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Abstract: In recent times, there has been considerable interest among researchers in magnesium
oxide (MgO) nanoparticles, due to their excellent biocompatibility, stability, and diverse biomedical
uses, such as antimicrobial, antioxidant, anticancer, and antidiabetic properties, as well as tissue
engineering, bioimaging, and drug delivery applications. Consequently, the escalating utilization
of magnesium oxide nanoparticles in medical contexts necessitates the in-depth exploration of
these nanoparticles. Notably, existing literature lacks a comprehensive review of magnesium oxide
nanoparticles’ synthesis methods, detailed biomedical applications with mechanisms, and toxicity
assessments. Thus, this review aims to bridge this gap by furnishing a comprehensive insight into
various synthetic approaches for the development of MgO nanoparticles. Additionally, it elucidates
their noteworthy biomedical applications as well as their potential mechanisms of action, alongside
summarizing their toxicity profiles. This article also highlights challenges and future prospects
for further exploring MgO nanoparticles in the biomedical field. Existing literature indicates that
synthesized magnesium oxide nanoparticles demonstrate substantial biocompatibility and display
significant antibacterial, antifungal, anticancer, and antioxidant properties. Consequently, this review
intends to enhance readers’ comprehension regarding recent advancements in synthesizing MgO
nanoparticles through diverse approaches and their promising applications in biomedicine.

Keywords: magnesium oxide nanoparticles; synthesis; biomedical applications; antibacterial activity;
antifungal activity; anticancer activity; tissue engineering; drug delivery; bioimaging; biosensors

1. Introduction

In recent times, nanotechnology has become a focal point in research owing to its di-
verse applications across scientific and technological domains. This field focuses on crafting
nanoparticles (NPs) and harnessing their potential in areas like biomedicine, sensing, and
catalysis [1]. The significance of NPs stems from their unique properties, such as small size,
adaptable shapes, substantial surface area compared to volume, and outstanding magnetic,
electronic, optical, and mechanical traits [2–5]. Yet, the distinctiveness of each nanoparticle
primarily relies on the utilized synthesis method [6]. In general, nanoparticles have been
synthesized using a variety physical, chemical, and green approaches [7–12].

Metal oxide nanoparticles represent a crucial category of nanomaterials extensively
utilized today due to their distinct physical and chemical properties, finding applica-
tions across diverse fields like biosensing technology, tissue engineering, catalysis, food
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packaging, biomedicine, and environmental sciences [13]. The key members within the
category of metal oxide nanoparticles include silicon dioxide (SiO2), ferric oxide (Fe2O3),
copper oxide (CuO), zinc oxide (ZnO), titanium dioxide (TiO2), and magnesium oxide
(MgO) [14]. Among these metal oxide nanoparticles, magnesium oxide (MgO) nanopar-
ticles have gained considerable attention because of their exceptional biocompatibility,
non-toxic nature, robust stability in abrupt conditions, and extensive applications, espe-
cially in biomedicine [15]. Furthermore, the United States Food and Drug Administration
regards magnesium oxide as a safe material for human consumption [16]. MgO nanopar-
ticles possess several advantageous physicochemical characteristics, such as enhanced
ionic character, substantial specific surface area, distinctive crystal structures, as well as
oxygen vacancies, enabling seamless interaction with various biological systems [17,18].
These nanoparticles have found widespread utility in diverse areas, including toxic waste
remediation, paints, antiseptics, catalysis, superconductors, catalytic devices, semicon-
ductors, additives in heavy fuel oils, refractory materials, adsorbents, reflective coatings,
lithium-ion batteries, and more [19–21]. In the realm of biomedicine, magnesium oxide
nanoparticles have been employed for stomach relief, heartburn alleviation, and bone
regeneration [21,22], as well as for therapeutic applications, such as coated capsules, bio-
logical labeling, band-aids, blood collecting vessels, etc. [19]. Additionally, MgO nanopar-
ticles have exhibited potential as antibacterial [21–23], fungicidal [24], anticancer [25,26],
antioxidant [27], and antidiabetic [27] agents, as well as in applications such as tissue
engineering [28,29], bioimaging [30], and drug delivery [31]. Hence, the pursuit of novel
synthetic methods for producing magnesium oxide nanoparticles becomes imperative
owing to their escalating usage in biomedicine.

Therefore, the present review article centers on the creation of biocompatible magne-
sium oxide nanoparticles through diverse synthesis methods, aiming for their potential
use in combating bacteria, fungi, cancer, and oxidative stress, as well as ailments such as
diabetes. Upon reviewing available literature, it became apparent that no comprehensive
review on magnesium oxide nanoparticles exists, encompassing detailed insights into their
synthesis, biomedical applications, and toxicity mechanisms. Hence, this present review
extensively covers various synthesis methods commonly employed in magnesium oxide
nanoparticles’ preparation. Furthermore, emphasis is placed on the potential biomedical
roles of these synthesized magnesium oxide nanoparticles, particularly their effectiveness
against bacteria, fungi, cancer, and oxidative stress, elucidating plausible mechanisms. Ad-
ditionally, a summary of the toxicity effects of synthesized magnesium oxide nanoparticles,
limitations in prior studies, and proposed future research directions are provided. This
comprehensive review offers an extensive understanding of diverse synthesis methods
for generating MgO nanoparticles, showcasing their potential in biomedical applications,
while minimizing toxicity. The findings of this study aim to assist scientists and researchers
in further exploring the versatility of this nanomaterial for various biomedical uses.

2. Distinct Attributes of Nanostructured Magnesium Oxide

Over the past twenty years, magnesium oxide has gained attention among
non-magnetic oxides due to the presence of several noteworthy phenomena within its
nanostructures.

MgO stands out among different non-magnetic oxide systems as a crucial material
in technology. This is primarily attributed to its uncomplicated crystal structure and the
absence of d orbital electrons. These characteristics greatly contribute to comprehending
various physical [32–34] and chemical behaviors [35–38].

While the conventional MgO in bulk form presents itself as a highly insulating sub-
stance with an optical bandgap of around 7.6 eV [39], its nanostructured variations display
altered optical bandgap properties. For instance, MgO nanoparticles sized at 7 nm exhibit
an optical bandgap of 2.8 eV [39], while 1D magnesium oxide nanostructures present an
optical bandgap equal to 3.2 eV [40]. Similarly, MgO nanocubes demonstrate a comparable
optical bandgap (3.2 eV) [41].
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Despite the dielectric constant of bulk MgO and thin films being around 10 [42–44],
the material showcases significantly enhanced dielectric constants based on the specific
morphology of its nanostructures [45–47].

Spin-dependent electron reflection has been documented in MgO thin films grown on
Fe substrate. The electron reflectivity displays quantum interference, leading to the deter-
mination of two MgO energy bands with ∆1 symmetry in the conducted research [48,49].

Additionally, MgO-based structures exhibit resistive switching [50,51]. Notably, re-
ports indicate the presence of ferromagnetism in combination with multi-level switching
characteristics in magnesium oxide capacitors [52,53]. At ambient temperatures, broad-
spectrum laser emissions ranging from near ultraviolet to blue-green have been observed in
MgO microcrystals formed via a solid-phase reaction between SiO and Mg at 450 ◦C in an
Ar atmosphere [54,55]. Luminescence represents another observed phenomenon in MgO
nanocrystals [56,57]. Various forms of luminescence, including photoluminescence [58,59],
electroluminescence [60], radioluminescence [61], and thermoluminescence [62], have also
been reported in magnesium oxide nanostructures.

These phenomena are observed not only in reduced dimensions but also manifest
when defects accumulate within this material. For instance, magnetism is observed in thin
films and nanoparticles of magnesium oxide, which is attributed to surface and extended
defects [63]. Furthermore, the luminescent properties of nanostructured MgO can be
customized by regulating the defect states within the material [64,65].

Cataluminescence represents another significant phenomenon exhibited in MgO-based
nanostructures and serves as a pathway for potential utilization as a gas sensor [66,67].

3. Synthetic Approaches for the Production of MgO Nanoparticles

Various methods exist for producing nanostructured magnesium oxide. This review fo-
cuses on insights derived from commonly employed chemical and biological synthesis tech-
niques, known as the bottom-up approach [68]. The aforementioned techniques encompass
sol-gel [69], solvothermal/hydrothermal [70], combustion [71], and co-precipitation [72],
as well as environmentally friendly green synthesis [73]. Among these chemical methods,
the sol-gel technique stands out as a commonly employed method for fabricating MgO
nanostructures, due to its ability to generate a higher product yield, its straightforward
procedure, and its minimal temperature requirements [74]. The preference for the bottom-
up approach lies in its superior control over the size and shape of nanostructures [75]
(Figure 1). Crucial to this approach are nucleation, as well as crystal growth, through LaMer
burst nucleation. Mechanisms such as Ostwald ripening [76] or coalescence [77] elucidate
subsequent particle enlargement [78].

However, MgO can be also synthesized through several physical techniques (top-
down approach), such as the vapor deposition method [79], plasma irradiation [80], and
ultrasonic irradiation [81]. Typically, these methods necessitate high energy input and
robust equipment to achieve the production of magnesium oxide nanoparticles.
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Figure 1. Different morphologies of nano-MgO structures: (a) nanoparticles; Reprinted from [82] 
with permission from Elsevier Copyright 2019, (b) nanorods; Reprinted from [82] with permission 
from Elsevier Copyright 2019, (c) nanoflakes; Reprinted from [83] with permission from Elsevier 
Copyright 2022, (d) nanowires; Reprinted from [84] with permission from Elsevier Copyright 2012, 
and (e) nanosheets; Reprinted from [85] with permission from Elsevier Copyright 2022. 
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ciples are judged: (i) achieving single nucleation and homogeneous growth through dif-
fusion; (ii) nucleation, growth, and aggregation of smaller subunits; and (iii) multiple nu-
cleations and subsequent Ostwald ripening growth [91]. The precise concentration of the 
critical solute initiating this process significantly influences the typical procedure, where 
surficial solute diffusion prompts growth. Moreover, it is essential to distinctly separate 
these two procedures. The derived precipitate is subsequently subjected to washing as 
well as drying processes. 

 

Figure 1. Different morphologies of nano-MgO structures: (a) nanoparticles; Reprinted from [82]
with permission from Elsevier Copyright 2019, (b) nanorods; Reprinted from [82] with permission
from Elsevier Copyright 2019, (c) nanoflakes; Reprinted from [83] with permission from Elsevier
Copyright 2022, (d) nanowires; Reprinted from [84] with permission from Elsevier Copyright 2012,
and (e) nanosheets; Reprinted from [85] with permission from Elsevier Copyright 2022.

3.1. Co-Precipitation Synthetic Approach

This synthetic approach finds widespread application in synthesizing nanoparticles
(Figure 2). It relies on precipitation as its fundamental principle and is predominantly asso-
ciated with liquid-phase synthesis [86], occasionally involving vapor-phase synthesis [87].
NaOH serves as a typical precipitating agent in this approach [88,89]. The underlying con-
cept involves the harmonization of a precipitation reaction entailing two primary processes:
(a) nucleation and (b) the growth of nuclei [90]. Typically, three fundamental principles
are judged: (i) achieving single nucleation and homogeneous growth through diffusion;
(ii) nucleation, growth, and aggregation of smaller subunits; and (iii) multiple nucleations
and subsequent Ostwald ripening growth [91]. The precise concentration of the critical
solute initiating this process significantly influences the typical procedure, where surficial
solute diffusion prompts growth. Moreover, it is essential to distinctly separate these
two procedures. The derived precipitate is subsequently subjected to washing as well as
drying processes.

In their study, Kumar and his team [92] employed the co-precipitation approach,
employing magnesium nitrate [Mg(NO3)2] as the precursor and NH4OH solution as the
precipitating agent, yielding particles averaging about 11 nm in size.

Moreover, Karthikeyan and his team [93] conducted research exploring the impact
of polyethylene glycol concentration on the characteristics of magnesium oxide nanopar-
ticles synthesized via the co-precipitation approach. Mg(NO3)2 served as the precursor
and NaOH as the precipitating agent. XRD analysis revealed that the utilization of PEG
(polyethylene glycol) nearly doubled the crystallite size in comparison to pure magne-
sium oxide nanoparticles (8.62 nm compared to 14.76–15.78 nm). Additionally, noticeable
variations in morphology were attributed to the presence of PEG. Also, pure magnesium
oxide nanoparticles exhibited a sphere-like structure, while polyethylene glycol-modified
magnesium oxide nanoparticles presented a flake-like structure.
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Figure 2. Schematic representation of MgO nanoparticles’ synthesis utilizing the co-precipitation
approach.

Furthermore, Tandon and Chauhan [94] synthesized magnesium oxide nanotubes
utilizing Mg(CH3COO)2 and NaOH, determining an average crystalline size equal to
34.04 nm. FESEM observations showcased a tubular morphology, characterized by an outer
diameter of roughly 78 nm and an inner diameter of 31 nm. Furthermore, they reported a
bandgap of 5.73 eV.

Finally, Yadav and co-researchers [95] synthesized magnesium oxide nanoparticles
through a feasible and low-cost chemical co-precipitation approach, followed by annealing
at several temperatures (350 ◦C, 450 ◦C, and 550 ◦C). XRD analysis data demonstrated
that the prepared samples exhibited sizes smaller than 20 nm and maintained a pure
phase. An intriguing transition from hexagonal Mg(OH)2 nanoparticles to discretely cubic
structured magnesium oxide nanoparticles was observed as the annealing temperatures
were progressively increased.

3.2. Sol-Gel Synthetic Approach

The sol-gel approach stands as a fundamental synthetic method directed towards
generating novel structures, predominantly focusing on metal oxides and similar inorganic
materials by employing an inorganic precursor and an organic solvent [96]. By combining
metal alkoxides with appropriate solvents and reactants, uniform solutions are formed,
subsequently developing into colloidal suspensions (sol) and progressing into integrated
networks through poly-condensation (gel) [97]. These networks are subsequently converted
into xerogels or aerogels, relying on the specific drying process employed (Figure 3).
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Sutapa and co-researchers [98] utilized the same precursor and complexing agent to
synthesize magnesium oxide nanoparticles. Their study delved into stress, strain, and
crystal energy, achieving the development of cubic-shaped crystals. These findings were
confirmed through SEM analysis, where they documented the highest texture coefficient
value of 0.98 in the crystal plane (222).

Furthermore, Wahab and his team [99] engaged in synthesizing magnesium oxide
nanoparticles using the sol-gel approach, through the utilization of Mg(NO3)2 and NaOH
as precursor and precipitating agent, respectively. The methods outlined in their study
resulted in the production of cubic-shaped magnesium oxide nanoparticles measuring
between 50 and 60 nm in size.

On the contrary, Boddu and co-researchers [100] outlined an approach for develop-
ing magnesium oxide nanoparticles characterized by a coralline structure, utilizing Mg
ribbons as a precursor. The aforementioned process commenced with the formation of a
magnesium methoxide solution, subsequent to hydrolysis, supercritical drying, and then
thermal activation. As a result, particles with the as-described structure were produced,
characterized by sizes ranging between 200 and 300 nm.

Moreover, Dercz and his team [101] conducted an analysis of nanopowder derived
from magnesium oxide xerogel, which was synthesized via magnesium methoxide as a
precursor, followed by methanol and toluene. Following the methodology detailed in their
research, they attained an average crystallite size of 7.5 nm and a specific surface area equal
to 138 m2/g.

Nanostructured magnesium oxide was also synthesized by Nassar and his team [102],
employing a combined sol-gel/combustion approach. Using magnesium nitrate along
with several fuels (urea, oxalic acid, and citric acid), they observed that the fuel’s choice
significantly impacted both crystallite size as well as morphology. Specifically, the use of
citric acid resulted in the smallest crystallite size of ≈12 nm.

3.3. Solvothermal/Hydrothermal Synthetic Approach

The solvothermal method comprises one of the extensively utilized approaches for
the controlled crystal growth of several materials [103]. This technique involves placing a
precursor and an appropriate solvent within an autoclave under elevated temperature and
pressure conditions, having as a result the synthesis of the preferred products [104]. These
specific reaction conditions, notably temperature and pressure, facilitate the production
of materials with enhanced crystallinity as compared to the co-precipitation synthetic
approach [89]. In the context of defining the “solvothermal” approach that involves
utilizing a solvent apart from water, such as alcohols or various organic and inorganic
solvents. Alternatively, when water serves as the solvent, the approach is defined as
“hydrothermal” (Figure 4).
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Devaraja and his team [57] detailed the production of nanocrystalline magnesium ox-
ide nanopowder prepared from Mg(NO3)2·6H2O and NaOH. The as-mentioned procedure
yielded porous magnesium oxide nanoparticles characterized by an average crystallite size
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of 25 nm. Among the properties observed for the fabricated nanoparticles was a bandgap
value equal to 5.5 eV.

Then, Al-Hazmi and co-researchers [84] conducted the synthesis of nanofibers through
a direct reaction, involving Mg(CH3COO)2 and urea. The as-prepared nanofibers exhibited
an average diameter of 6 nm, with a length measured through TEM analysis at ≈10 nm.

In another study, Ding and his research team [105] detailed the production of both
rod-like and tube-like magnesium hydroxide, followed by the production of magnesium
oxide nanoparticles through thermal decomposition. The team demonstrated that the
hydrothermal approach favored the relatively facile control over crystallite size, shape,
and structure. Employing magnesium powder, magnesium sulfate, or magnesium nitrate
hexahydrate as base materials in the synthesis process, diverse morphologies were achieved
(including rod-like, lamellar, and needle-like), due to variations in experimental conditions.
The obtained particles exhibited dimensions ranging from 20 to 600 nm, presenting an
exceptionally enhanced specific surface area (>100 m2/g).

Additionally, Rukh and co-workers [106] employed magnesium powder as the pre-
cursor material in their study, while using hydrogen peroxide and distilled water as the
reaction medium. Through this approach, they achieved the development of magnesium
oxide nanoparticles possessing an average crystallite size of 18 nm.

3.4. Combustion Synthetic Approach

The combustion method (Figure 5) constitutes a widely utilized approach for synthesiz-
ing metal oxide nanoparticles, given its effectiveness and cost-efficiency [107]. This method
encompasses two primary approaches: self-propagating synthesis and volume combustion
synthesis [108]. Self-propagating synthesis involves spontaneous redox reactions ignited
by an external source between the precursor (oxidizer) and reductant (fuel), mixed at the
molecular level in a solution. Solid product formation occurs without additional energy
input [109]. On the other hand, in volume combustion synthesis, the entire sample is
heated until the reaction initiates throughout its volume. This preparation approach is
more challenging to control and is particularly suitable for weak exothermic reactions that
necessitate preheating before ignition [110].
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approach.

Balakrishnan and his team [111] utilized the solution combustion approach to syn-
thesize magnesium oxide nanoparticles, employing Mg(NO3)2 as an oxidizer and urea
as a fuel. This method yielded magnesium oxide nanoparticles exhibiting a cubic struc-
ture with a crystallite size of ≈22 nm, as observed through XRD analysis. SEM analysis
indicated spherical nanoparticles with uniform size distribution. Notably, the synthesized
nanoparticles exhibited a bandgap equal to 2.9 eV, differing from other studies.

Rao and co-researchers [112] used the same starting materials for magnesium oxide
nanoparticles synthesis, aiming to explore the impact of the fuel–oxidizer ratio. The
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obtained results demonstrated that a higher fuel ratio led to larger crystallite sizes (ranging
from 18 to 53 nm), except in the case of a 0.75 ratio, possibly ascribed to variations in
ignition temperature, burn rate, or enthalpy.

Furthermore, Therami and his team [113] utilized citric acid as a fuel and examined
its impact on various parameters. Considerable alterations were observed: an increase
in bandgap (from 4.72 to 5.35 eV) with higher ratios, a reduction in particle size (from
35 to 20 nm) with increased ratios, and diversity in morphology (flake-like, vacuolar, and
flower-like structures).

Additionally, Kumar and co-researchers [114] synthesized magnesium oxide nanopar-
ticles using Mg(NO3)2 solution and extracts from parthenium plants. Their study focused
on analyzing the influence of fuel quantity on bandgap width (5.3–5.45 eV) and crystallite
size (27–35 nm); however, the observed alterations were less pronounced compared to the
previous case.

3.5. Biosynthesis or Green Synthetic Approach

The approach known as green synthesis or biosynthesis represents a novel approach in
producing nanoparticles, characterized by minimal or no prerequisites for specific reaction
conditions, such as enhanced pressure, temperature, or excessive energy usage, while
avoiding the use of toxic chemicals [115,116]. The primary objective is to reduce waste
generation and foster sustainable development within this realm [117]. This approach
employs non-toxic reagents, which encompass a diverse array of substances ranging from
plant substrates—namely leaves, stems, fruits, flowers, roots, bark, etc. [118–122]—to micro-
organisms such as bacteria, fungi, and algae [123,124] or biomolecules involving DNA,
protein, and enzymes, as well as vitamins [125]. Typically, double-distilled water serves
as the primary extraction medium in this synthetic procedure. In essence, this approach
involves three essential stages: (i) activation, (ii) growth, and (iii) process completion
(Figure 6). The biosynthesis of nanoparticles relies on several reaction parameters, including
the concentration of biological substrates, as well as the metal precursor, reaction duration,
temperature, and pH level. Modifying the aforementioned factors leads to the creation
of nanoparticles varying in size and structure, significantly impacting their physical and
chemical properties and their biological functionalities [8,126]. Nonetheless, despite its
benefits, the green synthesis approach also exhibits certain drawbacks.
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Plants are the most frequently employed biological sources for the environmentally
friendly synthesis of nanoparticles, due to their easy accessibility and compatibility with
biological systems. The process of nanoparticle biosynthesis using plants involves various
methods, such as utilizing living plants (intracellular), plant extracts (extracellular), and
phytochemicals. Among these approaches, synthesis through plant extracts stands as
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the most commonly adopted method by numerous researchers [127–129]. Plant extracts
encompass a diverse array of phytochemicals and biomolecules, including flavonoids,
terpenoids, phenolic acids, saponins, methylxanthines, proteins, enzymes, alkaloids, and
polysaccharides. These components serve multifunctional roles as reducing, stabilizing,
capping, and chelating agents during nanoparticle synthesis [8,130]. While a precise
mechanism that could describe the development of metal oxide nanoparticles utilizing
plant extracts remains unclear, the literature suggests two potential mechanisms. Based
on the first potential mechanism, phytochemicals within the plant extract initially reduce
metal salts into metal ions. Subsequently, these metal ions react with oxygen, sourced
either from degraded phytochemicals or from the atmosphere, leading to the production
of metal oxide ions [131]. The produced ions then pass through a growth phase, forming
metal oxide nanoparticles that are further stabilized by the phytochemicals, preventing
their agglomeration [131]. An alternative mechanism proposes that the phytochemicals
bind to the metal ions, creating metal coordination complexes. The obtained complexes are
subsequently subjected to thermal degradation or calcination, resulting in the formation of
metal oxide nanoparticles [8,132].

In their study, Suresh and his team [133] employed an extract from Nephelium lappaceum
L. combined with double-distilled water for eco-friendly synthesis, utilizing magnesium
nitrate as the precursor. Their investigations confirmed magnesium oxide’s cubic structure,
with an average crystallite size equal to 55 nm, aligning closely with SEM analysis indicating
a grain size range between 60 and 70 nm.

In their research, Younis and co-researchers [134] utilized Rosa floribunda powder
dispersed in double-distilled water, employing Mg(NO3)2 as the precursor, resulting in
high-purity cubic structured nanoparticles with an approximate size of 10 nm as determined
through high-resolution TEM analysis.

Furthermore, Abdallah and his team [135] investigated the production of Rosmarinus
officinalis L. with bulk magnesium oxide, yielding nanoparticles characterized by a mini-
mum number of impurities, as well as a hexagonal crystalline structure, while the average
crystallite size was found to be equal to 8.8 nm.

Sharma and colleagues [136] employed phyto-assisted synthesis with Swertia chirayaita
as the reactant and Mg(NO3)2 as the precursor, achieving the formation of magnesium
oxide nanoparticles sized below 20 nm. Their SEM findings depicted these nanoparticles as
predominantly spherical with slight variations in shape.

Additionally, Fatiquin and co-researchers [137] aimed to produce magnesium oxide
nanoparticles using MgCl2 as the precursor and Moringa oleifera as the reagent, yielding
nanoparticles possessing crystallite size of ≈21 nm. TEM analysis confirmed a cubic
structure with particle sizes ranging from 2 to 50 nm.

Moreover, Singh and his research team [138] synthesized nano-MgO particles utilizing
R. arboreum leaves’ extract. Based on the study’s results, the as-prepared MgO nanoparticles
presented enhanced bactericidal efficiency towards E. coli, S. mutans, and P. vulgaris.

Researchers have utilized various microorganisms, alongside plants, to produce mag-
nesium oxide nanoparticles. Numerous investigations highlight the capability of certain
bacterial species to generate metal or metal oxide nanoparticles. The process of synthesizing
these nanoparticles primarily occurs through intracellular or extracellular mechanisms (Fig-
ure 7). Intracellularly, metal ions are assimilated into cells, undergoing reduction facilitated
by diverse enzymes and proteins within the cell, resulting in nanoparticle formation. Con-
versely, in the extracellular mechanism, bacterial-secreted enzymes and proteins catalyze
the reduction of metal ions for the production of nanoparticles. Additionally, bacterial
enzymes and proteins play a role in stabilizing these nanoparticles [8]. Nevertheless, some
researchers have proposed a non-enzymatic mechanism for metal ion reduction, in order to
produce nanoparticles [139–141]. The aforementioned alternative synthetic process relies
on the interaction between metal ions and specific functional groups that are present on the
bacterial cell walls, leading to the metal ions’ reduction into nanoparticles. Furthermore,
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this mechanism is influenced by environmental factors such as temperature, pH, and other
associated conditions [126].
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Figure 7. The process of MgO nanoparticles’ synthesis by bacteria involves two mechanisms: ex-
tracellular and intracellular. Extracellular synthesis transpires as precursor salts are captured by
external proteins, followed by their reduction. On the other hand, intracellular synthesis happens
as these precursor materials migrate into the cell membrane and undergo reduction catalyzed by
intracellular enzymes.

Apart from bacteria, fungi are recognized as a highly effective biological resource for
producing metal and metal oxide nanoparticles, primarily owing to the array of intracellular
enzymes they possess. The utilization of fungal strains for the eco-friendly synthesis of
these nanoparticles demonstrates comparable mechanistic pathways, both intracellular
and extracellular, as mentioned in the nanoparticles’ biosynthesis facilitated by bacteria
(Figure 8). Additionally, fungi have the capacity to yield larger quantities of nanoparticles
compared to bacteria due to their ability to excrete an enhanced concentration of bioactive
metabolites, including enzymes and proteins, into the culture media [8].
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Algae, being aquatic microorganisms, harbor diverse phytochemicals like flavonoids
and polyphenols, akin to those found in plant extracts. Consequently, the process of bio-
genic synthesis of magnesium oxide nanoparticles employing algae as a bio-source shares
similarities with the mechanism mentioned in plant-mediated synthesis of magnesium
oxide nanoparticles. Within the as-described synthetic route mechanism, phytochemicals
function as agents for reduction, stabilization, and chelation, playing pivotal roles in the
biosynthesis of metal oxide nanoparticles. Table 1 presents selected synthetic bottom-up
approaches for the fabrication of nano-MgO particles.
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Table 1. Nano-MgO structures synthesized through distinct bottom-up approaches.

Synthetic Approach Utilized Precursor Size (nm) Studied Activity Reference

Co-precipitation Mg(NO3)2 11 Antibacterial [92]
Co-precipitation Mg(NO3)2 14–16 Antibacterial [93]
Co-precipitation Mg(NO3)2 78 Antibacterial [94]

Sol-gel Mg(OCH3)2 200–300 - [100]
Sol-gel Mg(OCH3)2 ≈8 - [101]

Solvothermal Mg(CH3COO)2 6 Antibacterial [84]
Solvothermal Mg 18 Antibacterial [106]
Combustion Mg(NO3)2 20–35 Antibacterial [113]

Green
(plant-mediated) Mg(NO3)2 10 Antibacterial [134]

Green
(plant-mediated) Bulk MgO ≈9 Antibacterial [135]

Green
(plant-mediated) Mg(NO3)2 <20 Antibacterial [136]

Green
(plant-mediated) MgCl2 ≈21 Antibacterial [137]

Green
(plant-mediated) - - Antibacterial [138]

Green
(plant-mediated) Mg(NO3)2 30 and 42 Antioxidant and

antibacterial [142]

Green
(plant-mediated) Mg(NO3)2 18.2 and 16.5 Antibacterial [143]

Green
(algae-mediated) Mg(NO3)2·6H2O 68.6 Antimicrobial [144]

Green
(bacteria-mediated) Mg(NO3)2 30 Anticancer [145]

Green
(fungi-mediated) MgCl2 43–91 Antibacterial [146]

4. Biomedical Applications of MgO Nanoparticles
4.1. Antibacterial Activity

In recent times, the rise of bacterial resistance to commonly used antibiotics has sig-
nificantly impacted the effective treatment of bacterial infections. The United Nations
General Assembly has highlighted antibiotic resistance as a critical global peril that hu-
manity confronts [147]. Consequently, exploring alternative strategies to combat bacterial
growth has become imperative, with nanoparticles emerging as a promising solution, due
to their strong antibacterial properties. Among these nanoparticles, MgO nanoparticles
have garnered attention owing to their remarkable effectiveness in combating bacteria.
Studies have indicated the potent MgO nanoparticles’ antibacterial effects against various
strains, such as E. coli [134], S. aureus [148], P. aeruginosa, A. baumannii [149], and P. caro-
tovorum [150]. Additionally, a proposed antibacterial mechanism of MgO nanoparticles is
depicted in Figure 9. More specifically, magnesium oxide nanoparticles have the ability to
stimulate reactive oxygen species (ROS) within bacteria. This process leads to oxidative
stress, resulting in significant impairment to their membrane lipids, proteins, and nucleic
acids [151].

Makhluf and colleagues [152] demonstrated the antibacterial properties of powdered
magnesium oxide prepared through a microwave-assisted synthetic approach, applying
it to combat both Staphylococcus aureus and Escherichia coli cultures. The most substantial
antibacterial effect was observed when subjecting both bacterial strains to 8 nm magnesium
oxide nanoparticles. Following exposure to MgO for 60 min, less than one fifth of both
cultures survived. Subsequently, after 4 h of treatment, the survival rates decreased
significantly to less than 5% for Staphylococcus aureus and a mere 0.1% for Escherichia coli.
In contrast, using 23 nm MgO resulted in a reduction in bacterial counts to approximately
40% for S. aureus and 35% for E. coli, comparatively less effective than the 8 nm particles.
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entry of MgO nanoparticles into bacterial cells is facilitated by the disturbance of the bacterial cell
membrane (c). Once inside the cytoplasm, these nanoparticles have the capacity to produce reactive
oxygen species (ROS) or inflict direct harm on DNA and enzymes (b,d). This action results in
protein denaturation and damage to the mitochondria (a,f). Additionally, they interfere with cellular
memory and impede trans-tolerant electron transport (e). Consequently, the inflicted harm leads to
the destruction of bacterial cells, prompting the release of their organelles and culminating in their
eventual demise.

In another study, an investigation on the impact of magnesium oxide particle size on
its antibacterial effectiveness against Bacillus subtilis var. niger over a four-hour period was
conducted [153]. The study revealed that as the particle size of magnesium oxide decreased,
the efficiency of eliminating bacteria increased from 93% to 97%. This enhancement was
attributed to the rise in the number of surficial Mg2+ ions with smaller MgO particles. It
became evident that magnesium oxide nanoparticles exhibited greater efficacy as antibac-
terial agents compared to TiO2 nanoparticles, both in the occurrence and non-occurrence
of irradiation.

Bindhu and colleagues [154] synthesized magnesium oxide nanoparticles employing
a wet chemical approach, employing the resulting composition as an antibacterial agent.
Nanostructures of magnesium oxide nanoparticles resembling spheres were produced,
measuring ≈16 nm. Visualization through TEM and SEM analysis substantiated the
creation of the as-mentioned MgO nanoparticles. Considering its bactericidal properties,
magnesium oxide was recommended as a potential agent for purifying water.

Sawai and his team [155] further validated the bactericidal properties of MgO nanopar-
ticles. In particular, their study delved into the interactions between magnesium oxide
nanoparticles and Escherichia coli, as well as Staphylococcus aureus, revealing pronounced
antibacterial effects. Through chemiluminescence analyses aimed at elucidating the mecha-
nism of particle suspension action, it was observed that these particles had the capability
to generate a notable concentration of active O2

−. Particularly in acidic or neutral en-
vironments, this generation was attributed to the production of hydroperoxyl radicals
(•HO2).

Moreover, Krishnamoorthy and fellow researchers [156] investigated the bacterici-
dal effects of MgO nanoparticles on both Gram-negative bacteria (Escherichia coli and
Pseudomonas aeruginosa) as well as Gram-positive bacteria (Staphylococcus aureus) using a
microtiter plate-based analysis that incorporated resazurin as an indicator of cell growth.
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The antibacterial efficacy was demonstrated using MgO nanoparticles, with a minimum
inhibitory concentration equal to 1.000 µg/mL observed for P. aeruginosa and S. aureus and
500 µg/mL against E. coli.

Additionally, Karthik and colleagues [82] conducted a study examining the bactericidal
properties of MgO nanoparticles, prepared utilizing a microwave-assisted and a hydrother-
mal synthetic approach, against both Gram-positive bacteria (Rhodococcus rhodochrous and
Bacillus subtilis) and Gram-negative bacteria (Aeromonas hydrophila, Proteus mirabilis, Vibrio
cholera, Shigella flexneri, Salmonella typhi, and Escherichia coli). Their findings revealed a
notable 27 mm inhibition zone, indicating significant antibacterial efficacy specifically
against R. rhodochrous and B. subtilis.

Suresh and colleagues [157] produced MgO nanoparticles utilizing C. pictus leaf ex-
tract, exhibiting bactericidal effects measured through the inhibition zone against S. aureus
(5.50 cm), B. subtilis (10 cm), E. coli (12.50 cm), and S. paratyphi (15 mm) (Figure 10). Con-
versely, magnesium oxide nanoparticles derived from the P. grandis extract displayed
enhanced antibacterial properties against S. aureus and S. paratyphi, demonstrating opti-
mized zones of inhibition of 14 and 15 mm, respectively [132].
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permission from Elsevier Copyright 2018.

Kainat and colleagues [158] investigated the impact of magnesium oxide nanoparticles
derived from H. rosa-sinensis leaf extract on P. aurigenosa, P. vulgaris, and E. coli, observing
zones of inhibition measuring 19, 22, and 19 mm, respectively. In a separate study, Am-
rulloh and his team [159] demonstrated the antibacterial potential of magnesium oxide
nanoparticles fabricated utilizing M. oleifera. These nanoparticles exhibited minimum in-
hibitory concentration (MIC) values ranging from 300 to 550 µg/mL against S. aureus, E.
faecalis, E. coli, and S. dysenteriae.

Likewise, Younis and co-researchers [134] illustrated the remarkable antibacterial
efficacy of magnesium oxide nanoparticles derived from rose (R. floribunda) flower extract,
showcasing MIC values for S. epidermidis (15.63 µg/mL), S. pyogenes (7.81 µg/mL), and P.
aeruginosa (31.25 µg/mL).

Consequently, research on the bactericidal capacity of magnesium oxide nanoparticles
has persistently undergone enhancement and refinement, unveiling new prospects for
enhanced antibiotic capabilities (Table 2).
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Table 2. Antibacterial activity of nano-MgO particles synthesized via various approaches.

Synthetic Approach Main Remarks Reference

Microwave-assisted
■ MIC * = 1 mg/mL (E. coli, S. aureus).
■ Viability reduction: >99.9% (E. coli), 95% (S. aureus). [152]

Wet chemical ■ ZOI **: 19 nm (S. aureus), 12 nm (P. aeruginosa). [154]

Wet chemical
■ MIC = 500 µg/mL (E. coli), 1000 µg/mL

(P. aeruginosa, S. aureus). [156]

Microwave-assisted
&

Hydrothermal

■ Microwave assisted approach resulted in nano-MgO
structures with enhanced antimicrobial properties.

■ ZOI: 27 mm (B. subtilis, R. rhodochrous), 25 mm
(A. hydrophila), 24 mm (E. coli, P. mirabilis), 23 mm
(V. cholera), 17 mm (S. flexneri), 16 mm (S. typhi).

[82]

Green
(plant-mediated)

■ ZOI: 5.5 mm (S. aureus), 10 mm (B. subtilis), 12.5 mm
(E. coli), 15 mm (S. paratyphi). [157]

Green
(plant-mediated)

■ ZOI: 14 mm (S. aureus), 11 mm (B. subtilis), 20 mm
(M. luteus), 23 mm (E. coli), 15 mm (S. paratyphi),
20 mm (K. pneumonia).

[132]

Green
(plant-mediated)

■ ZOI: 19 mm (P. aurigenosa), 22 mm (P. vulgaris),
19 mm (E. coli). [158]

Green
(plant-mediated)

■ MIC = 300–550 µg/mL (S. aureus, E. faecalis, E. coli,
S. dysenteriae). [159]

Green
(plant-mediated)

■ MIC = 15.63 µg/mL (S. epidermidis), 7.81 µg/mL (S.
pyogenes), 31.25 µg/mL (P. aeruginosa). [134]

* MIC = Minimum Inhibitory Concentration. ** ZOI = Zone Of Inhibition.

Mechanism of MgO Nanoparticles’ Bactericidal Activity

The effectiveness of MgO nanoparticles in eradicating bacteria largely relies on reactive
oxygen species (ROS) production. This reliance is specifically associated with factors such
as the particle’s surface characteristics, polarity, crystal size, increased oxygen defects,
morphology, the ability of molecules to chemically diffuse, as well as the release of Mg2+

ions. The bactericidal process involving magnesium oxide nanoparticles entails sterilization
through particle release, a multifaceted mechanism, and absorption. The crystals’ size
and their extensive surface area may contribute significantly to their potent antibacterial
properties. Superoxide radicals, formed through reactions between H2O2 and ROS, inflict
damage on cellular proteins and DNA, leading to cell death [160].

The mechanism underlying the antimicrobial efficacy of magnesium oxide nanostruc-
tures can be elucidated as follows. Primarily, a crucial antibacterial process involves a
light-driven catalytic mechanism. Specifically, the creation of ROS on the nanoparticle
surface, in the presence of light, initiates oxidative stress on microbial cells, ultimately
leading to cellular demise. ROS comprises relatively low levels of toxic radicals like the
superoxide anion radical (O2

−), reactive hydroxyl radical (·OH), and a mild oxidizing agent,
hydrogen peroxide (H2O2). A subsequent series of reactions also takes place, where the
superoxide anion radical (•O2

−) combines with hydrogen ions, forming the •HO2
− radical,

which then reacts with hydrogen ions to produce H2O2. This compound can interact with
DNA, cellular proteins, and cell membranes, ultimately resulting in microbial death. The
generation of a substantial amount of ROS hinges on the creation of smaller crystalline
structures with increased specific surface areas and a corresponding rise in surficial defects.
Additionally, the release of Mg2+ ions from magnesium oxide nanostructures’ surfaces
contributes to their bactericidal activity. These positively charged ions interact with the neg-
atively charged cell membranes of microbes, penetrating the semi-permeable membrane.
Based on existing research data, synthesized nanomaterials are thought to significantly
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impact pathogenic bacteria by compromising membrane integrity, leading to the demise of
bacterial pathogens [160].

4.2. Antifungal Activity

Apart from showcasing antibacterial effects, MgO nanoparticles have demonstrated
significant antifungal capabilities against various pathogenic fungal strains (Figure 11).
Fungi constitute natural pathogens as they present plenty of similarities with the host cell,
inhibiting antifungal compounds’ growth [161]. Sierra-Fernandez and co-researchers [162]
studied the antifungal activity of Zn-doped magnesium oxide nanoparticles synthesized
through a facile sol-gel approach and compared it with that of pure ZnO and MgO nanopar-
ticles. The as-mentioned nanoparticles presented enhanced antifungal efficiency compared
to that of pure magnesium oxide or zinc oxide nanoparticles, restraining the growth of
fungi Aspergillus niger, Penicillium oxalicum, Paraconiothyrium sp., and Pestalotiopsis maculans.
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Figure 11. Diagrammatic representation of the way that MgO nanoparticles operate as an antifungal
agent: Initially, the nanoparticles engage with fungal cell membranes through electrostatic inter-
actions, leading to the disruption of both the membranes and the glucan matrix. Following this,
they initiate the production of ROS and the release of Mg2+. Subsequently, they interfere with mito-
chondria by inducing DNA damage, subsequently impeding protein synthesis, disrupting proteins,
leading to intracellular leakage, and ultimately resulting in the demise of fungal cells.

Moreover, De la Rosa-García and co-workers [163] evaluated the antifungal activity
(towards strains of C. gloeosporioides) of pure ZnO and MgO, as well as ZnO/MgO and
ZnO/Mg(OH)2 composites fabricated under different synthetic approaches (co-precipitation
and hydrothermal). According to the acquired results, all tested nanoparticles at the tested
concentrations significantly restrained conidia’s germination and led to the structural
damage of the fungal cells, verifying that the as-mentioned nanoparticles could constitute
promising fungicidal agents against C. gloeosporioides.

In addition, Castillo and his team [24] demonstrated through in vitro experiments that
magnesium oxide nanoparticles, characterized by a diameter equal to 12 nm, presented
fungistatic efficiency towards three filamentous fungal strains (T. reesei, A. niger, and C.
cladosporioides), at concentrations ranging from 3 to 12 mg/mL.

Safaei and Taran [164] developed a cellulose-MgO bionanocomposite applying the
Taguchi method to achieve the optimal synthetic conditions. Based on the obtained data,
the bionanocomposite consisting of 4 mg/mL magnesium oxide and 1 mg/mL cellulose,
which was stirred for 90 min, indicated the most enhanced antifungal effectiveness against
Aspergillus niger. Additionally, the proposed bionanocomposite exhibited higher antifungal
activity as compared to pure magnesium oxide and cellulose, respectively.
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Khatua and co-researchers [165] prepared pure magnesium oxide and cerium-doped
magnesium oxide nanoparticles through a facile and low-cost wet chemical approach.
They reported that cerium-doped magnesium oxide nanoparticles presented increased
fungicidal activity and cytotoxicity against plant pathogenic fungi (THY-1) compared to
pure magnesium oxide nanoparticles.

Sidhu and co-workers [166] synthesized a sepiolite-MgO nanocomposite and com-
pared its antifungal activity with that of pure magnesium oxide nanoparticles towards
several phytopathogenic rice’s fungi. The as-proposed nanocomposite was more potent as
compared to pure magnesium oxide, presenting ED90 > 230 and 249 µg/mL, respectively,
against the tested fungi better than standard fungicides, rendering it an efficient, sustain-
able, non-toxic, green, and residue-free strategy for confronting fungal menace against
phytopathogens.

Additionally, Wang and his team [167] developed a Ag2S-MgO/GO nanocomposite
via a simple sol-gel/ultrasound synthetic approach and compared its fungicidal effective-
ness with that of pure magnesium oxide nanoparticles, as well as Ag2S-MgO nanocom-
posite, against Aspergillus flavus and Trichoderma viride. Their results indicated that the
as-synthesized nanocomposite exhibited enhanced antifungal activity against both exam-
ined fungi, as compared to pure MgO and Ag2S-MgO nanocomposite.

Sharmila and colleagues [168] employed magnesium oxide nanoparticles derived
from P. alba leaf extract to combat A. flavus and F. solani, observing zones of inhibition of
approximately 4 and 3 mm, respectively (Figure 12).
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Figure 12. (a) TEM image of the as-prepared MgO nanoparticles and (b) their antifungal efficiency
study towards A. flavus and F. solani. Reprinted from [168] with permission from Elsevier Copy-
right 2019.

Pugazhendhi and his team [144] successfully prepared magnesium oxide nanopar-
ticles, possessing an average size of approximately 68 nm, employing the marine brown
algae Sargassum wighitii as both reducing and capping agent. Subsequently, the biosynthe-
sized magnesium oxide nanoparticles were evaluated towards their fungicidal efficiency
against Aspergillus fumigates, Fusarium solani, and Aspergillus niger at three concentrations
(10–30 µg/mL). MgO nanoparticles indicated potent fungicidal efficiency when compared
to positive control (Fluconozole). Based on their study’s data, the growth of Fusarium solani
and Aspergillus niger was more efficiently inhibited in comparison to A. fumigates.

Amina and his team [13] synthesized magnesium oxide nanoparticles using S. costus
root extract, demonstrating fungicidal effects against C. tropicalis and C. glabrata, yielding
zones of inhibition ranging between 19 and 20 mm. These outcomes notably surpassed the
findings of Sharmila and colleagues [168].

Saied and co-researchers [169] utilized magnesium oxide nanoparticles derived from A.
terreus fungus, achieving an inhibition zone of 12.8 mm against C. albicans. However, Fouda
and colleagues [170] illustrated that MgO nanoparticles from P. chrysogenum fungus extract
exhibited enhanced antifungal activity against C. albicans, with a zone of inhibition equal to
14.7 mm, surpassing Saied and his team [169]. This outcome indicated P. chrysogenum as a
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superior precursor towards the synthesis of magnesium oxide nanoparticles with enhanced
fungicidal properties.

Sulak and Kavakcıoğlu Yardımcı [171] utilized jujube fruit extract to fabricate magne-
sium oxide nanoparticles targeting S. cerevisiae yeast, yielding a half-maximal inhibitory
concentration value (116.5 ppm). Consequently, the as-proposed eco-friendly fabrication of
magnesium oxide nanoparticles demonstrates promise for various antifungal applications.

Vidhya and his team [172] reported the fabrication of cubic-structured magnesium
oxide nanoparticles (42 nm) utilizing Ocimum americanum aqueous extract and evaluated
their antifungal potential against Candida albicans and Aspergillus niger. The zones of
inhibition observed from biosynthesized magnesium oxide nanoparticles’ aqueous extract
were compared with those of plant leaf extract, Mg(NO3)2, as well as a common commercial
drug (Gentamycin 50 µg). The as-reported magnesium oxide nanoparticles exhibited higher
inhibition zones for both tested fungi (Candida albicans 21 mm and Aspergillus niger 16 mm)
than the rest of the examined materials.

Vijayakumar and co-researchers [173] synthesized magnesium oxide nanoparticles
utilizing Citrus aurantium peel extract with average particle size of around 50–60 nm and
studied their antifungal activity against Candida albicans and Aspergillus niger through the
agar well approach. According to their study’s results, an enhanced inhibition zone was
measured against C. albicans (26 mm) followed by A. niger (24 mm), rendering the as-
proposed biosynthesized magnesium oxide nanoparticles a promising candidate towards
pathogenic fungi strains. Table 3 summarizes the antifungal activity of nano-MgO particles
prepared utilizing different approaches.

Table 3. Antifungal activity of nano-MgO particles synthesized through several approaches.

Synthetic Approach Main Remarks Reference

Sol-gel ■ MIC = 12 mg/mL (C. cladosporioides), 6 mg/mL (A. niger),
3 mg/mL (T. reesei).

[24]

Sol-gel

■ ZOI (MgO, 10 mg/mL): 12.2 mm (A. niger), 15.6 mm (P.
oxalicum).

■ ZOI (Mg1−xZnxO, 10 mg/mL): 17.1 mm (A. niger), 21 mm
(P. oxalicum).

[162]

Co-precipitation ■ MIC = 0.625 mg/mL for C. gloeosporioides strains from
papaya (PG-16) and avocado (AP-14).

[163]

Co-precipitation

■ Highest fungal (A. niger) growth inhibition = 85.03%
(nanocomposite: 4 mg/mL nano-MgO particles, 1 mg/mL
cellulose, 90 min stirring time).

■ Lowest fungal (A. niger) growth inhibition = 41.38%
(nanocomposite: 2 mg/mL nano-MgO particles, 0.5
mg/mL cellulose, 30 min stirring time).

[164]

Co-precipitation ■ ZOI: 33 mm (THY-1).
■ MIC = 11.63 µg/mL (THY-1).

[165]

Green
(plant-mediated) ■ ZOI: 4 mm (A. flavus), 3 mm (F. solani). [168]

Green
(algae-mediated)

■ Inhibition growth of F. solani and A. niger greater than A.
fumigates.

[144]

Green
(plant-mediated) ■ ZOI: 20 mm (C. tropicalis), 19 mm (C. glabrata). [13]

Green
(fungi-mediated) ■ ZOI: 12.8 mm (C. albicans). [169]

Green
(plant-mediated) ■ IC50 * = 116.5 µg/mL (S. cerevisiae). [171]

Green
(plant-mediated) ■ ZOI: 21 mm (C. albicans), 16 mm (A. niger). [172]

Green
(plant-mediated) ■ ZOI: 26 mm (C. albicans), 24 mm (A. niger). [173]

* IC50 = Half-maximal inhibitory concentration.
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4.3. Anticancer Activity

Cancer stands as one of the most lethal and intricate diseases known to date. The
unregulated growth of cancerous cells detrimentally impacts neighboring healthy cells,
leading to fatality [174]. Various treatments, including surgery, radiation therapy, and
chemotherapy, have been proposed for combating cancer [175]. Nonetheless, the aforemen-
tioned approaches may harm normal cells, resulting in numerous side effects and potential
disease recurrence [176]. Recently, there has been a rising focus on the development of
nanoparticle-based nanomaterials, notably magnesium oxide nanoparticles, renowned for
their potent anti-cancer properties. Figure 13 portrays a hypothetical anti-cancer mech-
anism associated with magnesium oxide nanoparticles. The advancement of synthesis
methods and techniques has significantly propelled the application of magnesium oxide
nanoparticles in anti-cancer therapy.
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Figure 13. Representation of the potential anticancer mechanism involving MgO nanoparticles:
Through electrostatic interactions with the cell surface, MgO nanoparticles gain entry into the cell via
the intracellular pathway. Once inside, these nanoparticles prompt the formation of reactive oxygen
species (ROS) within the cells, resulting in DNA damage, protein oxidation, and mitochondrial
impairment, ultimately culminating in cell death.

Behzadi and his team [177] reported that the tested magnesium oxide nanoparticles
presented selective cytotoxicity against the K562 cell line, thus rendering them as a novel
anticancer agent. Their study’s data revealed that MgO nanoparticle-mediated apoptosis
was initiated through reactive oxygen species generation within the cancer cells.

Additionally, magnesium oxide nanoparticles synthesized through a simple sol-gel
method and further modified with polyethylene glycol were successfully fabricated by
Alfaro and his team [178] to be utilized as carrier for the anticancer drug 2-Methoxyestradiol
for advancing its clinical utilization. According to their research’s results, the as-developed
nanoparticles significantly reduced the viability of a prostate cancer cell line (LNCap),
rendering the as-mentioned nanocomposite appropriate as a drug delivery system towards
anticancer prostate therapy.

Moreover, a cellulose–magnesium oxide nanocomposite was developed by Safaei and
co-researchers [179]. The team optimized the synthetic conditions applying the Taguchi
method and subsequently investigated the anticancer efficiency of the obtained samples.
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The nanocomposite synthesized using 8 mg/mL of MgO, 2 mg/mL of cellulose and stirred
for 60 min, indicated the most increased growth inhibitory effectiveness against breast
cancer cells (MCF-7). Considering the obtained data, the cellulose–magnesium oxide
nanocomposite produced under ideal experimental conditions exhibits potential suitability
as an effective anticancer agent.

Al-Fahdawi and his team [180] successfully fabricated platinum-doped magnesium
oxide nanoparticles (30–50 nm) utilizing a precipitation method. The cytotoxicity of the
as-mentioned doped magnesium oxide nanoparticles was evaluated on human lung (A549)
and colonic cancer cells (HT29), as well as normal human lung (MRC-5) and colonic fibrob-
lasts cells (CCD-18Co). They observed that platinum-doped magnesium oxide nanoparti-
cles were relatively non-toxic to normal cells but selectively toxic to colon and lung cancer
cells, presenting increased potential to be utilized as a novel anti-cancer therapeutic agent.

Furthermore, MubarakAli and colleagues [181] fabricated magnesium oxide nanopar-
ticles through a facile co-precipitation synthetic approach and evaluated their cytotoxic
effect towards human breast cancer cells (MCF-7). Based on their study, the magnesium
oxide nanoparticles successfully restrained the viability of MCF-7 cells at a concentration
equal to 50 µg/mL.

Chen and co-researchers [182] proposed a functionalized magnesium oxide nanotube
adsorbed with 5-Fluorouracil and studied its anticancer efficiency towards breast cancer
cell lines (HER2 and EGFR). The as-proposed novel nanostructure presented enhanced
inhibitory effects against both breast cancer cell types, illustrating that this complex could
be promising for the fabrication of novel anticancer agents to treat breast cancer patients.

In addition, Singh and his team [183] synthesized 4-carboxy phenylboronic acid-linked
and amine-functionalized magnesium oxide nanoparticles loaded with rutin (Figure 14)
and assessed their in vitro and in vivo anticancer efficiency. The as-prepared nanohybrid
indicated exceptional anticancer activity against MDA-MB-231 cells through intracellular
ROS generation and apoptosis, while it restrained the cancer cells’ migration. Following,
in vivo studies assisted the enhanced anticancer potential of the nanohybrid in tumor-
bearing mice.
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Figure 14. (a) TEM image and (b) XRD diffractogram of the as-proposed MgO-based nanohybrid.
Reprinted from [183] with permission from Elsevier Copyright 2023.

Magnesium oxide nanoparticles fabricated utilizing marine algae S. wightii, demon-
strated promising anticancer potential towards human lung cancer cells, exhibiting the
most enhanced apoptosis rate at approximately 79.5% [144].

Amina et al. [13] developed magnesium oxide nanoparticles from S. costus leaf extract,
showcasing anticancer activity against human breast cancer cells. However, the cytotoxicity
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percentage of magnesium oxide nanoparticles from S. costus leaf extract (82%) was slightly
lower than that of those derived from E. tirucalli leaf extract (85%) [184].

Similarly, Abdullah and Mohammed [185] achieved anticancer effects against human
breast cancer cells, presenting the largest inhibition zone (18 mm) by employing magnesium
oxide nanoparticles synthesized from Syrian mesquite (P. facta) leaf extract.

Fathy and Mahfouz [186] synthesized MgO nanoparticles utilizing fungi like A. niger,
E. cichoracearum, P. citrinum, G. deliquescence, and A. alternata. These nanoparticles exhibited
a relatively high half-maximal inhibitory concentration (IC50 = 11.17 µg/mL) towards
prostate cancer cell lines, indicating their considerable potential in anticancer applications.
Consequently, the aforementioned insightful findings suggest the potential for synthesizing
high-performance magnesium oxide nanoparticles with prominent anticancer properties.
Table 4 summarizes the anticancer activity of nano-MgO particles utilized in the aforemen-
tioned studies.

Table 4. Overview of nano-MgO particles’ anticancer activity.

Synthetic Approach Main Remarks Reference

Commercially
available MgO
nanoparticles

■ IC50 = 17.75 µg/mL (K562 cell line).
■ Cell viability reduction = 78.5% (K562 cell line,

CMgO nanoparticles = 1 µg/mL).
■ Selective cytotoxicity towards cancer cells.

[177]

Sol-gel

■ Cell viability reduction = 40% (nano-MgO-PEG
particls, 72 h, LnCap cancer cells).

■ Cell viability reduction = 20% (nano-MgO particles,
72 h, LnCap cancer cells).

[178]

Precipitation

■ IC50 = 13.65 µg/mL (HT29 human cancer cell line).
■ IC50 = 6.32 µg/mL (A549 human cancer cell line).
■ IC50 = 48.08 µg/mL (CCD-18Co human normal

cell line).
■ IC50 = 76.83 µg/mL (MRC-5 human normal

cell line).
■ Toxic concentrations: 3.125 µg/mL (HT29),

6.25µg/mL (A549).

[180]

Co-precipitation ■ IC50 = 50 µg/mL (MCF-7 breast cancer cells). [181]

Microwave-assisted

■ Enhanced cytotoxicity (MDA-MB-231 human breast
cancer cells).

■ Inhibition of cell migration (MDA-MB-231 human
breast cancer cells).

■ No systemic toxicity.

[183]

Green
(algae-mediated)

■ Apoptosis = 79.5% (human lung cancer cell).
■ Cell viability = 20.5%. [144]

Green
(plant-mediated)

■ Cytotoxicity = 82% (human breast cancer cell). [13]

Green
(plant-mediated)

■ Cell inhibition = 85% (human breast cancer cell). [184]

Green
(plant-mediated)

■ ZOI: 18 mm (human breast cancer). [185]

Green
(fungi-mediated)

■ IC50 = 11.17 µg/mL (prostate cancer cell line). [186]

PEG600 = polyethylene glycol 600, C4H6O6 = tartaric acid, CTAB = cetyltrimethyl ammonium bro-
mide (C19H42BrN), APTES = 3-Aminopropyltriethoxysilane, EDC.HCl = 1-(3-Dimethylaminopropyl)-3-
Ethylcarbodiimide hydrochloride, NHS = N-hydroxysuccinimide, PBA = 4-carboxyphenyl boronic acid.
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4.4. Antioxidant Activity

For a considerable duration, researchers have established that free radicals negatively
impact human health, potentially leading to various illnesses including heart disease, arte-
riosclerosis, tumors, diabetes, and aging [187]. Consequently, the focus on understanding
antioxidants has expanded to counteract the free radicals’ detrimental effects. However,
despite their effectiveness, potent antioxidant agents also bring along several adverse
effects. For instance, Edaravone, acknowledged as a free radical scavenger beneficial in
preventing lipid oxidation and treating ischemic stroke, mitigates nerve cell damage. Yet,
when utilized clinically, Edaravone induces numerous side effects, including liver and
kidney toxicity, which can impact human health [188]. Hence, exploring antioxidant ca-
pabilities via enhanced magnesium oxide nanoparticles presents a possible solution to
mitigate several associated drawbacks.

Podder and colleagues [189] explored the antioxidant activity of three nano-MgO
structures (i.e., nanoparticles, nanoplates, and nanorods). They reported the effective
production of superoxide anions (•O2

−) and hydroxyl radicals (•OH) at increased concen-
trations (>500 µg/mL) and the scavenging of •O2

− at lower concentrations (40 µg/mL)
for all examined nanostructures. More specifically, it was observed that magnesium oxide
nanorods produce the most increased levels of superoxide anions, while magnesium oxide
nanoparticles possessed the most enhanced ability (60%) to scavenge superoxide anions.
Lastly, the researchers also reported a 100% scavenging ability of the nitrogen-centered
free radical (DPPH) by magnesium oxide nanoplates, given their significantly enhanced
specific surface area (342.2 m2/g).

Additionally, Ali and co-researchers [190] fabricated MgO nanoparticles from Abrus
precatorius L. bark extract using a green synthetic approach. In order to assess the free
radical’s scavenging potential for the as-prepared magnesium oxide nanoparticles, a DPPH
assay was conducted, which relied on both reaction time and concentration. The acquired
data indicated that at a lower concentration (20 µg/mL), there was a 15.8% scavenging rate,
while at an increased concentration (120 µg/mL), the rate rose to 65.93%. In comparison,
the standard ascorbic acid at 20 µg/mL displayed a scavenging rate of 11.66%, reaching
60.86% at an enhanced concentration of 120 µg/mL. The synthesized magnesium oxide
nanoparticles exhibited a superior percentage of free radical scavenging compared to
ascorbic acid, thus verifying their antioxidant activity.

Magnesium oxide nanoparticles (42 nm) were successfully developed utilizing gera-
nium leaf extract by Mylarappa et al. [191]. The antioxidant characteristics of the syn-
thesized nanoparticles were evaluated using the DPPH method. Based on the obtained
results, MgO nanoparticles displayed significant efficacy in scavenging free radicals, as
demonstrated by their DPPH scavenging activities.

Priya et al. [192] demonstrated a 60% inhibition rate against hydrogen peroxide by
employing magnesium oxide nanoparticles derived from D. elata aqueous extract. Sim-
ilarly, Ammulu et al. [193] utilized magnesium oxide nanoparticles fabricated utilizing
P. marsupium heartwood extract, exhibiting an IC50 value of approximately 89.67 µg/mL
against DPPH.

Correspondingly, Younis and colleagues [134] observed that magnesium oxide nanopar-
ticles obtained from rose flower extract showcased lower IC50 values in antioxidant activity
against superoxide anions, hydroxyl, and nitric oxide (26.2, 31.9, and 52.9 µg/mL, respec-
tively) compared to P. marsupium heartwood extract (89.67 µg/mL) as reported by Ammulu
and co-researchers [193].

Nadeem et al. [194] optimized the preparation of magnesium oxide nanoparticles
utilizing C. orientalis extract, achieving the lowest IC50 value of 22.65 µg/mL, surpassing
many aforementioned studies.

In a separate investigation, Amrulloh and colleagues [159] explored the potential of M.
oleifera extract, obtaining a minimum inhibitory concentration of 290 µg/mL against DPPH.
These collective findings indicate promising avenues for future research in bio-based MgO
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nanometallic antioxidants. Overall, the results of the studies regarding the antioxidant
potential of MgO nanoparticles are presented in Table 5.

Table 5. Antioxidant activity of MgO nanoparticles.

Synthetic Approach Main Remarks Reference

Wet chemical
(nanoparticles)

■ IC50 = 126.47 µg/mL (DPPH).

[189]
Hydrothermal
(nanoplates)

■ IC50 = 16.61 µg/mL (DPPH).

Hydrothermal
(nanorods)

■ IC50 = 71.04 µg/mL (DPPH).

Green
(plant-mediated)

■ DPPH inhibition = 65.93% (CMgO nanoparticles =
120 µg/mL). [190]

Green
(plant-mediated)

■ Inhibition of hydrogen peroxide = 60% [192]

Green
(plant-mediated)

■ IC50 = 89.67 µg/mL (DPPH). [193]

Green
(plant-mediated)

■ IC50 = 26.2 µg/mL (superoxide anions).
■ IC50 = 31.9 µg/mL (hydroxyl anions).
■ IC50 = 52.9 µg/mL (nitric oxide).

[134]

Green
(plant-mediated)

■ IC50 = 22.65 µg/mL (DPPH). [194]

Green
(plant-mediated)

■ MIC = 290 µg/mL (DPPH). [159]

DPPH = (2,2-diphenyl-1-picryl-hydrazyl-hydrate) free radical.

4.5. MgO-Based Biosensors towards Diabetes Detection and Treatment

Diabetes comprises a collection of severe and enduring metabolic disorders associated
with elevated blood glucose levels, contributing to increased rates of premature morbidity.
In spite of advancements in life’s quality, there hasn’t been a decline in diabetes prevalence;
instead, it continues to strain global healthcare systems [195]. Often diagnosed after irre-
versible organ damage due to prolonged hyperglycemia, diabetes stands among the most
pressing global health challenges [195], alongside cancer, chronic respiratory issues, and
cardiovascular diseases, causing approximately five million deaths annually in developed
nations. Notably, cardiovascular disease (50%) and kidney failure (10–20%) account for
the majority of these fatalities. Diabetes also leads to complications like blindness, lower
limb amputations, and severe outcomes in viral infections, such as COVID-19 [196]. The
primary diabetes types include insulin-dependent or juvenile diabetes (T1DM-Type 1 Dia-
betes Mellitus), non-insulin-dependent (T2DM-Type 2 Diabetes Mellitus), and gestational
diabetes [197]. Furthermore, less common types result from other causes like diseases of
the exocrine pancreas, genetic defects in β-cell function or insulin action, endocrinopathies,
and drug- or chemical-induced diabetes [198,199].

The initial and crucial aspect of managing diabetes involves diagnosis. Presently,
traditional methods such as assessing fasting plasma glucose (FPG) levels, conducting oral
glucose tolerance tests (OGTT), and measuring hemoglobin A1c (HbA1c) levels [200,201]
are employed for diabetes diagnosis. However, the aforementioned methods are often
uncomfortable and painful for patients, due to blood withdrawal, leading to potential
neglect of therapy. Additionally, periodic measurements might not capture significant
fluctuations in glucose levels between testing intervals. Moreover, variations in measured
values can occur due to factors like timing of testing, age, and an individual’s physiolog-
ical state. These approaches are also unsuitable for continuous monitoring due to their
laborious nature, prolonged diagnosis duration, increased blood withdrawal, and complex
blood processing [202]. Notably, clinical signs of detrimental diabetes symptoms, like
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hyperglycemia, are usually observed only after the disease has progressed, hindering early
intervention. To mitigate these complications, it is crucial to develop diagnostic tools that
are more affordable, rapid, and widely accessible [199].

Addressing these challenges, various nanotechnologies focusing on diverse biomark-
ers have emerged, aiming to enable early and non-invasive diabetes detection. Analyzing
specific biomarkers serves as an indicator for multiple diseases [203]. Lately, there has
been a notable emphasis on advancing research related to diabetes treatment through the
utilization of nanoparticles. Magnesium oxide nanoparticles, in particular, have gained sub-
stantial attention among various nanoparticles and are extensively employed in biomedical
studies, particularly in diabetes treatment, through a suggested mechanism depicted in
Figure 15.
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Furthermore, Ullah and co-researchers [85] reported the synthesis of novel MgO en-
tangled nanosheets (average thickness of 20 nm approximately) decorated with CdS na-
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Figure 15. Schematic representation of the way that MgO nanoparticles contribute to diabetes
treatment. Firstly, MgO nanoparticles adhere to the surface of affected cells (1, 2, 3). Subsequently,
they discharge Mg2+ and O2− ions, initiating the activation of internal enzymes (4, 5). These enzymes,
in turn, facilitate the reversal of insulin resistance and facilitate the entry of glucose transporter 4 into
the cell’s plasma membrane (6, 7, 8). Ultimately, this glucose transporter enables the absorption of
glucose into the cells, where insulin functions to decrease glucose levels and generate ATP (9, 10, 11).

Hilal and Han [204] suggested a simple hydrothermal approach for the fabrication
of highly crystalline three-dimensional hierarchical magnesium oxide microstructures
with enhanced specific surface area (79.82 m2/g). Additionally, analyses involving Mott–
Schottky and valence band assessments indicated that three-dimensional magnesium oxide
displayed favorable band-edge potential conducive to redox activity, featuring conduction
and valence band potentials of −2.15 and 2.29 eV, respectively. Leveraging these impressive
attributes, 3D-magnesium oxide was employed as a non-enzymatic glucose-oxidizing elec-
trode, demonstrating notable characteristics, such as high sensitivity (198 µA·m/M·cm2),
rapid response time (10 s), low detection limit (0.41 µM), as well as an extensive linear
range (0.04–6.85 mM). Moreover, it presented exceptional selectivity, consistency, and re-
producibility; maintained long-term chemical robustness; and effectively detected glucose
levels in human saliva. Given these remarkable material qualities and its outstanding
performance towards glucose detection, three-dimensional magnesium oxide stands as a
promising candidate for prospective research endeavors (Figure 16).
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Figure 16. (a) HRTEM image and (b) selectivity towards glucose detection of the as-synthesized
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Then, Mansoor and colleagues [205] synthesized Zn-doped magnesium oxide nanoflakes,
applying a sol-gel method at ambient conditions, which were subsequently deposited on
glassy carbon electrodes for glucose sensing. The as-developed nanosensor exhibited
remarkable performance in glucose sensing, displaying a broader response range, low
detection limits equal to 99 mM, and a rapid response time of five seconds, alongside a high
sensitivity of 0.032 µA·m/M·cm2. Their research’s results indicated that such nanosensors
hold significant potential in contributing to diabetes treatment and analysis.

Furthermore, Ullah and co-researchers [85] reported the synthesis of novel MgO
entangled nanosheets (average thickness of 20 nm approximately) decorated with CdS
nanoparticles (≈15 nm). The created electrodes, both in their original state and in hybrid
form, were directly utilized as glucose biosensors. The hybrid electrode displayed the most
enhanced sensitivity of approximately 28.570 µA·m/M·cm2, while the pristine magnesium
oxide nanosheets also exhibited a respectable sensitivity of around 12.363 µA·m/M·cm2.
Remarkably, the as-mentioned hybrid electrode demonstrated a lower detection limit of
approximately 0.020 µM and a rapid response time of about 2 sec for glucose detection. This
proposed biosensor exhibited prolonged robustness, increased reproducibility, exceptional
repeatability, and notably enhanced selectivity, even in the presence of typical interfering
substances such as uric acid, ascorbic acid, sucrose, urea, fructose, cholesterol, L-cysteine,
and chloride ion, enhancing the practical application of biosensors for clinical analysis.

A glucose sensor utilizing a non-enzymatic setup employing magnesium oxide
nanocubes as the basis was developed and studied by Prasanna and colleagues [206].
Throughout experimental studies, the sensing electrode demonstrated a notable shift in
drain current concerning glucose concentration, ranging from 1.6 mM to 25.6 mM. The
sensor’s sensitivity, evaluated at 0.12 µA·m/M·cm2, displayed a commendable linearity of
0.9701. Consequently, these findings propose that employing magnesium oxide nanocubes
as sensing electrodes holds promise for real-time glucose detection, particularly in diabetes
mellitus detection and treatment applications.

In addition, Tan and his team [207] exhibited that magnesium oxide nanoparticles
derived from A. tricolor extract possessed anti-diabetic properties, notably reducing glucose
concentration to a mere 0.01 µg/mL. Similarly, Jeevanandam and colleagues [208] utilized
A. tricolor extract in the synthesis of magnesium oxide nanoparticles for treating diabetes.
However, the cell viability percentage (32%) was decreased compared to magnesium oxide
nanoparticles derived from A. blitum (33%) and A. paniculata (34%) extract under similar
conditions. Furthermore, magnesium oxide nanoparticle application resulted in a fivefold
reduction in total glucose within Vero cells.

Ammulu et al. [193] highlighted that magnesium oxide nanoparticles obtained from
P. marsupium extract restrained protein denaturation, a factor associated with diabetes-
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related inflammation, with an IC50 of 81.69 µg/mL. Impressively, these nanoparticles
also delayed starch breakdown into glucose, thereby regulating glucose levels in diabetic
individuals by inhibiting alpha-amylase, displaying an IC50 of 56.32 µg/mL. This outcome
was significantly more optimized compared to the effectiveness of magnesium oxide
nanoparticles from H. rosa-sinensis extract (3.27 × 105 µg/mL) as observed in the study by
Kainat and colleagues [158]. Table 6 provides an overview of the as-discussed research that
have studied the potential of MgO nanoparticles towards diabetes treatment.

Table 6. Performance of nano-MgO particles towards diabetes treatment.

Synthetic Approach Main Remarks Reference

Hydrothermal
■ Enhanced glucose sensitivity: 198 µA·m/M·cm2.
■ Rapid response time: 10 s.
■ Low detection limit (glucose): 0.41 µM.

[204]

Sol-gel
■ Low detection limit (glucose): 99 mM.
■ Rapid response time: 5 s.
■ High glucose sensitivity: 0.032 µA·m/M·cm2.

[205]

Anodization
&

Chemical Bath
Deposition

■ Enhanced glucose sensitivity: ≈28.570
µA·m/M·cm2.

■ Glucose detection limit: ≈0.020 µM.
■ Fast response time: ≈2 s.

[85]

Thermal CVD ■ Glucose sensor’s sensitivity: 0.12 µA·m/M·cm2. [206]

Green
(plant-mediated)

■ Glucose concentration = 0.01 µg/mL. [207]

Green
(plant-mediated)

■ Cell viability: 32% (A. tricolor leaves’ extract).
■ Glucose concentration: 0.09 mg/mL (extracellular),

0.71 mg/mL (intracellular) (A. tricolor leaves’
extract). [208]

■ Cell viability = 33% (A. blitum leaves’ extract).

■ Cell viability = 34% (A. paniculata leaves’ extract).

Green
(plant-mediated)

■ IC50 = 56.32 µg/mL (alpha-amylase inhibition).
■ IC50 = 81.69 µg/mL (protein inhibition). [194]

Green
(plant-mediated)

■ IC50 = 327 mg/mL (alpha-amylase inhibition).
■ IC50 = 400 mg/mL (alpha-glucosidase inhibition). [158]

4.6. Tissue Engineering Applications
4.6.1. Bone Tissue Engineering

Enhanced biomaterials aimed at restoring bone integrity are necessary to address the
escalating number of individuals grappling with deteriorating or damaged bones [209–212].
Presently, existing biomaterial solutions for this purpose involve invasive procedures that
introduce permanent materials, potentially leading to prolonged issues within the body.
Although progress has been made in bone defect regeneration using injectable cements and
various scaffold materials, significant enhancements are still needed [213–215]. The ideal
biomaterials for bone tissue regeneration should harmonize mechanically with surrounding
tissue, lessening stress and strain discrepancies, while also possessing suitable chemical
compositions and surface features that foster bone cell adhesion, growth, movement, and
the production of proteins forming the extracellular matrix. Unfortunately, biomaterials
with these desired properties are not yet available. Magnesium (Mg), an environmen-
tally friendly, biodegradable, and biocompatible material naturally present within the
human body (≈0.4 g·Mg/kg [216]), plays a role in cell–extracellular matrix interactions
and influences the structure and density of bone apatite.
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In their research, Hickey and colleagues [217] examined the impact of incorporating
magnesium oxide nanoparticles into poly (L-lactic acid) and hydroxyapatite nanoparticle-
poly (L-lactic acid) composites designed for applications in orthopedic tissue engineering.
Findings demonstrated that the inclusion of magnesium oxide nanoparticles notably aug-
mented osteoblast adhesion and proliferation on hydroxyapatite nanoparticle-poly (L-lactic
acid) nanocomposites, while preserving mechanical strength, suitable for cancellous bone
applications. Furthermore, when osteoblasts (cells responsible for bone formation) were cul-
tured in the solution derived from degrading nanocomposites, their proliferation improved
in the presence of magnesium. This observation suggested that the enhanced alkalinity in
solutions containing magnesium oxide nanocomposites did not exert any harmful effects
on the cells. Collectively, these outcomes underscore the potential for further exploration
of magnesium oxide nanoparticles as supplementary materials to polymers, aiming to
enhance the fusion of implanted biomaterials with bone tissues.

Furthermore, Suryavanshi and co-researchers [218] evaluated the suitability of electro-
spun polycaprolactone polymer composites loaded with magnesium oxide nanoparticles
as scaffolds for bone-soft tissue engineering. Magnesium oxide nanoparticles were syn-
thesized using a hydroxide precipitation sol-gel process. The nanocomposites exhibited
significantly improved mechanical properties compared to the pure polymer samples, due
to the even dispersion of MgO nanoparticles throughout the polymer fibers. In immersion
tests, the nanocomposite scaffolds displayed notable bioactivity by developing a surface
hydroxyapatite layer by the third day of incubation. The electrospun polymer mats loaded
with magnesium oxide nanoparticles demonstrated enhanced in vitro biological perfor-
mance with osteoblast-like MG-63 cells, showing increased adhesion, proliferation, and
enhanced differentiation marker activity. In an in vivo subcutaneous implantation study
using Sprague Dawley rats, initial moderate inflammatory tissue response near the implant
site was observed at the second week, which subsided during the eighth week, revealing
good biocompatibility without adverse effects on vital organ functionalities. Histopatho-
logical analysis, supported by serum biochemical and hematological parameters within
normal physiological ranges, further confirmed the biocompatibility in vivo. Consequently,
the as-proposed nanocomposite exhibited promising potential as efficient scaffold materials
for bone-soft tissue engineering applications.

Safiaghdam and his team [219] outlined in their research the production and examina-
tion of a 3D-printed scaffold using fused deposition modeling, incorporating magnesium
oxide nanoparticles into polycaprolactone/beta-tricalciumphosphate (PCL/β-TCP). The
resultant composite scaffolds exhibited a porous structure with favorable wettability. The
introduction of nanoparticles notably enhanced compressive strength, specific surface area,
microenvironmental pH, degradation, and calcium release. Demonstrating promising
cyto-compatibility and in vitro osteogenic potential, along with increased in vivo formation
of new bone, the PCL/β-TCP scaffold containing 10 wt.% magnesium oxide nanoparticles
is considered more suitable as a bone substitute for critical sized defect sites compared
to the PCL/β-TCP scaffold alone. They concluded that future research could concentrate
on refining-controlled magnesium release through the hierarchical design of 3D-printed
scaffolds and nanoparticles’ surficial alterations.

Moreover, in research by Nasri-Nasrabadi and colleagues [220], three-dimensional
porous scaffolds composed of sodium alginate and magnesium oxide nanoparticles were
developed, utilizing film casting and polyvinyl alcohol leaching techniques to establish
an interconnected pore structure. Incorporating magnesium oxide nanoparticles into the
matrix affected the mechanical characteristics of the samples, as well as their absorption and
in vitro degradation tendencies. The antimicrobial properties of the nanocomposites were
notably improved, due to the MgO nanoparticles’ antibacterial attributes. Findings from
the MTT assay as well as SEM analysis illustrated that the as-mentioned nanocomposite
scaffolds facilitated cell attachment, spreading, and growth, rendering them promising
candidates for bone tissue engineering applications.
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Singh and colleagues [221] described the production of 58S nanobioglass via a sol-gel
approach, incorporating pure magnesium oxide nanoparticles at various concentrations.
In vitro assessments for bioactivity and antimicrobial properties demonstrated that the
presence of magnesium oxide nanoparticles enhanced the antimicrobial activity and the
ability of nanobioglass to form an apatite layer. According to the received results it was
highlighted that sol-gel-derived magnesium oxide–bioglass nanocomposites could serve as
a promising biomaterial platform for bone tissue regeneration.

Additionally, Derakhshankhah and his team [28] investigated the development of a
promising scaffold using carbon nanofibers combined with magnesium oxide nanoparticles.
Their research’s findings revealed that the inclusion of magnesium oxide nanoparticles
enhanced the carbon nanofibers’ surficial characteristics. Moreover, in vitro assessments
demonstrated that nanofibers containing magnesium oxide nanoparticles at a concentration
equal to 15 wt.% exhibited the least hemolysis, indicating higher hemocompatibility. Intro-
ducing MgO nanoparticles also led to increased cell viability. The aforementioned outcomes
suggested that the amalgamation of the nanofibrous structure of carbon nanofibers with
the particulate nature of magnesium oxide nanoparticles yielded a nanocomposite with
properties advantageous for applications in the field of bone tissue engineering.

Canales and co-researchers [222] successfully fabricated electrospun poly (lactic acid)
fibers, incorporating 10 and 20 wt.% of bioactive glass and magnesium oxide nanoparticles
for potential use in bone tissue engineering. The inclusion of both types of nanoparticles in
electrospun poly (lactic acid) fibers was anticipated to synergistically enhance its bioactivity
and antimicrobial properties. All nanobioactive glass-containing composites exhibited
bioactivity by inducing the formation of hydroxyapatite structures on their surfaces. While
magnesium oxide nanoparticles did not contribute to the bioactivity of the as-prepared
fibers, they displayed antimicrobial properties by reducing S. aureus viability by approx-
imately 30%, but no observable effect was noted on the E. coli strain. Poly (lactic acid)
fibers/bioactive glass nanocomposites did not exhibit significant antimicrobial behavior.
The diverse composites amplified alkaline phosphatase expression compared to pure poly
(lactic acid) fibers, minimally affecting cell viability. As a result, a robust osteoblastic
phenotype expression capacity was suggested, with poly (lactic acid) fibers/bioactive glass
demonstrating the highest osteoblastic expression.

The primary aim of Ghanbari and his team’s study [223] was to produce a three-
dimensional nanocomposite framework integrating biosynthesized magnesium oxide
nanoparticles with bacterial cellulose nanofibers, serving as a bio-scaffold intended for
bone regeneration. Based on the acquired data, it was concluded that the as-proposed
nanocomposite scaffolds demonstrated the capacity to enhance the osteogenic behavior of
cells resembling osteoblasts, suggesting its potential as a therapeutic option for regenerating
bone tissue.

The successful production of 3D composite scaffolds comprised of polycaprolac-
tone, hydroxyapatite, and magnesium oxide nanoparticles, featuring interconnected pores
through 3D printing, was achieved by Roh and colleagues [224]. Their study delved into
the impacts of oxygen and nitrogen plasma treatment, as well as the addition of magnesium
oxide and hydroxyapatite nanoparticles, aiming to augment the surficial properties and
biological attributes of polycaprolactone scaffolds. Post-plasma-treated 3D nanocomposite
scaffolds exhibited enhanced surficial hydrophilicity, accompanied by surface roughening,
due to plasma-based etching. Furthermore, the incorporation of MgO and hydroxyapatite
nanoparticles into the three-dimensional polycaprolactone scaffold positively affected the
behaviors of preosteoblast cells, including initial adhesion, proliferation, and differentia-
tion. Visualization through fluorescence microscopy also depicted enhanced interactions
between cells and the scaffold after a two-day culture period. Conclusively, among the vari-
ous samples, nitrogen plasma-treated three-dimensional polycaprolactone, hydroxyapatite,
and magnesium oxide nanoparticles scaffolds displayed the highest level of bioactivity
based on the team’s findings (Figure 17).
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The study of Angili and his team [225] focused on applying an alginate-MgO biomate-
rial onto a 3D-printed poly L-lactic acid scaffold featuring three different cellular structures.
Assessments, both mechanical and biological, were conducted on a porous-coated scaf-
fold containing varied concentrations of magnesium oxide nanoparticles, promoting poly
L-lactic acid/alginate-20 wt.% magnesium oxide nanoparticle scaffolds as a promising
candidate for bone tissue regeneration. Additionally, these scaffolds exhibited compatibility
with blood pH and underwent antibacterial activity and MTT assays for a comprehensive
biological evaluation. Their results strongly suggested the potential for constructing bone
replacements with suitable mechanical and biological attributes using the as-proposed
bionanocomposite material.

Nanofibrous scaffolds incorporating polycaprolactone and magnesium oxide nanopar-
ticles were successfully fabricated by Niknam and co-researchers [226] using the electro-
spinning synthetic approach, intended for potential applications in bone tissue engineering.
Their findings indicated that the as-developed composite nanofibers exhibited significant
osteo-inductive properties and suggested that combining adipose-derived mesenchymal
stem cells with the as-mentioned composite nanofibers could constitute a promising bio-
implant candidate towards utilization in bone regeneration applications.

4.6.2. Skin Tissue Regeneration

The skin, being the body’s largest vital organ, serves as a protective barrier against the
external environment. While skin tissue possesses self-regenerating abilities, these capabil-
ities significantly diminish in cases of full-thickness injuries, necessitating skin grafts or
dressings [227]. The process of cutaneous wound healing, essential for repairing damaged
skin tissue, involves several intricate stages: hemostasis, inflammation, proliferation, and
remodeling [228]. Hemostasis, occurring immediately after injury, involves platelet aggre-
gation and blood clotting. The inflammatory stage involves the presence of neutrophils
and macrophages releasing cytokines at the wound site. During the proliferative phase,
fibroblast differentiation leads to the initiation of re-epithelialization through the synthesis
of the extracellular matrix. The final stage involves collagen synthesis and myofibroblast
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activity, facilitating tissue remodeling [229,230]. These stages progress sequentially within
a specific timeframe for complete healing.

Globally, various wound dressings have been developed to address epidermal damage.
Traditional materials like bandages, cotton wool, lint, and gauze were historically utilized
to absorb wound exudates, maintaining dryness to prevent bacterial infection [230,231].
Given the complexities of wound healing, an ideal wound dressing should possess ex-
ceptional biocompatibility to enhance tissue regeneration [232]. It should also enable gas
exchange, shield the wound from microbial infections, absorb excess fluids without leakage,
and be non-adherent and comfortable [233]. As a result, novel materials meeting the afore-
mentioned characteristics need to be developed. Amongst them, MgO-based nanomaterials
have gained considerable researchers’ attention within the last decade, given the fact that
magnesium oxide is considered to be biologically safe, capable of biodegradation, cost-
effective, and environmentally friendly, holding significant promise for various biomedical
applications [234].

In a study conducted by Verma and colleagues [234], films composed of carboxy
methyl cellulose and poly vinyl alcohol were successfully produced and evaluated for their
potential application in skin tissue engineering. Through comprehensive characterization,
the carboxy methyl cellulose/poly vinyl alcohol composition ratio of 50:50 emerged as
the most advantageous, exhibiting tensile strength comparable to human skin in both dry
and wet conditions, along with desirable hydrophilicity. Additionally, the as-proposed
film exhibited surficial roughness conducive to cell adhesion, controlled degradation,
and swelling, while the incorporation of magnesium oxide nanoparticles conferred an-
timicrobial properties to the polymer film. Moreover, the presence of magnesium oxide
nanoparticles positively influenced cell viability, with the carboxy methyl cellulose/poly
vinyl alcohol film containing 1.5 wt.% magnesium oxide nanoparticles demonstrating
superior cell viability, holding promise as a potential material for future engineered skin
tissue grafts.

The primary impediment in the healing process of diabetic wounds is insufficient
angiogenesis. Based on existing scientific reports, electrospun nanofiber membranes have
demonstrated potential as wound dressings. To effectively address diabetic wounds, it is
crucial for electrospun membranes to stimulate wound angiogenesis. Current strategies
predominantly focus on employing pro-angiogenic growth factors to augment the angio-
genic properties of these membranes. However, integrating growth factors into electrospun
nanofibers and sustaining their activity long-term pose technical challenges. Taking the
aforementioned into consideration, Liu and co-researchers [29] introduced an electrospun
membrane comprising polycaprolactone, gelatin, and magnesium oxide nanoparticles,
releasing Mg2+ ions to further promote angiogenesis. The as-prepared membranes encour-
aged human umbilical vein endothelial cell proliferation and enhanced vascular endothelial
growth factor production in vitro. Implantation studies in a rat model reveal that the MgO-
included membrane facilitated the early formation of robust blood vessels within a week
post surgery, fostering enriched capillary networks within the degrading membrane over
time. Moreover, these membranes significantly expedited diabetic wound healing by
mitigating inflammatory responses, fostering angiogenesis, and enhancing granulation
formation. Their research findings suggested the potential for purposefully designed
magnesium-infused electrospun membranes with heightened pro-angiogenic properties for
treating diabetic wounds. In Table 7 are presented selected studies of MgO-based materials
utilized in tissue engineering applications.
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Table 7. MgO-based materials towards tissue engineering applications.

Proposed MgO-Based Material Main Remarks Reference

Bone tissue engineering

MgO-HA-PLLA nanocomposite
■ Amplification of osteoblasts’ adhesion and proliferation.
■ Preservation of mechanical strength.
■ No harmful effects on cells, due to increased solution’s alkalinity.

[217]

MgO-PCL nanocomposite fibers
■ Enhanced mechanical properties.
■ Increased bioactivity.
■ Good biocompatibility.

[218]

PCL/β-TCP/nano-MgO scaffolds

■ Cyto-compatibility.
■ In vitro osteogenic potential.
■ In vivo new bone formation.
■ Increased compressive strength and Ca2+ release.

[219]

MgO-bioglass nanoparticles ■ Enhanced bioactivity and antimicrobial attributes. [221]

MgO nanoparticles-BC scaffold ■ Ability to increase cells’ osteogenic behavior. [223]

PLA/alginate/MgO scaffold
■ Proper mechanical and biological attributes for developing bone

replacements. [225]

MgO/PCL nanofibrous scaffolds ■ Enhanced osteo-inductive attributes. [226]

Skin tissue engineering

CMC/PVA/MgO composite films ■ Exceptional cell viability and antimicrobial attributes. [234]

PCL/gelatin/MgO membrane
■ Facilitation of robust blood vessels’ early formation and diabetic

wound healing. [29]

4.7. Bioimaging Applications

Extensive research focuses on fluorescent nanoparticles to enable real-time bioimaging
and tracking of biological processes at the nanoscale. These nanoparticles hold promise
for advancing diagnostic tools and targeted drug release therapies. Metal oxide nanoparti-
cles [235–237] have gained attention as contrast agents in bioimaging, due to their room-
temperature single-photon emission [235,237], customizable optical properties [238], and
low toxicity. However, challenges persist in their application, such as low quantum effi-
ciency and brightness [236,237], propensity for agglomeration in cell culture media [236],
and dose-dependent cytotoxicity [239]. For instance, zinc oxide exhibits broad visible
region emissions attributed to crystallographic defects, suitable for in vitro experiments
but suffering from limited photostability in cellular environments, such as photobleaching
or photo-blinking [235,237].

For effective in vitro experiments, a fluorescent marker must absorb light above
500 nm and emit light beyond 600 nm to mitigate cell autofluorescence [240]. In con-
trast, for in vivo experiments, emission in the near-infrared (NIR) range, between 700 and
900 nm, is crucial as it penetrates tissue over centimeters, unlike visible light, which travels
mere microns [241]. Magnesium oxide nanoparticles apart from being biocompatible and
biodegradable as previously mentioned, are also intrinsically fluorescent [242].

Taking the aforementioned into account, Rasheed and Sandhyarani [243] conducted
the synthesis of luminescent nanocrystals of magnesium oxide by introducing a very
low amount of Cr3+ as a dopant. The production of chromium-doped magnesium oxide
nanocrystals involved the use of magnesium nitrate as the base material and chromic
nitrate as the doping agent. Notably, upon doping with 2 wt.% Cr3+, magnesium oxide
nanocrystals displayed the highest intensity of green fluorescence. To assess cytotoxicity
towards normal cells, an Alamar blue assay was performed. Furthermore, the nanocrystals
exhibited promising potential for cellular imaging, showcasing strong fluorescence when
utilized with cancer cells (HeLa) during imaging applications.
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Additionally, in a study by Khalid and co-researchers [242], the inherent and endur-
ing fluorescent characteristics of magnesium oxide nanoparticles derived from naturally
present chromium Cr3+ and vanadium V2+ ions were detailed. These properties encom-
passed a fluorescence spectrum spanning from the visible to the near-infrared range,
enabling their potential utilization for real-time monitoring of live cells derived from both
normal and cancerous tissues.

In another study by Khalid and his team [30], magnesium oxide nanoparticles were
encased within silk fibroin protein using microfluidics, resulting in the creation of composite
spheres. Through real-time wide-field fluorescence imaging, the as-prepared hybrid spheres
demonstrated promising capabilities as vivid cell imaging agents for HaCaT, U87MG, and
MCF7 cell lines. Their preliminary findings envisioned as the initial stride towards the
broad adoption of biodegradable MgO-based spheres, serving as fluorescent markers in
short-term bioimaging applications.

Furthermore, Xie and colleagues [244] developed hierarchical clusters of magnesium
oxide nanocrystals that exhibited multiple fluorescence properties at the interface of organic
and inorganic components. This induced a distinctive fluorescence resonance energy
transfer, due to the alignment of energy levels at the interface and low-coordinated states.
To enhance their water solubility and stability for potential use in cellular imaging, these
multi-fluorescent MgO nanocrystals were encapsulated within a silica shell. As anticipated,
the resulting core-shell (MgO@SiO2) nanocrystals demonstrated excellent biocompatibility
and performed exceptionally well in cellular imaging applications.

4.8. Drug Delivery Applications

Nanotechnology offers promising avenues in drug delivery, especially for combating
terminal illnesses such as cancer [245–247]. Previous studies have explored the utilization
of nanostructures to administer drugs [248,249], and nanoparticles have shown potential
in targeting specific cell genes, particularly those in tumor cells. Nanostructures pos-
sess advantageous qualities, including a significant volume-to-surface ratio, customizable
surface properties, and multifunctionality, making them appealing for drug delivery appli-
cations [250–252]. Additionally, the stability of MgO nanostructures under harsh conditions,
coupled with their suitability for human administration, further enhances their viability
in drug delivery. The assessment of these systems included considerations related to the
rheological behavior of hydrogels and the crosslinking degree of polymers.

Sabbagh and Muhamad [253] employed acrylamide-based hydrogel systems for drug
delivery, specifically for the release of Acyclovir from magnesium oxide nanocomposite
hydrogel (Figure 18). Acyclovir was incorporated into the polymer through a soaking
process, enabling the hydrogel system for use in vaginal drug delivery and subsequent
release. An assessment of the chemical and physical properties of the reinforced hydrogels
provided an analysis of the polymer’s morphological structure, swelling behavior, gel
formation, and physical attributes. The drug release behavior in different mediums, PBS
and SVF aqueous solutions, was examined, and the quantity of the released drug was
determined using HPLC. Furthermore, the pH responsiveness and in vitro drug release
from the hydrogels were explored across three pH levels: 4, 6, and 8.

El-Sawy and his team [31] presented findings on nanocomposite hydrogels consisting
of copolymers derived from natural polymers such as Xanthan gum (Xan), magnesium ox-
ide (MgO), and acrylic acid (AAc), synthesized using radiation-induced copolymerization
and crosslinking techniques for drug delivery applications. The presence of magnesium
oxide had a diminishing effect on gelation degree, while concurrently improving network
porosity and swelling capacity. The (Xan-AAc)/MgO nanocomposites exhibited character-
istic pH-dependent swelling behavior. Additionally, the swelling kinetics indicated Fickian
behavior at pH = 1 and non-Fickian behavior at pH = 7 for all tested specimens. Methotrex-
ate (MTX), an anticancer model drug, was used to evaluate the potential of the obtained
(Xan-AAc)/MgO nanocomposites as a drug carrier. Incorporating MgO into the (Xan-AAc)
hydrogel increased the efficiency of drug loading and maximized the release of MTX in
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simulated intestinal conditions (pH = 7). The drug release pattern corresponded with
the results from the swelling tests, indicating the potential suitability of (Xan-AAc)/MgO
nanocomposite hydrogels as a targeted drug delivery system.
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5. Current Limitations
5.1. Toxicity of MgO Nanoparticles

MgO nanoparticles are efficiently produced using eco-friendly synthesis
methods [254,255]. Research suggests that nanoparticles might instigate oxidative stress,
inflammation, and indirect DNA damage in biological systems [256]. The perceived toxicity
of MgO NPs is linked to their generation of reactive oxygen species [257]. Exposure to
these nanoparticles can lead to ROS-induced oxidative harm to DNA, protein denaturation,
and lipid peroxidation [258]. Additionally, while it is established that MgO nanoparticles
release substantial quantities of Mg ions, these ions are recognized as potent sources of
toxicity, differing significantly from the effects of other ions like Zn2+ ions released from
ZnO [257].

Nanoparticles such as magnesium oxide can permeate the skin, respiratory system,
and digestive tract, accumulating in specific tissues [259]. Investigating the potential toxic
impacts of these nanoparticles is crucial as their effects on cells and organs remain largely
unknown [260]. Certain studies have delved into the toxic effects of magnesium oxide
nanoparticles utilizing model organisms, such as fish.

Thomas and colleagues [261] conducted research on the toxicity of MgO nanoparticles
measuring less than 50 nm in tilapia and zebrafish. Their findings revealed that bulk MgO
particles exhibited higher toxicity compared to nanoparticles. In zebrafish, exposure to
MgO nanoparticles did not cause mortality, whereas exposure to bulk particles resulted
in 100% mortality at just 10 ppm. Assessing biochemical and antioxidant parameters,
the study indicated an increase in the activity of catalase, glutathione S-transferase, and
superoxide dismutase with rising nanoparticle concentrations. In a separate investigation
evaluating acute toxicities of 31 different nanoparticles in zebrafish [262], it was highlighted
that MgO nanoparticles led to cumulative mortality in this species.

Kumaran’s research focused on 20 nm MgO nanoparticles and their impact through the
GST and ROS gene mechanism. The results demonstrated that the presence of 150 µg/mL
of magnesium oxide nanoparticles in the dispersions released considerable cytotoxins [263].

As a result, MgO nanoparticles have gained attention in tumor treatment [25], demon-
strating the ability to eradicate cancer cells while elucidating the mechanisms behind
cell death caused by MgO exposure [264]. The toxic mechanisms of these nanoparticles
primarily revolve around two characteristics: inducing oxidative stress within cells due
to intracellular nanoparticles and the dissolution of the nanoparticles. Both extracellular
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magnesium and nanoparticles traverse the cell membrane, entering the cytoplasm via
respective magnesium and endocytosis transport proteins.

5.2. Oxidative Stress

Scientific evidence has confirmed that nanoparticles induce cell damage primarily
through oxidative stress and the generation of reactive oxygen species [265]. Even minute
amounts of nanoparticles in cells can result in the production of substantial quantities of
ROS [266]. These ROS variants, such as •O2

−, H2O2, and •OH, are formed by disturb-
ing the cell’s electron transport chain [267]. Mitochondria serve as crucial intracellular
sources of ROS [268]. Hydroxyl radicals, among the ROSs, exhibit heightened reactivity
compared to other radicals, leading to oxidation within most cell components [269]. The
aggregation of ROS can culminate in the generation of •O2

−, due to electron capture on
nanoparticle surfaces [270]. The surge in free radicals due to ROS accumulation can trigger
an antioxidant defense mechanism, albeit excessively oxidizing lipids, denaturing proteins,
and modifying nucleic acids, leading to an imbalance between antioxidant and oxidant
processes [265]. MgO nanoparticles inhibit lysosomal activity in acidic conditions and
disrupt lysosomal membranes, potentially translocating nanoparticles to the nucleus and
mitochondria [271,272]. Nanoparticle entry into mitochondria can elevate membrane depo-
larization by nanoparticle deposition, disrupting electron transport in the inner membrane,
ultimately leading to membrane permeation and ROS production [268,273]. ROS within
lysosomes can lead to the destruction of the DNA double helix or induce DNA point
mutations [274].

Mitochondrial respiration and apoptosis pathways can be impacted by ROS within
mitochondria, causing lipid peroxidation in the cell membrane, cellular redox imbalance,
and initiating certain antioxidant responses [268]. H2O2 generated in the cytoplasm easily
diffuses through mitochondrial membranes, leading to the formation of •OH radicals
through the Fenton reaction, eventually resulting in DNA damage and programmed
cell death [268]. Nanoparticles can amplify intracellular ROS production, potentially
intensifying cell death signaling and activating redox-sensitive signaling pathways at
moderate levels of oxidative stress [265,275,276]. Inflammatory responses are initiated by
signaling cascades involving nuclear factor NF-kB and the activation of mitogen-activated
protein kinase (MAPK), both closely linked to cellular death and fibrosis [276]. Moreover,
nanoparticles are capable of reaching the nucleus by causing direct physical damage to the
nuclear membrane and interacting directly with nuclear DNA through nuclear pores (sized
less than 50 nm) [272].

5.3. Dissolution

The release of Mg2+ from the surface of MgO nanoparticles is considered a significant
factor contributing to their heightened toxicity in organisms [273]. A substantial amount of
Mg2+ can leach from the solid phase both in cell mediums and suspensions, leading to the
generation of substantial quantities of •OH through Fenton-like reactions, causing damage
to lipids, proteins, and nucleic acids [277,278]. Additionally, intracellular nanoparticles
entering acidic organelles like lysosomes or encountering acidic substances can further
release Mg2+, contributing to DNA and oxidative damage [279]. The dissolution process
is influenced by particle characteristics (e.g., surface area, size, chemical composition)
and environmental factors such as temperature, pH, and organic content. Mg2+ can form
chelates by reacting with electron pair donors, potentially inhibiting normal physiological
processes by interacting with coordinating atoms like nitrogen and oxygen [274]. Intracel-
lular nanoparticles may access the nucleus through nucleopores or during cell division,
inhibiting translation and transcription machinery and potentially causing genetic material
damage by interacting with DNA or related proteins, thus triggering signaling cascades and
disrupting cellular processes [274,280]. Moreover, released Mg2+ from nanoparticles might
degrade mRNA by directly interacting with mRNA stabilizing proteins [281], underscoring
Mg2+’s crucial role in maintaining cellular homeostasis [279].
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An elevation in the release of Mg2+ from nanoparticles can significantly disrupt the
balance of the metal cation’s homeostatic mechanisms. Conversely, Mg2+ ions have the
capability to augment the local intracellular Mg2+ concentration [267], serving as a trigger
for Mg2+ influx through Ca2+ channels between the endoplasmic reticulum and plasma
membrane [282]. Intracellular Mg2+ is involved in numerous cellular processes, includ-
ing activation of transcription factors like NF-kB [283], nitric oxide production, protein
secretion, and the generation of superoxide anions, potentially leading to mitochondrial
disturbances and cellular damage [267,284,285].

6. Future Prospects

Although several studies in this promising research field regarding the biomedical
applications of MgO nanoparticles are ongoing, further investigation is warranted to
elucidate the precise mechanism involved in the synthesis of MgO nanoparticles, aiming
for a deeper comprehension of the chemical reactions occurring throughout the synthesis
process, while comprehensive studies are essential to optimize diverse reaction conditions.

Notably, synthesized MgO nanoparticles have demonstrated robust antimicrobial
properties against various bacterial and pathogenic fungal strains. As a result, there is a
need for more extensive testing of the antifungal and antimicrobial properties of synthesized
MgO nanoparticles against a diverse range of pathogenic and drug-resistant fungal strains.
Also, the antiprotozoal activity of MgO is under consideration, especially against Cyclospora
cayetanensis oocysts [286], and this is might interesting also in veterinary. The anti-virus
activity of MgO nanoparticles is a very challenging research field, and it is approached
directly (fighting a virus itself) or indirectly (fighting potential factors of virus spread, such
as mosquitos). Thus, there are some interesting results against the anti-foot-and-mouth
disease, which is a contagious viral disease of cloven-hoofed animals [287]. Moreover,
there is evidence that MgO nanoparticles possess effective antilarvicidal properties [288].
Some scientific efforts have been made focusing on the use of magnesium oxide based
on its antibiofilm properties [289], and the findings are quite promising in several fields,
such as dentistry [290,291], and hopefully this potential of MgO will be soon exploited.
Furthermore, in dentistry, the presence of MgO nanoparticles seems to reduce the corrosion
resistance and compressive strength of implants; thus, they might be widely used in the
near future [290,291].

Additionally, these nanoparticles have been found to possess noteworthy antioxidant
characteristics, so further exploration into the antioxidant capabilities of synthesized mag-
nesium oxide nanoparticles should involve conducting in vivo or intracellular experiments.
The anti-inflammatory properties of MgO are very important, and preliminary results in
the field of inhibition of protein denaturation have shown their importance [292].

Furthermore, magnesium oxide nanoparticles have shown substantial effectiveness in
combating different types of cancer cells and have presented great performance in bioimag-
ing and drug delivery applications. Particularly in bioprinting for tissue engineering, it has
been shown that MgO released from 3D-printed tricalcium phosphate scaffolds accelerated
bone formation and increased angiogenesis in implants in rat models [293].

It might also be noteworthy to mention that data mining and machine learning ap-
proaches should be used in the design, development, and prediction of the biological
activity of MgO, since it is already widespread for other types of nanomaterials and es-
pecially for nanocarriers. Since there is a gap in this field, we hope to see it filled soon
because these approaches could provide accuracy and optimization, preventing unnec-
essary experimental repetitions, protecting from environmental burdens, and decreasing
any costs.

7. Conclusions

This review encompasses an examination of ongoing research regarding the fabrica-
tion of magnesium oxide nanoparticles through several synthetic approaches and their
notable applications in the biomedical field, specifically their roles in combating bacterial
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and fungal infections, their demonstrated effects against cancer and as antioxidants, and
also their potential in tissue engineering, bioimaging, and drug delivery applications, in-
cluding detailed elucidations of their mechanisms of action. Moreover, studies evaluating
the toxicity of produced magnesium oxide nanoparticles have indicated their significant
biocompatibility. Further investigation is warranted to elucidate the precise mechanism
involved in the synthesis of MgO nanoparticles, aiming for a deeper comprehension of
the chemical reactions occurring throughout the synthesis process, while comprehensive
studies are essential to optimize diverse reaction conditions.

However, there remains a lack of comprehensive understanding regarding the biomed-
ical hurdles concerning the biocompatibility of MgO nanomaterials. There is an evident
necessity for additional research to thoroughly examine the innocuous nature and safety
profile of synthesized magnesium oxide nanoparticles. Concurrently, with the recent uti-
lization of MgO-based nanomaterials in cancer therapy, a critical issue arises pertaining to
the necessary evaluation of the selectivity between cancerous cells and healthy cells directly
within the human body, so in vivo toxicity studies should be performed to explore their
potential for clinical utilization.
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