Ni, Fe). It is known that double perovskites (AA′)MO3 and the RP phases (A,A′ = rare and alkaline earth metals, M = Co, Ni, Fe), are capable of reversibly adding/eliminating oxygen (8) to form non-stoichiometric compounds depending on the temperature and partial pressure of oxygen.
- 4.
- A further generalization of the approximation (5) can be obtained by reducing the equation to a dimensionless form (10), where B1 = B1′/ΔGP and B2 = B2′/ΔGP.
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tilley, R.J.D. Perovskites: Structure–Property Relationships; Wiley & Sons Ltd.: Hoboken, NJ, USA, 2016. [Google Scholar]
- Samreen, A.; Ali, M.S.; Huzaifa, M.; Ali, N.; Hassan, B.; Ullah, F.; Ali, S.; Arifin, N.A. Advancements in Perovskite-Based Cathode Materials for Solid Oxide Fuel Cells: A Comprehensive Review. Chem. Rec. 2024, 1, e202300247. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Fan, H.; Xiao, Y.; Zhang, Y. Applications and recent advances of rare earth in solid oxide fuel cells. J. Rare Earths 2022, 40, 1668–1681. [Google Scholar] [CrossRef]
- Han, N.; Shen, Z.; Zhao, X.; Chen, R.; Thakur, V.K. Perovskite oxides for oxygen transport: Chemistry and material horizons. Sci. Total Environ. 2022, 806, 151213. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Jeerh, G.; Zou, P.; Lan, R.; Wang, M.; Wang, H.; Tao, S. Recent development of perovskite oxide–based electrocatalysts and their applications in low to intermediate temperature electrochemical devices. Mater. Today 2021, 49, 351–377. [Google Scholar] [CrossRef]
- Xu, X.; Pan, Y.; Zhong, Y.; Ran, R.; Shao, Z. Ruddlesden–Popper perovskites in electrocatalysis. Mater. Horizons 2020, 7, 2519–2565. [Google Scholar] [CrossRef]
- Xu, X.; Pan, Y.; Ge, L.; Chen, Y.; Mao, X.; Guan, D.; Li, M.; Zhong, Y.; Hu, Z.; Peterson, V.K.; et al. High–Performance Perovskite Composite Electrocatalysts Enabled by Controllable Interface Engineering. Small 2021, 17, 2101573. [Google Scholar] [CrossRef]
- Noguera, C. Theoretical investigation of the Ruddlesden–Popper compounds Srn+1TinO3n+1 (n = 1–3). Philos. Mag. Lett. 2000, 80, 173–180. [Google Scholar] [CrossRef]
- Ludt, C.; Zschornak, M. Electronic structure of the homologous series of Ruddlesden–Popper phases SrO(SrTiO3)n, (n = 0–3, ∞). Zeitschrift für Krist.–Cryst. Mater. 2022, 237, 201–214. [Google Scholar] [CrossRef]
- McCARTHY, G.J.; White, W.B.; Roy, R. Phase Equilibria in the 1375 °C Isotherm of the System Sr–Ti–O. J. Am. Ceram. Soc. 1969, 52, 463–467. [Google Scholar] [CrossRef]
- Carleschi, E.; Doyle, B.P.; Fittipaldi, R.; Granata, V.; Strydom, A.M.; Cuoco, M.; Vecchione, A. Double metamagnetic transition in Sr4Ru3O10. Phys. Rev. B 2014, 90, 205120. [Google Scholar] [CrossRef]
- Banerjee, A.; Prasad, R.; Venugopal, V. Thermodynamic properties of Sr2RuO4(s) and Sr3Ru2O7(s) by using solid–state electrochemical cells. J. Alloys Compd. 2004, 373, 59–66. [Google Scholar] [CrossRef]
- Elcombe, M.M.; Kisi, E.H.; Hawkins, K.D.; White, T.J.; Goodman, P.; Matheson, S. Structure determinations for Ca3Ti2O7, Ca4Ti3O10, Ca3.6Sr0.4Ti3O10 and a refinement of Sr3Ti2O7. Acta Crystallogr. Sect. B Struct. Sci. 1991, 47, 305–314. [Google Scholar] [CrossRef]
- Ram, R.M.; Ganapathi, L.; Ganguly, P.; Rao, C.N.R. Evolution of three–dimensional character across the Lan+1NinO3n+1 homologous series with increase in n. J. Solid State Chem. 1986, 63, 139–147. [Google Scholar] [CrossRef]
- Zinkevich, M.; Solak, N.; Nitsche, H.; Ahrens, M.; Aldinger, F. Stability and thermodynamic functions of lanthanum nickelates. J. Alloys Compd. 2007, 438, 92–99. [Google Scholar] [CrossRef]
- Yan, L.; Niu, H.J.; Duong, G.V.; Suchomel, M.R.; Bacsa, J.; Chalker, P.R.; Hadermann, J.; Van Tendeloo, G.; Rosseinsky, M.J. Cation ordering within the perovskite block of a six–layer Ruddlesden–Popper oxide from layer–by–layer growth—Artificial interfaces in complex unit cells. Chem. Sci. 2011, 2, 261–272. [Google Scholar] [CrossRef]
- Lee, C.H.; Podraza, N.J.; Zhu, Y.; Berger, R.F.; Shen, S.; Sestak, M.; Collins, R.W.; Kourkoutis, L.F.; Mundy, J.A.; Wang, H.; et al. Effect of reduced dimensionality on the optical band gap of SrTiO3. Appl. Phys. Lett. 2013, 102, 122901. [Google Scholar] [CrossRef]
- Barone, M.R.; Dawley, N.M.; Nair, H.P.; Goodge, B.H.; Holtz, M.E.; Soukiassian, A.; Fleck, E.E.; Lee, K.; Jia, Y.; Heeg, T.; et al. Improved control of atomic layering in perovskite–related homologous series. APL Mater. 2021, 9, 021118. [Google Scholar] [CrossRef]
- Yokokawa, H.; Sakai, N.; Kawada, T.; Dokiya, M. Thermodynamic stability of perovskites and related compounds in some alkaline earth–transition metal–oxygen systems. J. Solid State Chem. 1991, 94, 106–120. [Google Scholar] [CrossRef]
- Glasser, L. Systematic Thermodynamics of Layered Perovskites: Ruddlesden–Popper Phases. Inorg. Chem. 2017, 56, 8920–8925. [Google Scholar] [CrossRef]
- Bannikov, D.O.; Safronov, A.P.; Cherepanov, V.A. Thermochemical characteristics of Lan+1NinO3n+1 oxides. Thermochim. Acta 2006, 451, 22–26. [Google Scholar] [CrossRef]
- Jacob, K.T.; Rajitha, G. Thermodynamic properties of strontium titanates: Sr2TiO4, Sr3Ti2O7, Sr4Ti3O10, and SrTiO3. J. Chem. Thermodyn. 2011, 43, 51–57. [Google Scholar] [CrossRef]
- Jacob, K.T.; Abraham, K.P. Thermodynamic properties of calcium titanates: CaTiO3, Ca4Ti3O10, and Ca3Ti2O7. J. Chem. Thermodyn. 2009; 41, 816–820. [Google Scholar] [CrossRef]
- Parida, S.C.; Singh, Z.; Dash, S.; Prasad, R.; Venugopal, V. Standard molar Gibbs energies of formation of the ternary compounds in the La–Co–O system using solid oxide galvanic cell method. J. Alloys Compd. 1999, 285, 7–11. [Google Scholar] [CrossRef]
- Petrov, A.N.; Cherepanov, V.A.; Zuyev, A.Y.; Zhukovsky, V.M. Thermodynamic stability of ternary oxides in LnMO (Ln = La, Pr, Nd; M = Co, Ni, Cu) systems. J. Solid State Chem. 1988, 77, 1–14. [Google Scholar] [CrossRef]
- Bannikov, D.O.; Cherepanov, V.A. Thermodynamic properties of complex oxides in the La–Ni–O system. J. Solid State Chem. 2006, 179, 2721–2727. [Google Scholar] [CrossRef]
- Ao, X.; Zhu, L.; Liang, R.; Wang, Y.; Ye, M.; Zheng, R.; Ke, S. Phase transition from SrRuO3 to Sr3Ru2O7 by tuning oxygen pressure at low processing temperature. Scr. Mater. 2024, 238, 115745. [Google Scholar] [CrossRef]
- Vereshchagin, S.N.; Budnikov, V.A.; Nasluzov, V.A.; Solovyov, L.A. Synthesis and Stability of Ruddlesden–Popper Phases (Sr0.8Ln0.2)3Co2O7−δ (Ln = Sm, Gd, Dy). J. Sib. Fed. Univ. Chem 2024, 17, 279–288. [Google Scholar]
- Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A 1976, 32, 751–767. [Google Scholar] [CrossRef]
System | N | df | n | B1 | B2 |
---|---|---|---|---|---|
Srn+1TinO3n+1 (1200K) | 4 | 2 | 1–3,∞ | 0.34985 ± 0.00046 | −0.02873 ± 0.00051 |
Can+1TinO3n+1 (1200K) | 3 | 1 | 2,3,∞ | 0.17996 ± 1 × 10−16 * | −0.15427 ± 2 × 10−16 * |
Lan+1ConO3n+1 (1200K) | 3 | 1 | 1,3,∞ | 0.90318 ± 6 × 10−16 * | −0.13991 ± 7 × 10−16 * |
Srn+1TinO3n+1 (298K) | 4 | 2 | 1–3,∞ | 0.37907 ± 0.00085 | −0.01143 ± 0.00097 |
Srn+1ZrnO3n+1 (298K) | 4 | 2 | 1–3,∞ | 0.34264 ± 0.00028 | −0.0056 ± 0.0003 |
Lan+1NinO3n+1 (298K) | 4 | 2 | 1–3,∞ | 0.69749 ± 0.0015 | −0.01505 ± 0.00169 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vereshchagin, S.; Dudnikov, V. Empirical Analysis of Stability of An+1BnO3n+1 Ruddlesden–Popper Phases Using Reciprocal n-Values. Crystals 2024, 14, 954. https://doi.org/10.3390/cryst14110954
Vereshchagin S, Dudnikov V. Empirical Analysis of Stability of An+1BnO3n+1 Ruddlesden–Popper Phases Using Reciprocal n-Values. Crystals. 2024; 14(11):954. https://doi.org/10.3390/cryst14110954
Chicago/Turabian StyleVereshchagin, Sergei, and Vyacheslav Dudnikov. 2024. "Empirical Analysis of Stability of An+1BnO3n+1 Ruddlesden–Popper Phases Using Reciprocal n-Values" Crystals 14, no. 11: 954. https://doi.org/10.3390/cryst14110954
APA StyleVereshchagin, S., & Dudnikov, V. (2024). Empirical Analysis of Stability of An+1BnO3n+1 Ruddlesden–Popper Phases Using Reciprocal n-Values. Crystals, 14(11), 954. https://doi.org/10.3390/cryst14110954