Utilizing High-Capacity Spinel-Structured High-Entropy Oxide (CrMnFeCoCu)3O4 as a Graphite Alternative in Lithium-Ion Batteries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials Synthesis
2.2. Materials Characterization
2.3. Electrochemical Measurements
3. Results and Discussion
3.1. Material Characterization
3.2. Electrochemical Performance
3.2.1. Cyclic Voltammetry
3.2.2. Electrochemical Impedance Spectroscopy
3.2.3. Galvanostatic Cyclic Test
3.3. Post-Mortem Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nitta, N.; Wu, F.; Lee, J.T.; Yushin, G. Li-Ion Battery Materials: Present and Future. Mater. Today 2015, 18, 252–264. [Google Scholar] [CrossRef]
- Li, G.; Guo, S.; Xiang, B.; Mei, S.; Zheng, Y.; Zhang, X.; Gao, B.; Chu, P.K.; Huo, K. Recent advances and perspectives of microsized alloying-type porous anode materials in high-performance Li- and Na-ion batteries. Energy Mater 2022, 2, 200020. [Google Scholar] [CrossRef]
- Wang, H.; Chen, S.; Fu, C.; Ding, Y.; Liu, G.; Cao, Y.; Chen, Z. Recent Advances in Conversion-Type Electrode Materials for Post Lithium-Ion Batteries. ACS Mater. Lett. 2021, 3, 956–977. [Google Scholar] [CrossRef]
- Yu, S.-H.; Feng, X.; Zhang, N.; Seok, J.; Abruna, H.D. Understanding Conversion-Type Electrodes for Lithium Rechargeable Batteries. Acc. Chem. Res. 2018, 51, 273–281. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Li, H.; Wang, X. The Anode Materials for Lithium-Ion and Sodium-Ion Batteries Based on Conversion Reactions: A Review. ChemElectroChem 2023, 10, e2022011. [Google Scholar] [CrossRef]
- Ma, J.; Huang, C. High entropy energy storage materials: Synthesis and application. J. Energy Storage 2023, 66, 107419. [Google Scholar] [CrossRef]
- Wang, O.; Sarkar, A.; Li, Z.; Lu, Y.; Velasco, L.; Bhattacharya, S.S.; Brezesinski, T.; Hahn, H.; Breitung, B. High entropy oxides as anode material for Li-ion battery applications: A practical approach. Electrochem. Commun. 2019, 100, 121–125. [Google Scholar] [CrossRef]
- Gao, Y.; Liu, Y.; Yu, H.; Zou, D. High-entropy oxides for catalysis: Status and perspectives. Appl. Catal. A Gen. 2022, 631, 118478. [Google Scholar] [CrossRef]
- Zhu, H.; Xie, H.; Zhao, Y.; Dai, S.; Li, M.; Wang, X. Structure and magnetic properties of a class of spinel high-entropy oxides. J. Magn. Magn. Mater. 2021, 535, 168063. [Google Scholar] [CrossRef]
- Li, H.; Zhou, Y.; Liang, Z.; Ning, H.; Fu, X.; Xu, Z.; Qiu, T.; Xu, W.; Yao, R.; Peng, J. High-Entropy Oxides: Advanced Research on Electrical Properties. Coatings 2021, 11, 628. [Google Scholar] [CrossRef]
- Sarkar, A.; Velasco, L.; Wang, D.; Wang, Q.; Talasila, G.; de Biasi, L.; Kübel, C.; Brezesinski, T.; Bhattacharya, S.S.; Hahn, H.; et al. High entropy oxides for reversible energy storage. Nat. Commun. 2018, 9, 3400. [Google Scholar] [CrossRef]
- Qiu, N.; Chen, H.; Yang, Z.; Sun, S.; Wang, Y.; Cui, Y. A high entropy oxide (Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O) with superior lithium storage performance. J. Alloys Compd. 2019, 777, 767–774. [Google Scholar] [CrossRef]
- Wang, S.-Y.; Chen, T.-Y.; Kuo, C.-H.; Lin, C.-C.; Huang, S.-C.; Lin, M.-H.; Wang, C.-C.; Chen, H.-Y. Operando synchrotron transmission X-ray microscopy study on (Mg, Co, Ni, Cu, Zn)O high-entropy oxide anodes for lithium-ion batteries. Mater. Chem. Phys. 2021, 274, 125105. [Google Scholar] [CrossRef]
- Yan, J.; Wang, D.; Zhang, X.; Li, J.; Du, Q.; Liu, X.; Zhang, J.; Qi, X. A high-entropy perovskite titanate lithium-ion battery anode. J. Mater. Sci. 2020, 55, 6942–6951. [Google Scholar] [CrossRef]
- Wang, D.; Jiang, S.; Duan, C.; Mao, J.; Dong, Y.; Dong, K.; Wang, Z.; Luo, S.; Liu, Y.; Qi, X. Spinel-structured high entropy oxide (FeCoNiCrMn)3O4 as anode towards superior lithium storage performance. J. Alloys Compd. 2020, 844, 156158. [Google Scholar] [CrossRef]
- Xiao, B.; Wu, G.; Wang, T.; Wei, Z.; Sui, Y.; Shen, B.; Qi, J.; Wei, F.; Zheng, J. High-entropy oxides as advanced anode materials for long-life lithium-ion Batteries. Nano Energy 2022, 95, 106962. [Google Scholar] [CrossRef]
- Nguyen, T.X.; Patra, J.; Chang, J.K.; Ting, J.M. High entropy spinel oxide nanoparticles for superior lithiation-delithiation performance. J. Mater. Chem. A 2020, 8, 18963–18973. [Google Scholar] [CrossRef]
- Huang, C.-Y.; Huang, C.-W.; Wu, M.-C.; Patra, J.; Nguyen, T.X.; Chang, M.-T.; Clemens, O.; Ting, J.-M.; Li, J.; Chang, J.-K.; et al. Atomic-scale investigation of Lithiation/Delithiation mechanism in High-entropy spinel oxide with superior electrochemical performance. Chem. Eng. 2021, 420, 129838. [Google Scholar] [CrossRef]
- Chen, H.; Qiu, N.; Wu, B.; Yang, Z.; Sun, S.; Wang, Y. A new spinel high-entropy oxide (Mg0.2Ti0.2Zn0.2Cu0.2Fe0.2)3O4 with fast reaction kinetics and excellent stability as an anode material for lithium-ion batteries. RSC Adv. 2020, 10, 9736–9744. [Google Scholar] [CrossRef]
- Duan, C.; Tian, K.; Li, X.; Wang, D.; Sun, H.; Zheng, R.; Wang, Z.; Liu, Y. New spinel high-entropy oxides (FeCoNiCrMnXLi)3O4 (X = Cu, Mg, Zn) as the anode material for lithium-ion batteries. Ceram. Int. 2021, 47, 32025–32032. [Google Scholar] [CrossRef]
- Xiao, B.; Wu, G.; Wang, T.; Wei, Z.; Sui, Y.; Shen, B.; Qi, J.; Wei, F.; Meng, Q.; Ren, Y.; et al. High entropy oxides (FeNiCrMnX)3O4 (X = Zn, Mg) as anode materials for lithium ion batteries. Ceram. Int. 2021, 47, 33972–33977. [Google Scholar] [CrossRef]
- Nguyen, T.X.; Tsai, C.-C.; Patra, J.; Clemens, O.; Chang, J.-K.; Ting, J.-M. Co-free high entropy spinel oxide anode with controlled morphology and crystallinity for outstanding charge/discharge performance in Lithium-ion batteries. Chem. Eng. J. 2022, 430, 132658. [Google Scholar] [CrossRef]
- Kheradmandfard, M.; Minouei, H.; Tsvetkov, N.; Vayghan, A.K.; Kashani-Bozorg, S.F.; Kim, G.; Hong, S.I.; Kim, D.-E. Ultrafast green microwave-assisted synthesis of high-entropy oxide nanoparticles for Li-ion battery applications. Mater. Chem. Phys. 2021, 262, 124265. [Google Scholar] [CrossRef]
- Lin, L.; Wang, K.; Azmi, R.; Wang, J.; Sarkar, A.; Botros, M.; Najib, S.; Ciu, Y.; Stenzel, D.; Su9kkurji, P.A.; et al. Mechanochemical synthesis: Route to novel rock-salt-structured high-entropy oxides and oxyfluorides. J. Mater. Sci. 2020, 55, 16879–16889. [Google Scholar] [CrossRef]
- Chen, T.-Y.; Wang, S.-Y.; Kuo, C.-H.; Huang, S.-C.; Lin, M.-H.; Li, C.-H.; Chen, H.-Y.T.; Wang, C.-C.; Liao, Y.-F.; Lin, C.-C.; et al. In operando synchrotron X-ray studies of a novel spinel (Ni0.2Co0.2Mn0.2Fe0.2Ti0.2)3O4 high-entropy oxide for energy storage applications. J. Mater. Chem. A 2020, 8, 21756–21770. [Google Scholar] [CrossRef]
- Marques, O.J.B.J.; Walter, M.D.; Timofeeva, E.V.; Segre, C.U. Effect of Initial Structure on Performance of High-Entropy Oxide Anodes for Li-Ion Batteries. Batteries 2023, 9, 115. [Google Scholar] [CrossRef]
- Wang, X.L.; Jin, E.M.; Sahoo, G.; Jeong, S.M. High-Entropy Metal Oxide (NiMnCrCoFe)3O4 Anode Materials with Controlled Morphology for High-Performance Lithium-Ion Batteries. Batteries 2023, 9, 147. [Google Scholar] [CrossRef]
- Zheng, Y.; Wu, X.; Lan, X.; Hu, R. A Spinel (FeNiCrMnMgAl)3O4 High Entropy Oxide as a Cycling Stable Anode Material for Li-Ion Batteries. Processes 2022, 10, 49. [Google Scholar] [CrossRef]
- Shin, D.; Chae, S.; Park, S.; Seo, B.; Choi, W. Rational engineering of high-entropy oxides for Li-ion battery anodes with finely tuned combustion syntheses. NPG Asia Mater. 2023, 15, 54. [Google Scholar] [CrossRef]
- Xiao, B.; Wu, G.; Wang, T.; Wei, Z.; Xie, Z.; Sui, Y.; Qi, J.; Wei, F.; Zhang, X.; Tang, L.; et al. Enhanced Li-Ion Diffusion and Cycling Stability of Ni-Free High-Entropy Spinel Oxide Anodes with High-Concentration Oxygen Vacancies. ACS Appl. Mater. Interfaces 2023, 15, 2792–2803. [Google Scholar] [CrossRef]
- Sun, Z.; Zhao, Y.; Sun, C.; Ni, Q.; Wang, C.; Jin, H. High entropy spinel-structure oxide for electrochemical application. J. Chem. Eng. 2022, 431, 133448. [Google Scholar] [CrossRef]
- Zhao, J.; Yang, X.; Huang, Y.; Du, F.; Zeng, Y. Entropy Stabilization Effect and Oxygen Vacancies Enabling Spinel Oxide Highly Reversible Lithium-Ion Storage. ACS Appl. Mater. Interfaces 2021, 13, 58674–58681. [Google Scholar] [CrossRef]
- Yang, X.; Wang, H.; Song, Y.; Liu, K.; Huang, T.; Wang, X.; Zhang, C.; Li, J. Low-Temperature Synthesis of a Porous High-Entropy Transition-Metal Oxide as an Anode for High-Performance Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2022, 14, 26873–26881. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.-F.; Patra, J.; Chuang, W.-T.; Nguyen, T.X.; Ting, J.-M.; Li, J.; Pao, C.-W.; Chang, J.-K. Charge–Discharge Mechanism of High-Entropy Co-Free Spinel Oxide Toward Li+ Storage Examined Using Operando Quick-Scanning X-ray Absorption Spectroscopy. Adv. Sci. 2022, 9, 2201219. [Google Scholar] [CrossRef] [PubMed]
- Patra, J.; Nguyen, T.X.; Tsai, C.-C.; Clements, O.; Li, J.; Pal, P.; Chan, W.K.; Lee, C.-H.; Chen, H.-Y.-T.; Ting, J.-M.; et al. Effects of Elemental Modulation on Phase Purity and Electrochemical Properties of Co-free High-Entropy Spinel Oxide Anodes for Lithium-Ion Batteries. Adv. Funct. Mater. 2022, 32, 2110992. [Google Scholar] [CrossRef]
- Toby, B.H.; Von Dreele, R.B. GSAS-II: The genesis of a modern open-source all purpose crystallography software package. J. Appl. Crystallogr. 2013, 46, 544–549. [Google Scholar] [CrossRef]
- Toby, B.H. EXPGUI, a graphical user interface for GSAS. J. Appl. Crystallogr. 2004, 34, 210–213. [Google Scholar] [CrossRef]
- Otto, F.; Yang, Y.; Bei, H.; George, E.P. Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys. Acta Mater. 2013, 61, 2628–2638. [Google Scholar] [CrossRef]
- Katsube, R.; Luo, L.; Nakano, K.; Narumi, T.; Yasuda, H. Solidification sequence of CrMnFeCoCu dual-FCC multicomponent alloy. Scr. Mater. 2023, 231, 115459. [Google Scholar] [CrossRef]
- Miracle, D.B.; Senkov, O.N. A critical review of high entropy alloys and related concepts. Acta Mater. 2017, 122, 448–511. [Google Scholar] [CrossRef]
- Dippo, O.F.; Vecchio, K.S. A universal configurational entropy metric for high-entropy materials. Scr. Mater. 2021, 201, 113974. [Google Scholar] [CrossRef]
- Wu, Z.; Troparevsky, M.C.; Gao, Y.F.; Morris, J.R.; Stocks, G.M.; Bei, H. Phase stability, physical properties and strengthening mechanism of concentrated solid solution alloys. Curr Opin Solid State Mater Sci. 2017, 21, 267–284. [Google Scholar] [CrossRef]
- He, X.; Zhang, Z.; Qiao, T.; Liu, H.; Jiang, X.; Xing, T.; Wang, S. Nanocrystalline (CrMnFeCoCu)3O4 High/Entropy Oxide for Efficient Oxygen Evolution Reaction. ACS Appl. Nano Mater. 2023, 6, 19573–19580. [Google Scholar] [CrossRef]
- Fracchia, M.; Coduri, M.; Chigna, P.; Anselmi-Tamburini, U. Phase stability of high entropy oxides: A critical review. J. Eur. Ceram. Soc. 2024, 44, 585–594. [Google Scholar] [CrossRef]
- Liu, B.-J.; Yin, T.-H.; Lin, Y.-W.; Chang, C.-W.; Yu, H.-C.; Lim, Y.; Lee, H.; Choi, C.; Tsai, M.-K.; Choi, Y. A Cost-Effective, Nanoporous, High-Entropy Oxide Electrode for Electrocatalytic Water Splitting. Coatings 2023, 13, 1461. [Google Scholar] [CrossRef]
- Ghigna, P.; Airoldi, L.; Fracchia, M.; Callegari, D.; Anselmi-Tamburini, U.; D’Angelo, P.; Pianta, N.; Ruffo, R.; Cibin, G.; Oliveira de Souza, D.; et al. Lithiation Mechanism in High-Entropy Oxides as Anode Materials for Li-Ion Batteries: An Operando XAS Study. ACS Appl. Mater. Interfaces 2020, 12, 50344–50354. [Google Scholar] [CrossRef] [PubMed]
- Chung, S.-H.; Wu, Y.-H.; Tseng, Y.-H.; Nguyen, T.X.; Ting, J.-M. High Entropy Oxide (CrMnFeNiMg)3O4 with Large Compositional Space Shows Long-Term Stability as Cathode in Lithium-Sulfur Batteries. Chem. Sus. Chem. 2023, 16, e202300135. [Google Scholar] [CrossRef]
- Kazda, T.; Capková, D.; Jaššo, K.; Fedorková Straková, A.; Shembel, E.; Markevich, A.; Sedlaříková, M. Carrageenan as an Ecological Alternative of Polyvinylidene Difluoride Binder for Li-S Batteries. Materials 2021, 14, 5578. [Google Scholar] [CrossRef]
- Capková, D.; Knap, V.; Fedorková Straková, A.; Stroe, D.-I. Analysis of 3.4 Ah lithium-sulfur pouch cells by electrochemical impedance spectroscopy. J. Energy Chem. 2022, 72, 318–325. [Google Scholar] [CrossRef]
- Kim, H.; Choi, W.; Yoon, J.; Um, J.H.; Lee, W.; Kim, J.; Cabana, J.; Yoon, W.-S. Exploring Anomalous Charge Storage in Anode Materials for Next-Generation Li Rechargeable Batteries. Chem. Rev. 2020, 120, 6934–6976. [Google Scholar] [CrossRef]
- Heubner, C.; Schneider, M.; Michaelis, A. Diffusion-Limited C-Rate: A Fundamental Principle Quantifying the Intrinsic Limits of Li-Ion Batteries. Adv. Energy Mater. 2019, 10, 1902523. [Google Scholar] [CrossRef]
- Qu, J.; Buckingham, M.A.; Lewis, D.J. High-entropy materials for electrochemical energy storage devices. Energy Adv. 2023, 2, 1565–1590. [Google Scholar] [CrossRef]
- Wu, Z.-S.; Ren, W.; Wen, L.; Gao, L.; Zhao, J.; Chen, Z.; Zhou, G.; Li, F.; Cheng, H.-M. Graphene Anchored with Co3O4 Nanoparticles as Anode of Lithium Ion Batteries with Enhanced Reversible Capacity and Cyclic Performance. ACS Nano 2010, 4, 3187–3194. [Google Scholar] [CrossRef] [PubMed]
Phases | O (at.%) | Cr (at.%) | Mn (at.%) | Fe (at.%) | Co (at.%) | Cu (at.%) | ΔS |
---|---|---|---|---|---|---|---|
Bright phase (B) | - | 1.22 | 24.07 | 1.52 | 2.59 | 70.61 | 0.81 R |
Dark phase (D) | - | 24.16 | 16.19 | 27.77 | 27.46 | 4.43 | 1.49 R |
Dark phase in dark phase (DD) | - | 36.33 | 14.78 | 26.50 | 20.34 | 2.05 | 1.41 R |
Oxide phase | 56.00 | 26.94 | 14.63 | 0.18 | - | 2.26 | - |
Material | O (at.%) | Cr (at.%) | Mn (at.%) | Fe (at.%) | Co (at.%) | Cu (at.%) |
---|---|---|---|---|---|---|
Multicomponent alloy | 7.55 | 18.60 | 19.22 | 19.54 | 17.99 | 17.10 |
HEO | 60.82 | 7.12 | 7.13 | 8.69 | 8.28 | 7.96 |
Parameters | After 1 Cycle | After 5 Cycles | After 10 Cycles | |||
---|---|---|---|---|---|---|
Estimated Value | Standard Error | Estimated Value | Standard Error | Estimated Value | Standard Error | |
RS (Ohm) | 1.582 | 0.1199 | 2.099 | 0.08994 | 2.253 | 0.03945 |
QSEI | 83.09 × 10−6 | 3.176 × 10−6 | 18.65 × 10−6 | 4.579 × 10−6 | 0.7462 × 10−3 | 59.86 × 10−6 |
1 | 98.37 × 10−6 | 0.7396 | 0.02129 | 0.7475 | 0.01667 | |
RSEI (Ohm) | 3.335 | 0.08772 | 6.717 | 0.3391 | 4.121 | 0.1684 |
Qct | 3.73 × 10−3 | 0.4309 × 10−3 | 0.8871 × 10−3 | 0.1049 × 10−3 | 31.73 × 10−6 | 3.855 × 10−6 |
0.3659 | 0.01401 | 0.6616 | 0.02349 | 0.734 | 0.01097 | |
Rct (Ohm) | 7.371 | 0.2094 | 5.834 | 0.3368 | 6.488 | 0.1707 |
QD | 2.698 × 10−3 | 11.1 × 10−6 | 2.119 × 10−3 | 8.368 × 10−6 | 2.31 × 10−3 | 5.394 × 10−6 |
0.878 | 1.496 × 10−3 | 0.9006 | 1.448 × 10−3 | 0.8759 | 0.8391 × 10−3 | |
RD (Ohm) | 2.42 × 10−3 | 0.04293 | 7.072 | 3.21 | 33.98 | 13.22 |
s (Ohm s−1/2) | 2189 | 90.79 | 1590 | 37.16 | 2073 | 41.68 |
Material | Specific Capacities (mAh g−1) at Current Densities (mA g−1) | |||||
---|---|---|---|---|---|---|
100 | 200 | 500 | 1000 | 2000 | 100 | |
HEO | 577.6 | 441.7 | 339.1 | 254.2 | 167.5 | 772.9 |
Graphite | 343.6 | 319.4 | 229.9 | 121.3 | 57.4 | 370.9 |
HEO/graphite capacity ratio | 1.7 | 1.4 | 1.5 | 2.1 | 2.9 | 2.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oroszová, L.; Csík, D.; Baranová, G.; Bortel, G.; Džunda, R.; Temleitner, L.; Hagarová, M.; Breitung, B.; Saksl, K. Utilizing High-Capacity Spinel-Structured High-Entropy Oxide (CrMnFeCoCu)3O4 as a Graphite Alternative in Lithium-Ion Batteries. Crystals 2024, 14, 218. https://doi.org/10.3390/cryst14030218
Oroszová L, Csík D, Baranová G, Bortel G, Džunda R, Temleitner L, Hagarová M, Breitung B, Saksl K. Utilizing High-Capacity Spinel-Structured High-Entropy Oxide (CrMnFeCoCu)3O4 as a Graphite Alternative in Lithium-Ion Batteries. Crystals. 2024; 14(3):218. https://doi.org/10.3390/cryst14030218
Chicago/Turabian StyleOroszová, Lenka, Dávid Csík, Gabriela Baranová, Gábor Bortel, Róbert Džunda, László Temleitner, Mária Hagarová, Ben Breitung, and Karel Saksl. 2024. "Utilizing High-Capacity Spinel-Structured High-Entropy Oxide (CrMnFeCoCu)3O4 as a Graphite Alternative in Lithium-Ion Batteries" Crystals 14, no. 3: 218. https://doi.org/10.3390/cryst14030218
APA StyleOroszová, L., Csík, D., Baranová, G., Bortel, G., Džunda, R., Temleitner, L., Hagarová, M., Breitung, B., & Saksl, K. (2024). Utilizing High-Capacity Spinel-Structured High-Entropy Oxide (CrMnFeCoCu)3O4 as a Graphite Alternative in Lithium-Ion Batteries. Crystals, 14(3), 218. https://doi.org/10.3390/cryst14030218