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Abstract: Temperature–field phase diagrams in the [001]c and [011]c directions in the cubic coordinate
in 24%Pb(In1/2Nb1/2)O3–46%Pb(Mg1/3Nb2/3)O3–30%PbTiO3 (24PIN–46PMN–30PT) and 31PIN–
43PMN–26PT near the morphotropic phase boundary have been clarified by measuring the tempera-
ture dependences of permittivity under an electric field. Field-induced intermediate orthorhombic
and tetragonal phases have been newly found in 24PIN–46PMN–30PT and 31PIN–43PMN–26PT,
respectively. The temperature dependences of the remanent polarization have also been determined
by polarization–electric field (P–E) hysteresis loop evaluation. On the basis of our experimental
results, the phase transition and dielectric anisotropy in PIN–PMN–PT have been discussed.

Keywords: ferroelectric; relaxor; critical endpoint; electric field; morphotropic phase boundary

1. Introduction

Ternary ferroelectric solid solutions of Pb(In1/2Nb1/2)O3–Pb(Mg1/3Nb2/3)O3–PbTiO3
(PIN–PMN–PT) belong to high-performance relaxor ferroelectrics [1,2], where PMN and
PIN are relaxors [3], and PT is a typical displacive-type ferroelectric material. Among
them, binary complex ferroelectric solid solutions of PMN–xPT and PIN–xPT show the
morphotropic phase boundary (MPB) at x = 30 and 37% on temperature–concentration
phase diagrams, respectively [4,5]. Generally, the colossal dielectric and piezoelectric
responses in perovskite-type ferroelectrics appear near MPB. Indeed, PMN–xPT near MPB
shows a significantly high electromechanical coupling coefficient, higher than 90% [2].

To understand such properties near MPB, a simple theoretical model based on the
Landau–Devonshire free energy was reported, where the permittivity perpendicular to the
spontaneous polarization becomes extremely high, since the anisotropy of the free energy
becomes small in the parameter space [6]. A similar mechanism underlying such a giant
response was also found in BaTiO3 on the basis of the first principles studies [7]. In any
case, it is certain that the anisotropic energy of the polarization near MPB in the relaxor
ferroelectrics plays an essential role in their colossal dielectric and piezoelectric responses.

For PMN–xPT solid solution systems, the temperature–concentration phase diagram
near MPB has been reported, where the rhombohedral, monoclinic, and tetragonal phases
appear in ferroelectric phases [4,8]. An electromechanical coupling coefficient k*

33 = 94%
was reported for PMN–33%PT, which is the highest reported among all piezoelectric
materials [9]. However, the operating temperature range in PMN–33%PT is narrow, because
the transition temperature between the tetragonal and rhombohedral phases is about
60 ◦C [4].

The temperature–field phase diagrams under various directions of an electric field
in PMN–xPT were reported to clarify the average symmetry in the ferroelectric phase,
where the ferroelectric critical endpoint (CEP) was found in the phase diagram [10–14]. On
the basis of such temperature–field phase diagrams, we showed that relaxor ferroelectric
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crystals almost behave similarly to a normal ferroelectric material under a DC biasing
field [15]. Indeed, these field-induced phase transitions in the vicinity of MPB can be
well reproduced on the basis of the Landau–Devonshire free energy [16]. The nonlinear
dielectric susceptibility in PMN–xPT was also found to be well-analyzed within the Landau
theory [17]. Recently, we have also found the aging effect on PMN–xPT [18].

On the other hand, in PIN, the chemical ordering of B-site cations (In and Nb) was
clarified to be controlled by appropriate thermal treatment [19–22]. PIN crystals with
different chemical orderings formed by different thermal treatments can be classified into
three groups: the “ordered PIN”, “disordered PIN”, and “partly disordered PIN”. An as-
grown single crystal is the partly disordered PIN, where the partly disordered PIN shows a
broad peak of the dielectric constant without dielectric dispersion at about 90 ◦C [22].

For PIN–xPT solid solution systems, their temperature–concentration phase diagrams
have been reported, where MPB between tetragonal and rhombohedral phases was found at
about x = 37% near room temperature [5,23–26]. An electromechanical coupling coefficient
in the rectangular bar mode k33

′ = 78% was reported in PIN–37%PT [23]. The advantage of
PIN–37%PT is that it has a wide operating temperature range (Tc = 250 ◦C) [22], although
the electromechanical coupling coefficient in PIN–37%PT is smaller than that in PMN–
33%PT [27].

Hosono et al. proposed the ternary ferroelectric solid solution system PIN–PMN–PT
as a candidate material that realizes both a large electromechanical coupling coefficient
(PMN–PT) and a high transition temperature (PIN–PT), and they reported that 16%PIN–
51%PMN–33%PT (16PIN–51PMN–33PT) with a high transition temperature of 187 ◦C
shows a large piezoelectric constant of 2200 pC/N [1]. To improve the performance
of ternary ferroelectric solid solutions of PIN–PMN–PT, their physical properties with
respect to the phase transition and MPB were extensively investigated using ceramic and
single crystal samples of this system [28–35]. The temperature–field phase diagrams for
33PIN–35PMN–32PT and 23PIN–52PMN–25PT were studied to clarify the structural phase
transition and stability of these materials under a biasing field [36–38]. A phenomenological
approach to analyzing PIN–PMN–PT near MPB based on the Landau–Devonshire energy
function with 10th-order terms in the polarization was discussed to explain qualitatively
the engineered domain mechanism [39]. It seems that further experimental data are
needed to determine the expansion coefficients taking into account the anisotropy of
thermodynamic potential, which is the most important factor to explain the large dielectric
and piezoelectric responses near MPB [6,7]. We pointed out in our previous paper that the
data of a temperature–field phase diagram in various electric field directions are useful for
evaluating the anisotropy [16].

Under these circumstances, in this paper, dielectric permittivities under the biasing
field and the polarization–electric field (P–E) hysteresis loops in 24PIN–46PMN–30PT and
31PIN–43PMN–26PT near MPB were investigated. The temperature–field phase diagram
in the [001]c and [011]c directions in the cubic coordinates and the spontaneous polarization
as a function of temperature were clarified. On the basis of our experimental results, the
phase transition and dielectric anisotropy in PIN–PMN–PT are discussed.

2. Experimental Procedure

Single crystal wafers in 24PIN–46PMN–30PT and 31PIN–43PMN–26PT near MPB were
grown by the Bridgman technique [40]. Figure 1 shows the phase diagram of the ternary
system of PIN–PMN–PT at room temperature, where 24PIN–46PMN–30PT and 31PIN–
43PMN–26PT are shown by the solid and open circles, respectively. The straight dashed–
dotted line connects the triple points in PIN–PT and PMN–PT, and the straight dotted
line connects MPB at room temperature in PIN–PT and PMN–PT [4,5]. It is conjectured
from Figure 1 that both materials are located near MPB and show phase sequences of
cubic–rhombohedral and cubic–tetragonal–rhombohedral in 24PIN–46PMN–30PT and
31PIN–43PMN–26PT, respectively.
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Figure 1. Ternary phase diagram for PIN–PMN–PT at room temperature, where 24PIN–46PMN–
30PT and 31PIN–43PMN–26PT are shown by the solid and open circles, respectively. The straight
dashed–dotted line connects with the triple points in PIN–PT and PMN–PT, and the straight dotted
line connects with MPBs at room temperature in PIN–PT and PMN–PT.

Sample plates with thicknesses of about 250–500 µm were used in our experiments
after annealing treatment for 3 h at 500 ◦C. For the dielectric measurement, the parallel-plate
capacitor of a sample with Au electrodes deposited on its face was prepared. Permittivity
measurements under a DC biasing field were performed using an impedance/gain phase
analyzer (NF ZGA5900) and a high-voltage amplifier (Trek 609E–6). In our measurement
system, the AC probe voltage applied to measure dielectric permittivity is about 0.1–0.2 V,
and the maximum DC biasing voltage applied to a sample during the measurement is
about 800 V. Complex dielectric permittivity, ε̂ = ε′ − iε′′ , was obtained in the range from
1 to 100 kHz after carefully removing the effects of the stray capacitance and residual
impedance from the system.

A Sawyer–Tower circuit was used with a standard capacitor of 10 µF to evaluate P–E
hysteresis loops, where a sinusoidal field in the frequency of 1 Hz and the amplitude of
14 kV/cm was applied to the sample. No correction of the phase lag using the phase
compensation circuit was performed because of the low conductivity in 24PIN–46PMN–
30PT and 31PIN–43PMN–26PT samples.

3. Results
3.1. Permittivity under Biasing Electric Field in 24PIN–46PMN–30PT

Figure 2a–c show typical examples of the temperature dependence of permittivity
under the DC biasing fields of (a) 0, (b) 1.0, and (c) 2.0 kV/cm in the [001]c direction in
24PIN–46PMN–30PT. Three dielectric anomalies at Tm, TCT, and TTR are observed in each
figure. It is seen that the temperatures TCT and TTR strongly depend on the electric field
strength, and the temperature interval between TCT and TTR widens with increasing field
strength along the [001]c direction, whereas the temperature Tm does not depend on the
field strength within an experimental error. We conclude that TCT and TTR are the transition
temperatures between the cubic and tetragonal phases and between the tetragonal and
rhombohedral phases, respectively, whereas at least Tm does not indicate a ferroelectric
phase transition. The details on Tm will be discussed in Section 4.1.
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of (a) 0, (b) 1.0, and (c) 2.0 kV/cm along the [001]c direction in 24PIN–46PMN–30PT. The temperatures
TCT, TTR, and Tm are the phase transition temperatures between the cubic and tetragonal phases and
between tetragonal and rhombohedral phases and the temperature showing a peak of permittivity
(not ferroelectric transition temperature), respectively.

In Figure 3a–c, we also show typical examples of the temperature dependence of
permittivity at 1 kHz under the DC biasing fields of (a) 0, (b) 2.0, and (c) 3.0 kV/cm
along the [011]c direction in 24PIN–46PMN–30PT. At a permittivity along the [011]c, three
or four dielectric anomalies appear in each figure. All the temperatures showing the
dielectric anomalies, except for Tm, depend on the electric field strength. We conclude
that at least Tm does not indicate a ferroelectric phase transition. The subscripts of the
temperatures indicating the dielectric anomalies and the assignment of the symmetry of the
ferroelectric phases will be discussed in Section 4.1. The transition temperatures obtained
from Figures 2a–c and 3a–c in 24PIN–46PMN–30PT are summarized in Table 1.

Figure 4a,b show the temperature–field phase diagrams along the [001]c and [011]c
directions in 24PIN–46PMN–30PT, respectively. Circles and squares show the transition
temperature determined from the permittivity measured on heating and cooling pro-
cesses, respectively. The letters C, T, O, R, MA, MB, and MC indicate cubic, tetragonal,
orthorhombic, rhombohedral, monoclinic A, monoclinic B, and monoclinic C symmetries,
respectively [8]. The letters in parentheses show the rigorous symmetry under the electric
field along each direction. Experimental results for two samples are shown in Figure 4a,b to
confirm sample dependence. It is seen that phase transition temperatures below 1 kV/cm
are not consistent with those above 1 kV/cm owing to the relaxor nature of the diffuse phase
transition. The assignment of the symmetry in the ferroelectric phases will be discussed in
Section 4.1.
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Figure 3. Typical examples of the temperature dependence of permittivity at 1 kHz under the DC
biasing fields of (a) 0, (b) 2.0, and (c) 3.0 kV/cm along the [011]c direction in 24PIN–46PMN–30PT.
The temperatures TCT, TTO, TOR, and Tm are the phase transition temperatures between the cubic and
tetragonal phases, between the tetragonal and orthorhombic phases, and between the orthorhombic
and rhombohedral phases, and the temperature showing a peak of the permittivity (not ferroelectric
transition temperature), respectively.

Table 1. Phase transition temperatures measured on heating in 24PIN–45PMN–30PT. Tm is deter-
mined from permittivity peak at 1 kHz.

DC Biasing Field [kV/cm]
[001] Direction Tm [◦C] TCT [◦C] TTR [◦C]

0 193 174 155

1.0 193 184 101

2.0 195 191 94

DC Biasing Field [kV/cm]
[011] Direction Tm [◦C] TCT [◦C] TTR [◦C] TTO [◦C] TOR [◦C]

0 195 181 131

2.0 190 113 64

3.0 196 193 117 65
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Figure 4. Temperature–field phase diagrams along (a) [001]c and (b) [011]c directions in 24PIN–
46PMN–30PT. Circles and squares show transition temperatures determined from the permittivity
measured during heating and cooling processes, respectively. Solid lines are the phase boundary,
and dotted lines show the eye guide extrapolating the phase boundary. The letters C, T, O, R, MA,
MB, and MC indicate cubic, tetragonal, orthorhombic, rhombohedral, monoclinic A, monoclinic B,
and monoclinic C symmetries, respectively [8]. The letters in the parentheses show the rigorous
symmetries under the electric field along each direction.

3.2. Permittivity under Biasing Electric Field in 31PIN–43PMN–26PT

The temperature dependences of permittivity under the DC biasing fields of 0, 1.0,
and 2.0 kV/cm along the [001]c direction in 31PIN–43PMN–26PT are respectively shown
in Figure 5a–c as typical examples. It is seen that only the temperature Tm showing the
maximum permittivity is found in Figure 5a, whereas three dielectric anomalies at Tm,
TCT, and TTR appear in Figure 5b,c. The temperatures TCT and TTR strongly depend on
the electric field strength, and the temperature interval between TCT and TTR widens
with increasing field strength, whereas the temperature Tm does not depend on the field
strength within an experimental error. Consequently, TCT and TTR are determined to be
the transition temperatures between the cubic and tetragonal phases and between the
tetragonal and rhombohedral phases, respectively, and Tm does not indicate a ferroelectric
phase transition.

Figure 6a–c also show typical examples of the temperature dependence of permittivity
at 1 kHz under the DC biasing field of (a) 0, (b) 1.0, and (c) 2.0 kV/cm along the [011]c
direction in 31PIN–43PMN–26PT. One or two dielectric anomalies appear in each figure
along the [011]c direction. The temperature TCR depends on the electric field strength,
whereas the temperature Tm does not within an experimental error. We conclude that TCR
is the transition temperature from cubic to rhombohedral phases, and at least Tm does
not indicate a ferroelectric phase transition. The transition temperatures obtained from
Figures 5a–c and 6a–c in 31PIN–43PMN–26PT are summarized in Table 2.

Figure 7a,b show the temperature–field phase diagrams along the [001]c and [011]c
directions in 31PIN–43PMN–26PT, respectively. Circles and squares show the transition
temperatures determined from the permittivity measured during the heating and cooling
processes, respectively. The letters C, T, O, R, MA, and MB indicate cubic, tetragonal,
orthorhombic, rhombohedral, monoclinic A, and monoclinic B symmetries, respectively [8].
The letters in parentheses show the rigorous symmetry under the electric field along each
direction. To confirm sample dependence, the results of the transition temperature for
two samples are shown in Figure 7b. It is seen that phase transition temperatures below
1 kV/cm are not consistent with those above 1 kV/cm owing to the relaxor nature of the
diffuse phase transition. The assignment of the symmetry in the ferroelectric phases will be
discussed in Section 4.1.
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Table 2. Phase transition temperatures measured on heating in 31PIN–45PMN–30PT. Tm is deter-
mined from permittivity peak at 1 kHz.

DC Biasing Field [kV/cm]
[001] Direction Tm [◦C] TCT [◦C] TTR [◦C]

0 182

1.0 182 160 134

2.0 181 168 126

DC Biasing Field [kV/cm]
[011] Direction Tm [◦C] TCT [◦C] TTR [◦C]

0 178

2.0 178 148

3.0 178 156
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thorhombic, rhombohedral, monoclinic A, and monoclinic B symmetries, respectively [8]. 
The letters in parentheses show the rigorous symmetry under the electric field along each 
direction. To confirm sample dependence, the results of the transition temperature for two 

Figure 6. Typical examples of the temperature dependence of permittivity at 1 kHz under the
DC biasing fields of (a) 0, (b) 1.0, and (c) 2.0 kV/cm along the [011]c direction in 31PIN–43PMN–
26PT. The temperatures TCR and Tm are the phase transition temperature between the cubic and
rhombohedral phases and the temperature showing a peak of the permittivity (not ferroelectric
transition temperature), respectively.
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respectively [8]. The letters in the parentheses show the rigorous symmetries under the electric field
along each direction.
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3.3. P–E Hysteresis Loops

Figure 8a–d show typical examples of the P–E hysteresis loops in different electric
fields along the [001]c direction in 24PIN–46PMN–30PT, where the frequency of the electric
fields is 1 Hz. The P–E hysteresis loops were measured in the temperature range from
180 to 30 ◦C during the cooling process. It is considered that in Figure 8a, the imperfect
triple-loop pattern basically indicates the field-induced transition in the paraelectric phase.
Figure 8b–d show typical P–E hysteresis loops revealing the polarization reversal in the
ferroelectric phase.
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Typical examples of the P–E hysteresis loops in 31PIN–43PMN–26PT under different
electric fields along the [001]c direction are shown in Figure 10a–d, where the frequency
of the electric fields is 1 Hz, and the temperature range measured is from 180 to 30 ◦C
during the cooling process. It is guessed that in Figure 10a, the imperfect triple-loop pattern
basically indicates the field-induced transition in the paraelectric phase. Figure 10b–d show
typical P–E hysteresis loops revealing the polarization reversal in the ferroelectric phase.

The temperature dependence of remanent polarization determined by the P–E hystere-
sis loop measurement is shown in Figure 9. The dotted lines indicate the transition temper-
ature determined from Figure 4a, where TCT = 171 ◦C and TTR = 92 ◦C (see Section 3.1). At
the transition temperature between the tetragonal and rhombohedral phases, an anomaly
of the remanent polarization is found, although no jump of the polarization appears. This
implies the coexistence of the tetragonal, orthorhombic, and rhombohedral phases.
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Figure 10. P–E hysteresis loops along the [001]c direction in 31PIN–43PMN–26PT. The frequency of
the electric field applied is 1 Hz. The measurement temperatures are (a) 150 ◦C, (b) 110 ◦C, (c) 70 ◦C,
and (d) 30 ◦C.

Figure 11 shows the temperature dependence of the remanent polarization obtained
by the P–E hysteresis loop measurement, where the dotted line indicates the transition
temperature determined from Figure 7b, where TCR = 127 ◦C (see Section 3.2). Note that
in Figure 11, the true polarization value in the rhombohedral phase must be multiplied
by

√
3.
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4. Discussion
4.1. Assignment of the Symmetry in 24PIN–46PMN–30PT

Let us start with the assignment of the ferroelectric phase in the phase diagram along
the [001]c direction in 24PIN–46PMN–30PT. It is seen in Figure 4a that the temperature
interval of the tetragonal phase extends as the electric field along the [001]c direction
increases, which is consistent with the stability of the polarization in the tetragonal phase
under the field in the [001]c direction. Therefore, by extrapolating the phase boundary from
the electric field above 1 kV/cm to zero field, we conclude that the phase transition sequence
under zero biasing field is determined to be the C–T–R phases. The phase transitions at
TCT and TTR under zero biasing field are of the first order, and the transition temperatures
are at TCT = 171 ◦C and TTR = 92 ◦C. We were unable to determine CEP in the C–T phase
transition because of the diffuseness of this phase transition. By extrapolating the phase
boundary above 1 kV/cm to E = 0, we also estimated the slopes of the C–T and T–R phase
boundaries to be dE/dTCT|E=0 = 0.11 kV/cmK and dE/dTTR|E=0 = −0.16 kV/cmK under
an electric field along the [001]c direction, respectively.

Next, we assign the ferroelectric phases in the phase diagram along the [011]c direction
shown in Figure 4b. The temperature interval of the orthorhombic phase extends as the
electric field along the [011]c direction increases, which is consistent with the stability of
the polarization in the orthorhombic phase under the field in the [011]c direction. We
conclude that the orthorhombic phase appears only under the field along the [011]c direc-
tion. The field-induced orthorhombic phase is determined to be a metastable phase under
zero biasing field, because no orthorhombic phase appears in the electric field along the
[001]c direction.

The transition temperature TCT is determined to be 175 ◦C by extrapolating the phase
boundary from the electric field above 1 kV/cm to zero field. The slope of the C–T phase
boundary is obtained to be dE/dTCT|E=0 = 0.17 kV/cmK under the electric field along the
[011]c direction. The reason for the difference of 4 ◦C in the phase transition temperature
TCT along the [001]c and [011]c directions is guessed to be the sample dependence.

In general, the ferroelectric transition temperature depends on the direction and
strength of the biasing field, because the electric field is the conjugate force to the polar-
ization. Indeed, TCT and TTR were confirmed to depend on the biasing field, as shown in
Figure 4a,b. However, Tm does not completely depend on the electric field within an exper-
imental error. We considered that at least the temperature Tm at which the permittivity is
maximum is not a ferroelectric transition temperature.

4.2. Assignment of the Symmetry in 31PIN–43PMN–26PT

Let us assign the ferroelectric phases in the phase diagram along the [001]c direction in
31PIN–43PMN–26PT. In Figure 7a, the temperature interval of the tetragonal phase extends
with increasing electric field along the [001]c direction, which is consistent with the stability
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of the polarization in the tetragonal phase under the field along the [001]c direction. The
intermediate ferroelectric phase newly found is determined to be the tetragonal phase.
With respect to the C–T phase transition, we find that the thermal hysteresis of the transi-
tion temperature decreases with increasing electric field. By extrapolating with straight
lines (thin dotted line in Figure 7a), the critical endpoint is determined to be 173 ◦C and
2.4 kV/cm.

By extrapolating the phase boundary from the field above 1 kV/cm to zero field, we
determined the transition temperatures to be TCT = 136 ◦C and TTR = 126 ◦C, and estimated
the slopes of the boundaries C–T and T–R to be dE/dTCT|E=0 = 6.5 × 10−2 kV/cmK and
dE/dTTR|E=0 = −0.24 kV/cmK in the electric field along the [001]c direction, respectively.

In the phase diagram only along the [001]c direction shown in Figure 7a, we were
unable to determine whether a stable tetragonal phase exists under zero electric field. In the
phase diagram along the [011]c direction shown in Figure 7b, no intermediate tetragonal
phase was found. This indicates that the tetragonal phase is not stable under zero electric
field. As for the C–T phase transition, it is found that the thermal hysteresis of the transition
temperature decreases as the electric field increases. By extrapolating with straight lines
(thin dotted line in Figure 7b, the temperature at which the phase transition changes from
first to second order is determined to be 160 ◦C and 2.5 kV/cm, indicating the tricritical
point. Dul’kin et al. showed the existence of a tricritical point in the C–R phase transition
of 26PIN–46PMN–28PT with different compositions under an electric field along [011]c
direction [35]. From the point of view of symmetry, these are presumed to be critical points
of the same kind. Further detailed study of such tricritical points is needed.

By extrapolating the phase boundary above 1 kV/cm to E = 0, we determined the
transition temperature TCR to be 127 ◦C, and the slope of the C–R phase boundary is
obtained to be dE/dTCR|E=0 = 8.3 × 10−2 kV/cmK in the electric field along the [011]c
direction. From the above, we conclude that the phase transition sequence under zero
biasing field is considered to be the C–R phases, and the tetragonal phase is a metastable
phase under zero biasing field.

4.3. Evaluation of the Phase Boundary Based on the Clausius–Clapeyron Equation

Let us focus on the slope of the phase boundary in the temperature–field phase dia-
gram of the perovskite-type ferroelectrics on the basis of the Clausius–Clapeyron equation.
We start with the Landau–Ginzburg–Devonshire free energy function f expressed in terms
of the polarization components pi (i = 1–3) as

f = α
2 (p1

2 + p2
2 + p3

2) + β1
4 (p1

4 + p2
4 + p3

4)+ γ1
6 (p1

6 + p2
6 + p3

6)
+ γ2

2
[
p1

4(p2
2 + p3

2) + p2
4(p3

2 + p1
2) + p3

4(p1
2 + p2

2)
]

+ γ3
2 p1

2 p2
2 p3

2 − p·E,
(1)

where α is temperature-dependent, as shown by α = a(T − T0), a > 0, T0 > 0. The parameters
β1, β2, γ1, γ2, and γ3 are constants, E = (E1, E2, E3) is the external electric field, and
p = (p1, p2, p3) the polarization. We truncated the free energy function at the sixth order of
the polarization for simplicity. At this truncated free energy, the cubic (C), tetragonal (T),
orthorhombic (O), and rhombohedral (R) phases are stable under zero external field, where
the stable spontaneous polarizations in the C, T, O, R phases are defined as (0, 0, 0), (0, 0, p),
(0, q, q), and (r, r, r), respectively.

We consider the slope of the boundary between the A and B phases at zero field in the
temperature–field phase diagram based on the free energy in Equation (1), where the A
and B phases are the C, T, O, and R phases. According to the Clausius–Clapeyron equation,
the slope of the phase boundary is obtained as [41]

dE
dTc

=
−a(p2

A − p2
B)

2(pB − pA)·eE
=

−∆S
∆p·eE

(2)
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where eE is the directional vector of the electric field E/|E|, and ∆p = pB − pA and
∆S = SB − SA = −a(p2

B − p2
A)/2 are the jumps of the polarization and the entropy at the

phase boundary between the A and B phases, respectively. The derivation of the extended
Clausius-Clapeyron equation in ferroelectrics is given in Appendix A. All the slopes of the
phase boundary at zero field in the temperature–field phase diagram are summarized in
Table 3. The slope of the phase boundary can be determined if the polarizations at the phase
boundary in the A and B phases are known. Note that the Clausius-Clapeyron equation
presented in Equation (2) is also applicable to the free energy expanded to the 10th-order
term of the polarization recently proposed by Lv et al. [39].

Table 3. Slope of the phase boundary between A and B phases at zero electric field in the temperature–
field phase diagram. ∆p = pB − pA and ∆S = SB − SA.

A-B Transition pA pB

dE
dTc

=− ∆S
∆p·eE

eE=

0
0
1

 eE= 1√
2

0
1
1

 eE= 1√
3

1
1
1


C–T

0
0
0

 0
0
p

 ap
2

√
2ap
2

√
3ap
2

C–O
0

0
0

 0
q
q

 aq
√

2aq
2

√
3aq
2

C–R
0

0
0

 r
r
r

 3ar
2

3
√

2ar
4

√
3ar
2

T–O
0

0
p

 0
q
q

 a(2q2−p2)
2(q−p)

√
2a(2q2−p2)
2(2q−p)

√
3a(2q2−p2)
2(2q−p)

T–R
0

0
p

 r
r
r

 a(3r2−p2)
2(r−p)

√
2a(3r2−p2)
2(2r−p)

√
3a(3r2−p2)
2(3r−p)

O–R
0

q
q

 r
r
r

 a(3r2−2q2)
2(r−q)

√
2a(3r2−2q2)

4(r−q)

√
3a(3r2−2q2)
2(3r−2q)

Since no jump of the spontaneous polarization at the transition point can be observed
in our experimental result, we only evaluate the slope of the boundary between the cubic
and tetragonal phases in 24PIN–46PMN–30PT, where the slopes of the C–T boundaries
along the [001]c and [011]c directions are 0.11 and 0.17 kV/cmK, respectively. From Table 3,
the ratio of the slopes is

√
2. It is seen that the ratio 0.17/0.11 is 1.5 ∼=

√
2 within an

experimental error, which is consistent with our experimental results.

5. Conclusions

In this study, we have clarified the temperature–field phase diagrams along the [001]c
and [011]c directions in the cubic coordinate in 24PIN–46PMN–30PT and 31PIN–43PMN–
26PT near MPB. The temperature dependences of the remanent polarization have also been
determined by P–E hysteresis loop observation.

In 24PIN–46PMN–30PT, we conclude that the phase transition sequence without an
external field is the C–T–R phases, where the phase transition temperatures are 171 and
92 ◦C. The field-induced transition to the ferroelectric orthorhombic phase appears only
under the electric field along the [011]c direction. This indicates that the orthorhombic
phase observed in the electric field is a metastable phase under zero field. We analyzed the
slope of the phase boundary at zero field in the temperature–field phase diagram on the
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basis of the Clausius–Clapeyron equation, and consequently, we confirmed that the phase
diagrams along the [001]c and [011]c directions are consistent within an experimental error.

In 31PIN–43PMN–26PT, the phase transition sequence without an external field is
the C–R phases, as determined by extrapolating the phase boundary above 1 kV/cm to
E = 0, where the transition temperature is 127 ◦C. The field-induced transition to the
tetragonal phase appears only under the electric field along the [001]c direction, indicating
a metastable phase under zero field.

We experimentally found that many ferroelectric phases including metastable or-
thorhombic and tetragonal phases exist in PIN–PMN–PT. This implies that the local minima
of the free energy as a function of polarization in various directions compete with each
other, and then the anisotropy of the Landau–Ginzburg–Devonshire free energy in the
polarization space is small. Therefore, we conclude that the large dielectric and piezoelectric
responses in these materials near MPB come from the transversal instability [6]. Further
investigations from the viewpoint of the anisotropy in the thermodynamic potential are
required to clarify the physical properties in PIN–PMN–PT solid solution systems.
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Appendix A

We derive the extended Clausius–Clapeyron equation shown in Equation (1). Let GI
and GII be the Gibbs free energy densities at the phase boundary between phase I and
phase II, respectively, where the Gibbs free energy density is a function of temperature T,
and electric field E. The total derivative of G can be written as

dG = −SdT − p·dE, (A1)

where S is the entropy, and p is the polarization. From the condition dGI = dGII at the
boundary (T = Tc), we can write

−SIdTc − pI·dE = −SIIdTc − pII·dE, (A2)

and then
∆SdTc + ∆p·E = 0, (A3)

where ∆S = SII − SI and ∆p = pII − pI. The extended Clausius–Clapeyron equation is
obtained as

dE
dTc

=
−∆S
∆p·eE

(A4)

where E = |E| and eE = E/|E|.
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