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Abstract: In this paper, we focus on surface electrostatic potentials and a variety of statistically
derived quantities defined in terms of the surface potentials. These have been shown earlier to
be meaningful in describing features of these potentials and have been utilized to understand the
interactive tendencies of molecules in condensed phases. Our current emphasis is on ionic salts and
liquids instead of neutral molecules. Earlier work on ionic salts has been reviewed. Presently, our
results are for a variety of singly charged cations and anions that can combine to form ionic solids or
liquids. Our approach is computational, using the density functional B3PW91/6-31G(d,p) procedure
for all calculations. We find consistently that the average positive and negative surface electrostatic
potentials of the cations and anions decrease with the size of the ion, as has been noted earlier. A
model using computed statistical quantities has allowed us to put the melting points of both ionic
solids and liquids together, covering a range from 993 ◦C to 11 ◦C.

Keywords: surface electrostatic potentials; surface areas; volumes; statistical quantities; ionic salts;
ionic liquids

1. Introduction to Electrostatic Potentials

The nuclei and electrons of an atom or molecule or ion create an electrostatic potential
V(r) at every point r in the surrounding space, given rigorously by the following equation:

V(r) = ∑
A

ZA

|RA − r| −
∫

ρ(r′)dr′

|r′ − r| (1)

In Equation (1), ZA is the charge on nucleus A, located at RA, and ρ(r) is the system’s
electronic density. The sign of V(r) in any region depends upon whether the positive
contribution of the nuclei or the negative one of the electrons is dominant there.

Molecular electrostatic potentials were introduced as a tool in chemistry by Scrocco
and Tomasi in the 1970s [1,2] and have been used extensively since then [3–5], and with
considerable success, to interpret noncovalent interactions [6–9]; regions of positive and
negative potential on one molecule will tend to interact favorably with, respectively, nucle-
ophilic and electrophilic portions of another molecule. Of course, polarization, an intrinsic
part of any Coulombic interaction [1,10], explains what are considered “counter-intuitive”
interactions [11].

An important feature of the electrostatic potential is that it is a real physical property,
an observable. It can be determined experimentally by diffraction methods [4,12,13] as well
as computationally. The electrostatic potential should not be confused with partial atomic
charges in molecules, which are arbitrarily defined (in many different ways) [11,14–19]
because they are not physical observables. It should be noted, however, that some partial
atomic charges have been designed to produce molecular dipole moments [18,19], which
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are physical observables and which dominate the long-range part of a neutral molecule’s
electrostatic potential.

The electrostatic potential of a spherically symmetric neutral atom is positive every-
where (except, of course, at the actual position of the nucleus where it is undefined) and is
monotonically decreasing as V(r) approaches infinity [3]; it is when atoms combine to form
neutral molecules that negative regions of potential develop, often associated with lone
pairs, π electrons and strained bonds [1–5], with associated global minima Vmin. Pathak
and Gadre showed that there are no global maxima [20], such that the minima must be
linked by saddle points.

What is the situation with monoatomic ions and molecular ions? Spherically averaged
monoatomic cations have positive potentials everywhere in space; the values of V(r)
decrease monotonically as r → ∞, as do their neutral counterparts [20,21]. Sen and Politzer
proved in 1989 that the potential of monoatomic anions is positive close to the nucleus
and then goes through a negative minimum, since V(r) → 0 as r → ∞ [22,23]. The positive
monoatomic cations approach zero from the positive side, while the monoatomic anions
approach zero from the negative side. The radial behavior of monoatomic ions has recently
been revisited for both isotropic atoms and ions and the anisotropic halonium cations [24].

In using electrostatic potentials to analyze noncovalent interactions, V(r) is now gener-
ally computed on a molecular surface defined, following Bader et al., as an outer contour
of the molecule’s electronic density [25]. Defining the surface in this manner has the ad-
vantage that it reflects features specific to the particular molecule, such as lone pairs, π
electrons and atomic anisotropy [6,9,26]. The 0.001 au contour is commonly chosen for this
purpose, and the electrostatic potential on this contour is labeled VS(r). Its locally most
positive and most negative values, of which there may be several, are designated by VS,max
and VS,min, respectively [26].

The useful information provided by a molecular surface electrostatic potential goes well
beyond simply identifying positive and negative regions and utilizing the surface extrema. In
the 1990s, Brinck et al. defined certain statistical quantities using the values of points on the
surface electrostatic potential [27–29]; these have been found to be significant in quantifying
important features of the surface electrostatic potentials of molecules [17,28–30].

The first such quantity defined was the average deviation of VS(r) [27]; it is a measure
of the degree of internal charge separation that is present even in a molecule having a zero
dipole moment, and is labeled Π [Equation (2)]:

Π =
1
n

n

∑
i=1

∣∣V(ri)− VS
∣∣ (2)

where VS is the average value of VS(r), while n is the number of points on the surface for
which VS(r) is computed. This quantity has been shown to correlate with the Kamlet–Taft
polarizability–polarity parameter and dielectric constants [27].

The next statistical quantities, the positive, negative and total variances of VS(r),
were conceived to explain a trend seen in the solubilities of naphthalene and a series of
substituted indoles in supercritical fluids [28]. These are defined in Equations (3)–(5) and
reflect the ranges and variabilities of its positive and negative values, and of their sum.

σ2
+ =

1
m

m

∑
i=1

[
V+(ri)− V+

S

]2

(3)

σ2
− =

1
n

n

∑
j=1

[
V−(rj)− V−

S

]2

(4)

σ2
tot = σ2

+ + σ2
− (5)
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In Equations (3) and (4), the summations are over the surface points with positive and
negative electrostatic potentials, respectively; V+

S and V−
S are the averages of the positive

and negative values.
Finally, a balance parameter was defined to be a measure of the similarity between the

positive and negative variances on the molecular surface [29], given by Equation (6).

ν =
σ2
+σ

2
−[

σ2
tot
]2 (6)

Such a balance parameter was needed for obtaining correlations for properties that involve
self-interaction, such as boiling points [29–31]. ν simply indicates how σ2

+ and σ2
− compare.

The more similar they are (whether large or small), the closer will ν be to its maximum
possible value, 0.25, which corresponds to σ2

+ and σ2
− being equal. The product of the total

variance and the balance parameter, νσ2
tot, has been found to be particularly effective for

representing noncovalent molecular interactions involving self-interaction [17,30,31].
To give some perspective on these statistical quantities, Table 1 lists these quantities

for water, ammonia, N2 and a few small organic molecules, computed at the B3PW91/6-
31G(d,p) level on 0.001 au iso-density surfaces. The molecules are listed in order of
increasing size. It is noteworthy that water is the smallest molecule in Table 1 but has
the largest Π, total variance, as well as ν and the product νσ2

tot. This has been noted
earlier [27,30,31]. The least balanced molecule in Table 1 is dimethyl ether, which helps to
explain why its boiling point is similar to that of propane [27]. There are three molecules in
Table 1 with zero dipole moments: methane, N2 and acetylene. Their respective Π values of
3.0, 4.4 and 12.4 kcal/mol indicate that acetylene has the greatest internal charge separation
of these three molecules, even though all three have zero dipole moments [27]. In addition,
acetylene’s value of νσ2

tot is indicative of it having greater interactive tendencies than do
either methane or N2.

Table 1. Computed values of molecular volumes (Vol), the average deviation of VS(r) (Π), positive,
negative and total variances (σ2

+, σ2
− and σ2

tot), balance parameters ν and products νσ2
tot

a.

Molecule Vol Π σ2
+ σ2

− σ2
tot ν νσ2

tot

water 26.0 23.9 152.7 134.7 287.4 0.249 71.6
ammonia 33.6 17.9 38.8 185.4 224.2 0.143 32.1

N2 35.5 4.4 4.9 7.2 12.1 0.241 2.9
methane 41.5 3.0 5.8 0.9 6.7 0.113 0.7
acetylene 48.1 12.4 77.3 27.7 105.0 0.194 20.4
methanol 50.9 13.5 89.7 139.3 229.0 0.238 54.5

dimethyl ether 75.7 8.7 6.2 118.3 124.5 0.047 5.8
a Units: Vol is in Å3; Π is in kcal/mol; σ2

+, σ2
− and σ2

tot and νσ2
tot are in (kcal/mol)2; ν is dimensionless.

Most applications utilizing the statistical quantities defined in Equations (2)–(6) as
well as surface areas and volumes have been applied to the physical properties of neutral
molecules [17,26–32]. In contrast, our focus in this paper will be upon the surface electro-
static potentials of atomic and molecular cations and anions, highlighting previous work
from the Politzer group [33–38] and by others [39–51]. Finally, we present data bridging
concepts relevant to both ionic solids and liquids.

2. Methods

The structures and surface electrostatic potentials of all molecules and ions have been
computed at the B3PW91/6-31G(d,p) level using G16 [52] and the WFA-SAS code [26].
This method/basis set combination has been shown to be reliable for our purposes [53].
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3. Surface Electrostatic Potentials of Molecular Ions

The best way to introduce the electrostatic potentials of molecular ions is to compare
them to those of neutral molecules. Take, for example, the series: NH2NH2, NH2NH3

+

and NH2NH−; their surface electrostatic potentials plotted on the 0.001 au contour of the
electronic density are shown in Figure 1. Hydrazine has negative regions of VS(r) associated
with the lone pairs on its nitrogens and positive regions associated with the hydrogens,
shown in Figure 1a. The most positive regions on the surface of the hydrazinium cation
are associated with the three hydrogens bonded to the nitrogen at the left in Figure 1b; the
least positive region in blue is associated with the nitrogen at the right. Finally, the most
negative region on the surface of NH2NH− is at the top right of Figure 1c, with the least
negative sites (in red) on the hydrogens to left.
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Figure 1. Computed electrostatic potentials on the 0.001 au iso-density contours of (a) hydrazine,
(b) the hydrazinium cation, and (c) NH2NH−. The frameworks are shown in gray within the surfaces.
The surface of (a) has both positive and negative values of VS(r); those of (b,c) are completely positive
and negative, respectively. The color ranges, in kcal/mol, are therefore necessarily different for each.
The color ranges for (a) are red, greater than 15; yellow, from 15 to 0; green, from 0 to −15; blue, more
negative than −15. The color ranges for (b) are red, greater than 150; yellow, from 150 to 125; green,
from 125 to 100; blue, less than 100. The color ranges for (c) are red, less negative than −110; yellow,
from −110 to −130; green, from −130 to −150; blue, more negative than −150.

Neutral molecules such as those listed in Table 1 and hydrazine in Figure 1a typically
have regions of both positive and negative electrostatic potential on their 0.001 au sur-
faces [1–9,26–32], while cations have only positive values of VS(r) and anions only negative
values of VS(r) on these surfaces [33,35–39,41–51]. Monoatomic anions and molecular an-
ions will have negative potentials when plotted on outer contours of the electronic density;
however, at contours very close to the nuclei, the potentials will be positive, as they are
there dominated by the first term in Equation (1) [22–24].

This is apparent from Figure 2, which shows V(r) as a function of the distance r from
the nucleus, labeled VQC(r) in the figure, for both Na+ and F−. The quantum chemically
computed VQC(r) is compared with the electrostatic potential computed from a positive or
negative unitary point charge, labeled Vq(r) in the figure. Vq(r) is obtained from Coulomb’s
law as Vq(r) = q/r. Note that for all values of r, VQC(r) > Vq(r), since a part of the electronic
charge is located outside r. However, at larger distances this charge is very small and VQC(r)
is nearly identical to Vq(r), and the two curves are indistinguishable from each other. This
is true already at the distance where ρ(r) = 0.001 au, which is the contour that we usually
use for computing VS(r).

Sen and Politzer proved that the V(r) of monoatomic singly negative spherically
averaged ions must go through a minimum before approaching zero from the negative
direction [22,23]. They also showed that these minima correspond to reasonable anionic
radii for these ions and to lattice energies in a series of monoatomic cations (Li+ to Fr+) [22],
and that the quantity of electronic charge encompassed within the radial Vmin exactly
equals the nuclear charge [22]. Ramasami and Murray recently showed that monoatomic
spherically averaged ions with charges greater than −1 follow the same pattern [24]. As
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expected, F− also has a radial Vmin, and, as shown in Figure 2, it appears at a much shorter
distance than the 0.001 density contour.
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Our first venture into looking at the statistical quantities of charged species larger than
monoatomic ions was looking at lattice energies of a series of 17 anions, ranging in size
from F− to SiF6

−2 and including both inorganic and organic ions with charges primarily of
−1 but a few with charges of −2 [33]. What we found is that for NH4

+, Na+ and K+ salts,
there were good correlations between the charge Q of the anion, the VS,min on the surface
of the anion and the product of the VS,min and the surface area of the anion [33].

Zwitterions are neutral but locally have stronger positive and negative regions of
electrostatic potential in the vicinities of their positive- and negative-charged regions
than do their nonionic counterparts [34]. This was explored for glycine, histidine and
tetracycline. The average deviations of the surface electrostatic potentials of the zwitterions,
the Π values, were in each instance greater for the zwitterionic forms than for the nonionic
forms [34].

Moving on to molecular cations, a study was planned and carried out to assess the
stability of gas phase carbocations [35]. What was found is that the stabilities of the
carbocations generally follow the decrease of their VS,max values. This follows intuitively,
as the +1 charge is more delocalized as the size of carbocation increases, and the VS,max
value accordingly decreases [35].

In 2009, Politzer et al. published a paper entitled “An electrostatic interaction cor-
rection for improved crystal density prediction” [54]. The objective of this paper was to
improve crystal density predictions for energetic molecules. In this paper, the authors
added an electrostatic correction term to the already widely used term M/Vm [55,56], where
M is the molecular mass and Vm is the volume of the 0.001 au iso-density surface envelope
encompassing the molecule. Both statistical quantities Π and νσ2

tot were tested and yielded
improved predictions [54]. A reviewer for this paper wondered if this could somehow be
extended to energetic ionic salts.

This led to exploratory computational work involving energetic ionic salts; it seemed
reasonable and necessary to find a correction term for the cation and the anion in each salt.
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For a dataset of 25 energetic ionic salts, we found the following equation to be an effective
option [36]:

density = α
M
Vm

+ β

(
V+

S

A+
S

)
+ γ

(
V−

S

A−
S

)
+ δ (7)

where V+
S and V−

S are the average values of the potential on the surfaces of the cations
and anions, respectively, and A+

S and A−
S are the surface areas of the positive cations and

negative anions. M is the molecular mass of the salt, and Vm is the sum of the 0.001 au
volumes of the cation (s) and anion (s) for each salt. This improvement over M/Vm alone
could be further explored, as has been pointed out [36]. Statistical quantities derived from
the surface electrostatic potential together with other descriptors have also been used to
develop machine learning models for prediction of solvation and partition properties of
ionic liquids [57,58].

Finally, some perspectives on the sensitivities of ionic energetic materials were ad-
dressed by Politzer et al. [37,38] after some interest toward this endeavor was expressed.
This is a challenge that continues to this day. One of the findings found computationally is
that the impact sensitivities for a series of ammonium salts showed a tendency to decrease
as the absolute value of the differences of the most negative surface potentials, the VS,min,
and the least negative surface potentials, the VS,max, of the anions increased [38]. Further
investigations of this complex phenomenon are warranted.

4. Statistical Quantities of Some Cations and Anions in Ionic Salts and Liquids

Table 2 lists surface areas, volumes and some statistical quantities defined in terms
of the electrostatic potential on the surfaces of a number of cations and anions that can be
components of ionic salts and liquids. Ionic salts are solids at room temperature, while
ionic liquids are generally defined as having melting points below 100 ◦C [59–61], with
room-temperature ionic liquids having melting points below 25 ◦C. The ethylammonium,
trimethylammonium, 1-ethyl-3-methylimidazolium and 1-butyl-3-methylimidazolium
cations are given the common abbreviations EA+, TMA+, EMIM+ and BMIM+ in Table 2.
All of the ions in Table 2 have a charge of ±1.

Table 2. Computed surface quantities for a number of cations and anions.

Cation or
Anion

Surface Area
(Å2) Volume (Å3) V+

S or V−
S

(kcal/mol)
Π (kcal/mol)

σ2
+ or σ2

−
(kcal/mol)2

VS,max
(kcal/mol)

VS,min
(kcal/mol)

Na+ 22.3 9.88 250.0 0 0 250.0 250.0

K+ 38.4 22.35 191.1 0 0 191.1 191.1

NH4
+ 47.5 30.13 171.8 3.6 17.7 180.6 164.9

EA+ 95.2 77.13 124.5 23.1 655 164.0 87.8

TMA+ 131.1 125.9 107.6 10.7 176 146.7 90.3

EMIM+ 163.8 153.4 96.6 8.6 121 122.8 72.2

BMIM+ 208.1 201.5 86.1 15.3 330 120.7 49.1

F− 33.6 18.31 −202.6 0 0 −202.6 −202.6

Cl− 60.9 44.72 −149.1 0 0 −149.1 −149.1

Br− 66.9 51.44 −142.4 0 0 −142.4 −142.4

NO3
− 77.6 58.25 −134.1 4.8 37.0 −117.9 −150.6

BF4
− 82.4 62.47 −131.5 4.2 23.9 −121.6 −142.6

PF6
− 104.6 87.69 −118.0 4.3 24.5 −108.5 −125.5

MeSO4
− 119.6 106.05 −109.4 24.3 754 −52.1 −139.0
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To provide some perspective and to allow the reader to visualize the potentials,
Figures 3 and 4 show the VS(r) of the cations EA+ and BMIM+ and the anions BF4

− and
PF6

−, respectively. The surfaces of the cations shown in Figure 3 are totally positive,
showing variation in their surface electrostatic potentials, as has been noted recently for
EMIM+ [49]. The larger color range cutoffs for EA+ compared to those of BMIM+ are
consistent with their respective average positive surface potentials V+

S listed in Table 2,
124.5 vs. 86.1 kcal/mol, and their sizes. The most positive regions of EA+ are associated
with the hydrogens bonded to the nitrogen on the left in Figure 3a and can be compared to
those of the hydrazinium cation in Figure 1b. The most positive region in Figure 3b is to
the bottom left in the region, between the C-2 hydrogen and the closest methyl hydrogen
of the C-3 methyl group, where the positive regions overlap on the surface.
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What is interesting to observe in Figure 4 is the fact that the color range cutoffs for
both anions cover only a narrow range, compared to those of the cations shown in Figure 3.
Those of BF4

− are only slightly more negative than those of PF6
−, and are consistent with

their sizes, their V−
S values and the ranges of their negative potentials (Table 2).

The cations are listed first in Table 2, from smallest to largest, as indicated by their
surface areas and volumes. These are followed by the anions. Note that the average surface
potentials V+

S and V−
S for the cations and anions, respectively, decrease in magnitude in the
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same order that size increases. This has been observed in earlier studies [33,35–38] and can
be attributed to the overall charge of each ion, either +1 or −1, being delocalized over a
larger space as the size of the ion increases. For each monoatomic cation and anion, the
VS,max and VS,min values are the same, as their potentials are isotropic [20–24], explaining
why their Π and σ2

+ or σ2
− values are zero. This is not the case for the molecular cations

and anions, which show variation in their electrostatic potentials, as shown by their Π, σ2
+

or σ2
− values as well as their VS,max and VS,min values.
Do the data in Table 2 reflect features of the cations and anions that relate to the

melting points of some ionic salts and ionic liquids? To explore this possibility, in Table 3
are listed some melting points [62,63] for seventeen ionic salts and liquids. Note that the
ionic salts have melting points often an order of magnitude greater, or more, than those
of the ionic liquids. It can be seen in Table 2 that Na+ and K+ are the two smallest cations
listed and that they have the two largest average values (V+

S ), while the halide ions are the
three smallest anions and have the three most negative V−

S , with the fluoride ion’s value
being significantly more negative than those of the chloride and bromide ions. Another
observation is that the surface areas and volumes of the cations cover a wider range of
values than those of the anions.

Table 3. List of experimentally determined and predicted melting points (mps) for some ionic salts
and liquids.

Ionic Salt or Liquid Mp (◦C) a [Exp] Mp (◦C) [Pred]

NaF 993 984

KF 858 891

NaCl 800 790

KCl 770 743

NaBr 747 766

KBr 730 724

NH4
+Cl− 338 266

NH4
+Br− 235 249

NH4
+NO3

− 169.6 228

[BMIM]+Br− 78.2 56

[EMIM]+Br− 76.8 67

[EMIM]+PF6
− 60.1 33

[BMIM]+Cl− 67.85 65

[BMIM]+NO3
− 36.01 46

[EMIM]+BF4
− 14 52

[EA]+NO3
− 12 11

[BMIM]+PF6
− 11.4 26

a Taken from references [58,59].

With some insight from earlier work with ionic systems [31,33–36], the following
multivariable relationship was found for the seventeen ionic salts and liquids in Table 3
using the NCSS software [64]:

melting point = 182.0 V+
S −0.01445

(
V+

S V−
S ) + 2.491 (A+

S V+
S )−1174

(
V+

S
A+

S

)
+

−72.83
(
Vol+

)
− 45267

(8)

where V+
S and V−

S are the average values of the potential on the surfaces of the cations and
anions, respectively, and A+

S and Vol+ are the surface areas and volumes of the positive
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cations. Note that the second term in Equation (8) is a cross-term, (V+
S V−

S ), fitting in with
the Coulombic nature of ionic interactions. The first three terms in Equation (8) lead to an
increase in the value of the melting point, with the fourth and fifth terms serving likely as
correction terms. The R value for the correlation is 0.997 and the F-ratio is 328, showing
improvement over any three- or four-variable correlations. Each term in Equation (8) has a
p-value of 0.000, indicating the validity of each variable.

A plot of predicted vs. experimentally determined melting points is shown as Figure 5.
As can be clearly seen the points for the ionic salts are at the top right of the plot, while
those of the ionic liquids are at the bottom left, with the ammonium salts in between.
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In the correlation shown in Equation (8) and in the corresponding plot in Figure 5, the
variables relating to the cations emerge as appearing more relevant than those for the anions.
In fact, the only inclusion of the average negative surface electrostatic potential V−

S is in
the cross-term (V+

S V−
S ). This suggests that perhaps other contours of the electronic density

might be better for characterizing the anions. As was shown recently, the radial Vmin for
sphericallysymmetric monoatomic anions is within their 0.001 au iso-density surfaces [22].
Another possibility is that the characteristics of the cations are simply more important.

5. Concluding Remarks

In this paper we have reviewed statistical quantities defined in terms of the surface
electrostatic potential; these were originally defined to quantify the wealth of information
beyond surface extrema that surface electrostatic potential plots provide. The original
applications of these quantities were primarily for neutral molecules.

This study surveys earlier uses of the statistical quantities for ionic solids and is to be
viewed as a starting point for future explorations in the growing field of ionic liquids. The
properties of ionic liquids are complex; it may be that further studies involving surface
electrostatic potential statistical quantities, as well as surface areas and volumes, will prove
fruitful in this area.
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