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Abstract: The 2205 duplex stainless steel (DSS) produced by selective laser melting (SLM) exhibits
high strength (1078.8 MPa) but poor plasticity (15.2%) owing to the high cooling rate during SLM,
which inhibits the formation of austenite and creates a nearly entirely ferritic microstructure. The
dual-phase nature can be restored through solution annealing, which enables well-matched strength
and plasticity, but which has not been extensively studied. We investigate the effects of 5 min, 30 min,
and 120 min of solution annealing at 1000 ◦C on the dual-phase ratio, grain size, texture strength,
inclusions, grain boundary characteristics, and mechanical properties of SLM-manufactured 2205 DSS.
After 30 min of solution annealing, the elongation increased to 32.2% owing to the restoration of the
dual-phase structure, the reduction in dislocation density, the weakening of texture, and the decrease
in grain size. Increasing solution annealing time also corresponded to a decrease in the ultimate
tensile strength (from 831.7 to 787.5 MPa) and yield strength (from 610.3 to 507.8 MPa) due to grain
coarsening and the gradual transformation of ferrite to austenite. Furthermore, the mechanism of the
transformation from ferrite to austenite was proposed, and it was observed that the transformation
of MnSiO3 to MnCrO4 provided nucleation sites for austenite.

Keywords: selective laser melting; duplex stainless steel; solution annealing time; microstructure;
mechanical properties

1. Introduction

Duplex stainless steel (DSS) has a dual-phase microstructure, consisting of ferrite and
austenite, that provides a high strength, good ductility, and excellent corrosion resistance [1].
DSS is therefore widely used in the papermaking and petrochemical industries, particularly
for devices such as chemical tankers and pressure vessels [2,3]. However, austenite and
ferrite exhibit different strain-hardening behaviors, resulting in phase inhomogeneity and
mismatch. This makes DSS prone to cracking during hot processing and limits its appli-
cation to complex components [4]. Additionally, the performance of DSS is significantly
influenced by the ratios of ferrite and austenite, which are largely determined by factors
such as the chemical composition of the steel and the solution annealing regime. Therefore,
appropriate solution annealing methods are particularly important for the application
of DSS.

Compared to traditional manufacturing processes, selective laser melting (SLM) can
directly produce high-precision complex parts while maintaining excellent mechanical
properties [5–7]. Therefore, SLM has been widely applied to titanium alloys [8,9], alu-
minum alloys [10,11], copper alloys [12,13], nickel-based superalloys [14–16], and other
metals [17,18]. Research on the SLM of stainless steel mainly focuses on austenitic stainless
steel [19–21] and precipitation-hardened stainless steel [22–24], while research regarding
the SLM of DSS is less common.
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Some research indicates that, unlike the excellent mechanical properties of other SLM-
manufactured alloys, the microstructure of DSS manufactured by SLM is primarily ferritic
(>95%), resulting in a high strength but poor elongation [3]. For example, the tensile
strength of SLM-manufactured 2205 DSS can reach 872 MPa, while the elongation is only
11% [25]. Similarly, the tensile strength of alloy 2507 is 1320 MPa, with a small elongation
of 8% [26]. This significantly limits the application of SLM in DSS manufacturing. Previous
studies have shown that it is difficult to achieve the desired dual-phase ratio by simply
adjusting the processing conditions. Post-welding or post-additive manufacturing solution
annealing can alter the microstructure to improve performance [27,28]. Therefore, solution
annealing presents an avenue to restore the dual-phase ratio while reducing the effects
of the residual stress and dislocation generation. Table 1 summarizes the changes in the
phase ratio of SLM-manufactured 2205 DSS before and after solution annealing. It can be
observed that solution annealing of the as-built state can increase the content of austenite,
but the degree of phase transformation depends on the heat treatment conditions. Solution
annealing of the as-built state follows, with the intention of increasing the amount of
austenite in the microstructure.

Hengsbach et al. [29] found that increasing the solution temperature initially led to an
increase in austenite content, followed by a decrease at higher temperatures. The decrease in
the austenitic phase is attributed to the loss of nitrogen at high temperatures. Among these
results, the highest content of austenite exhibited the most superior mechanical properties.
Xiang et al. [4] investigated the influence of solution temperature on the grain size, lattice
defects, and residual stress of 2205 DSS. They found that, after solution annealing, the
dual-phase microstructure is restored, with a refined grain size, reduced residual stress, and
an increased occurrence of low-energy coincidence site lattice (CSL) boundaries, exhibiting
outstanding strength–plasticity matching. With an increase in the solution temperature, the
material strength decreased, while the strain rate remained relatively constant. As shown in
Table 1, at the same temperature, the solution annealing time influences the transformation
from the ferritic to the austenitic phase, with the austenite content increasing as the solution
annealing time increases. Similar phenomena were observed by Pan et al. [30] in cold-
rolled DSS, where an increasing solution annealing time led to an increase in the extent of
transformation from the ferritic to the austenitic phase, resulting in a more balanced phase
content and a more uniform microstructure. However, there is a lack of comprehensive
research on the impact of solution annealing time on SLM-manufactured DSS. Specifically,
there are few to no studies exploring the effects of solution annealing time on the dual-
phase ratio, grain size, texture strength, inclusions, and grain boundary characteristics of
SLM-manufactured DSS, nor the correlation between these changes and the mechanical
properties. The current study aims to address this gap.

Table 1. Summary of reported changes in the phase composition of SLM-manufactured 2205 DSS
before and after solution annealing.

Phase Composition of As-Built State
Condition

Phase Composition after Solution Annealing
Ref.

Ferrite (%) Austenite (%) Ferrite (%) Austenite (%)

99.3 0.7 1100 ◦C, 5 min 51.7 48.3 [25]
98.0 2.0 1000 ◦C, 10 min 55 45 [31]
99.0 1.0 950 ◦C, 5 min 59.9 40.1 [32]

1000 ◦C, 50 min 56.8 43.2
1000 ◦C, 60 min 53.6 46.4
1050 ◦C, 5 min 57.0 43.0

1050 ◦C, 60 min 54.6 45.4
1100 ◦C, 50 min 57.4 42.6

99.8 0.2 1000 ◦C, 60 min 39.7 60.3 [4]
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Table 1. Cont.

Phase Composition of As-Built State
Condition

Phase Composition after Solution Annealing
Ref.

Ferrite (%) Austenite (%) Ferrite (%) Austenite (%)

1100 ◦C, 60 min 42.4 57.6
1200 ◦C, 60 min 43.4 56.6

99.0 1.0 900 ◦C, 5 min 76.0 24.0 [29]
950 ◦C, 5 min 69.0 31.0
1000 ◦C, 5 min 66.0 34.0
1050 ◦C, 5 min 73.0 27.0
1100 ◦C, 5 min 74.0 26.0
1150 ◦C, 5 min 74.0 26.0
1100 ◦C, 5 min 79.0 21.0

In this study, 2205 DSS powder was manufactured into high-density specimens
through SLM. After subjecting these specimens to different solid-solution annealing time
at a temperature of 1000 ◦C, their phase transformation and microstructural evolution, as
well as their impact on the mechanical properties of these specimens, were investigated.

2. Materials and Methods
2.1. Materials

Commercial UNS S32205 DSS powders were produced in a HERMICA 75/5VI gas
atomizer and purchased from Chengdu Kotilon Alloy Corporation (Chengdu, China).
The powder was mainly distributed in a spherical shape. The particle size distribution
was in the range of 15–45 µm, (Figure 1). The chemical composition is listed in Table 2.
The specimens (described later) were printed on a 316 stainless steel substrate using an
SLM machine (AFS-M120XT, Longyuan AFS, Beijing, China) equipped with a 500 W laser
(Figure 2a). The oxygen content in the build chamber was maintained below 100 ppm under
argon gas protection. To obtain specimens with a density exceeding 99%, the following
process parameters were used: a laser power of 150 W, a scanning speed of 700 mm/s, a
scanning spacing of 0.07 mm, a layer thickness of 0.03 mm, and a 67◦ rotation between layers
(Figure 2b). Some of the printed specimens were kept aside as the “as-built” specimens,
while the remaining specimens were treated by solution annealing at 1000 ◦C for 5 min,
30 min, or 120 min, respectively, and labeled as HT-5, HT-30, and HT-120, respectively.
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Figure 1. (a) SEM micrograph of 2205 DSS powders and (b) statistical particle size distribution.

Table 2. Chemical composition of UNS S32205 DSS powder (wt%).

C Si Cr Ni Mn Mo N S P Fe

0.01 0.42 22.25 5.37 1.01 3.22 0.19 <0.03 <0.04 Bal.
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strate and (b) schematic of laser scanning strategy.

2.2. Microstructural Analysis

The phases of the specimens were determined using X-ray diffraction (D8-ADVANCE,
Bruker, Karlsruhe, Germany) with a scanning speed of 5◦/min. The fracture surfaces of the
tensile specimens were examined by scanning electron microscopy (SEM) (Quanta FEG 450,
FEI, Hillsboro, OR, USA). The grain size and crystallographic orientation of the specimens
before and after solution annealing were investigated using electron backscatter diffraction
(EBSD) employing an Oxford Instruments system. Before EBSD characterization, each
sample was sequentially polished to 3000# and further electropolished for 15 s at a voltage
of 20 V in a 10% alcoholic solution of high-chloric acid. The nitrogen contents of the powder
and as-built specimens were measured using an NOH5000 (Focused Photonics, Hangzhou,
China) instrument.

To prepare for transmission electron microscopy (TEM) analysis, the specimens were
thinned down to a thickness of 50 µm and then subjected to electrolytic double-jet polishing
using a 10% alcoholic solution of perchloric acid at −20 ◦C and 25 V. The TEM (JEOL F200,
JEOL, Beijing, China) analysis was performed using bright-field imaging, energy-dispersive
spectroscopy (EDS), and high-angle annular dark-field (HAADF) imaging.

2.3. Mechanical Tests

Tensile tests were conducted using an AG-X300KN (Shimadzu China, Shanghai China)
tensile testing machine at a loading speed of 0.01 mm/min. Three parallel specimens were
tested for each group (as-built, HT-5, HT-30, and HT-120). The average values of tensile
strength and elongation until fracture were obtained. The tensile specimens were machined
to a size of 12 mm × 2.5 mm × 1 mm, with a gauge length of 10 mm, according to ISO
6892-1:2009 [33]. Research by Salvetr et al. [34] suggests that there was little difference
between the tensile performance of SLM-manufactured DSS perpendicular to the building
direction (BD) and that parallel to the BD. Therefore, this study focuses on the tensile
performance in the direction perpendicular to the building direction (Figure 2a).

3. Results
3.1. Microstructure

XRD is performed on the 2205 DSS powder specimens, before and after solution
annealing. The results are shown in Figure 3. There is only a ferrite phase, with no austenite
phase, in the 2205 DSS powder or the as-built specimens. Gas atomization is a technique
that uses high-speed gas flow to impact a molten metal, converting the gas energy into the
surface energy of the molten metal through collisions, causing it to break into fine droplets
and rapidly solidify (cooling rate of 102–106 K·S−1) into metal particles [35]. When DSS is
melted and rapidly cooled, it can result in the formation of ferrite phase due to the rapid
solidification, which suppresses the formation of austenite phase in the powder [36]. The
reason for the presence of only ferrite phase in the finished sample will be discussed in
Section 4.2. However, as described previously, solution annealing restores the dual-phase
microstructure of this material. No additional phases are detected at the different solution
annealing times.
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Figure 3. XRD patterns of 2205 DSS powder in specimens before and after solution annealing.

Figure 4 depicts the phase maps of the 2205 alloy specimens before and after solution
annealing in the X–Y plane, where red and green indicate the ferritic and austenitic phases,
respectively. The phase map for the as-built specimen (Figure 4a) is completely red, indicat-
ing an entirely ferritic microstructure. However, after solution annealing, the dual-phase
structure is restored; as the solution annealing time increases, more and more austenite
is formed (Figure 4b–d). The fraction of the austenite phase reaches 35 vol% after 5 min
of solution annealing and achieves a maximum of 46.1 vol% after 120 min. This indicates
that the ferritic and austenitic phase proportions are strongly dependent on the solution
annealing time, and extending the annealing time effectively increases the fraction of the
austenitic phase.
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We also calculated the grain size (GS) before and after solution annealing using EBSD.
The results are shown in Table 3. The as-built specimen exhibited an average grain size of
6.49 µm, which was significantly higher than that of the annealed specimens. However,
the average grain size increased during annealing, from 2.29 µm in the HT-5 specimen to
2.46 µm in the HT-30 specimen, ultimately reaching 2.73 µm in the HT-120 specimen. The
same trend is observed when looking at the austenite grain size in isolation. However, the
ferrite grain size varied significantly, decreasing from 6.69 µm in the as-built specimen to
4.06 µm in the HT-30 specimen, before increasing again to 4.22 µm in the HT-120 specimen.

Table 3. Grain size change according to EBSD statistics.

As-Built HT-5 HT-30 HT-120

GS/µm 6.49 2.29 2.46 2.73
δGS/µm 6.69 4.29 4.06 4.22
γGS/µm 1.98 1.83 2.05 2.33

The inverse pole figure (IPF) maps (Figure 5) show the crystallographic orientations of
the specimens before and after solution annealing. In the as-built specimen, the dominant
orientation is the field in the <001> direction (Figure 5a). After solution annealing, the dis-
tribution of the crystallographic direction is the <001> and <101> directions (Figure 5b–d).
The texture intensity of ferrite and austenite is analyzed separately (Figure 5e–h). The
as-built specimen exhibits a texture intensity of 24.17 MUD, which is significantly higher
than that of the annealed specimens. However, with increasing annealing time, the texture
intensity of ferrite decreases from 18.99 MUD in the HT-5 specimen to 12.47 MUD in the
HT-30 specimen before increasing again to 18.87 MUD in the HT-120 specimen, and the
texture intensity of austenite decreases from 7.30 MUD in the HT-5 specimen to 5.61 MUD
in the HT-30 specimen, before increasing again to 7.76 MUD in the HT-120 specimen. In
addition, the texture intensity of ferrite is always higher than that of austenite. The ferrite
exhibits a relatively strong <001>//BD texture, whereas the austenite exhibits a weak
<101>//BD texture. This is similar to the results from a previous report [37].
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Figure 6 displays the φ2 = 45◦ sections of the ODF corresponding to the typical texture
components and fibers found in ferrite and austenite [38,39]. The φ2 = 45◦ sections for the
two phases of the before and after solution are shown in Figure 7. Compared with the
results shown in Figure 6, it is observed that the texture composition did not change before
and after solid solution treatment, and the texture composition did not change with the
increase in solid solution time. The ferrite exhibits a strong cube texture of {001}<001>,
while the austenite exhibits a strong rotated Goss texture of {110}<110> and a Goss texture
of {110}<001>.
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Figure 8 shows the grain boundary misorientation angle distributions, before and
after solution annealing. A CSL misorientation angle between adjacent grains of <15◦ is
considered a low-angle grain boundary (LAGB), while a misorientation > 15◦ is considered
a high-angle grain boundary (HAGB). The content of HAGB in the as-built sample is
72.43%. After solution annealing, the activation energy of dislocation climb increases, and
the LAGBs are gradually consumed by subgrain boundary coalescence and migration
through the cross-slip and climb of dislocations, forming the random HAGBs [4]. However,
Figure 8 shows that the proportion of LAGBs increases with annealing time, from 55.5%
in the HT-5 specimen to 60.5% in the HT-120 specimen. This is because the nucleation of
austenite on the ferrite surface resembles sympathetic nucleation, where one grain forms
at the edge or surface of another grain [37], and the boundaries of sympathetic nucleation
are LAGBs [40].
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Figure 8. Grain boundary misorientation: (a) as-built, (b) HT-5, (c) HT-30, and (d) HT-120.

To identify the orientation relationship between austenite and ferrite, the phase distri-
bution of the dual phase is determined for each specimen. The results are shown in Figure 9.
After solution annealing, the ferrite {101} plane and austenite {111} plane are parallel, as
are the ferrite {111} and austenite {101} planes, which follow the Kurdjumov–Sachs (K-S)
orientation relationship. Similarly, the ferrite {001} plane is parallel to the austenite {101}
plane, and the ferrite {101} plane is parallel to the austenite {001} plane, as per the Pitsch (P)
orientation relationship.
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TEM studies are conducted to analyze the structure of the specimen in detail. The TEM
images reveal that the as-built specimen exhibites a high dislocation density (Figure 10a), which
decreased significantly after solution annealing, as seen in the HT-30 sample (Figure 10b), owing
to grain recrystallization and the motion of HAGBs [29].
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Figure 10. Bright field TEM image showing dislocations: (a) as-built and (b) HT-30.

Furthermore, numerous inclusions are observed in the specimens before and after
solution annealing. Scanning TEM (STEM) is conducted to further analyze the inclusions,
with the resulting images shown in Figure 11. Inclusions rich in Mn, Si, and O and in
Mn and O are observed at a size of 20 nm in the as-built specimen (Figure 11a). These
spherical particles are identified as MnSiO3 and MnO inclusions. After solution annealing,
the enriched elements are transformed into Mn, Cr, and O (Figure 11b–d), implying an
inclusion transformation. Specifically, we observe signs of outward Si diffusion in HT-5.
The spherical particles are identified as MnCr2O4 inclusions. With increasing solution
annealing time, the size of the inclusions systematically increased from 20 nm in the HT-5
specimen to 50 nm in the HT-30 specimen and ultimately, to 100 nm in the HT-120 specimen.
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The as-built specimen, which is mostly ferrite, showed even distributions of Cr,
Mn, Mo, and Ni (Figure 12a). After solution annealing, Mo, Mn, and Cr are partitioned
into ferrite, and Ni into austenite (Figure 12b). MnO and MnCr2O4 appear only in the
austenitic phase.
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3.2. Mechanical Properties

To illustrate the effect of solution annealing time on mechanical properties, the stress–
strain responses of the various specimens are evaluated here (Figure 13), obtained by
tensile testing, as described in Section 2.3. All specimens except for the as-built speci-
men demonstrate remarkable strength and plasticity. Figure 14a–c summarizes the key
mechanical properties determined from the tensile test results. The as-built specimen,
composed of an entirely ferritic microstructure, exhibits a significantly higher ultimate
tensile strength (UTS) and yield strength (YS) than the annealed specimens, at 1078.8 MPa
and 987.5 MPa, respectively. However, its maximum elongation is only 15.2%. Although
solution annealing appears to have decreased the strength of the annealed specimens
compared to that of the as-built specimen, it also increases their elongation. More specif-
ically, increasing solution annealing time corresponds with decreasing UTS and YS. The
elongation rate initially increases with annealing time, from 28.1% in the HT-5 specimen to
32.2% in the HT-30 specimen, but subsequently decreases to 28.9% in the HT-120 specimen.
Figure 14d shows the UTS of the HT-30 specimen as a function of elongation. Compared
with the existing literature and rolled samples, the HT-30 sample demonstrates exceptional
strength–plasticity matching.

SEM images of the tensile fractures of the different specimens are presented in
Figure 15. For the as-built specimen (Figure 15a), the fracture surface exhibits mixed
characteristics, with smooth surfaces and small dimples. Therefore, it can be inferred that
the fracture mechanism of the specimen is quasi-cleavage fracture, which is consistent with
the high strength and low elongation observed in the tensile test. After solution annealing
(Figure 15b–d), all the fracture surfaces are composed of smaller dimples, indicating ductile
fracture. This corresponds with the higher elongation observed in these specimens after
tensile deformation.
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4. Discussion
4.1. Formation and Evolution of Oxide Inclusions

The oxygen content in stainless steel produced by SLM is 4–6 times higher than that
of cast, forged, and welded stainless steel. There are three main sources of oxygen [41]:
(1) initial oxide inclusions and a surface oxide layer (approximately 3 nm thick) present
in the raw powder material, (2) oxidation occurring on the melt pool surface during SLM,
and (3) severe oxidation of the splattered particles that flow back into the melt pool. The
powders used in SLM are typically produced through gas or water atomization processes,
which significantly increase the likelihood of oxygen contamination in the initial powder.
The oxygen content of gas-atomized steel powders is usually approximately 200 ppm [42],
whereas that of water-atomized powders tends to be higher. During the laser scanning
process, the internal and surface oxide inclusions in the powder are redissolved and
nucleated to form nanoscale oxide inclusions, the chemical properties of which depend
primarily on the oxygen-affinity elements in the alloy. In addition, even in the presence of
argon gas in the build chamber during the SLM process, as in this study, a trace amount of
oxygen (~0.02%) is likely to remain owing to the limitations of the equipment [43]. Hence,
the melt pool surface may come into contact with residual oxygen, causing the enrichment
of oxygen-affinity elements such as Mn, Si, and Cr, and leading to the formation of an oxide
layer on the melt pool surface [44]. As the melt pool is vigorously agitated, the surface
oxide layer fragments into multiple spherical oxide inclusions, which are subsequently
retained in the stainless steel portion during solidification [45]. This melt pool splashing is
a result of the combined effects of recoil pressure caused by metal vaporization, Marangoni
convection, and thermal effects [43]. Although the lateral gas flow applied during the
printing process helps blow most of the splattered particles off the powder surface, the
airflow velocity should not be too high, as an excessive velocity may also blow away the
newly deposited powder. Therefore, some small splattered particles inevitably mix with
the unmelted powder and reflow into the melt pool.
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Regarding the transformation of MnSiO3 to MnCr2O4, the presence of residual Si,
as shown in Figure 11b, suggests that MnSiO3 may be a transient phase of MnCr2O4.
MnCr2O4 is more thermodynamically stable than MnSiO3 [46]; however, the metastable
MnSiO3 is formed in the as-built specimens because of the extremely high cooling rate.
After solution annealing, the increased chemical driving force promotes the diffusion of
Si outwards and that of Cr towards the oxide particles, resulting in the transformation of
metastable MnSiO3 into stable MnCr2O4.

Predictably, the appearance of inclusions has a certain effect on the material microstruc-
ture and properties. In this study, the inclusions gradually coarsen with increasing solution
annealing time (Figure 11), resulting in decreases in the UTS and YS (Figure 14). This aligns
with the work of Yan et al. [46], who confirmed that the dispersion-strengthening effect of
inclusions decreases with the coarsening of inclusions. The effect of inclusions on phase
transformation is discussed further in Section 4.2.

4.2. Phase Transition

The EBSD results show that the ferrite content of the as-built specimen reached 99.9%
(Figure 4a). To investigate why the SLM-manufactured 2205 DSS is predominantly com-
posed of ferrite, Thermo-Calc 2023a software is used to predict the relevant phase diagrams
(Figure 16a). During the initial solidification, 100% ferrite is formed in the simulation,
which can be attributed to the higher content of ferrite-forming elements in DSS compared
with that of austenite-forming elements. Additionally, 2205 DSS exhibits the F solidifi-
cation mode, and the phase transformation sequence is L → L + δ → δ → δ + γ. The
transformation of ferrite into austenite occurs only when the temperature is below the
ferrite solubility line. However, owing to the extremely high cooling rate (105–106 K/S)
during SLM processing [47], there is not sufficient time for the transformation of ferrite
to austenite to occur. Another possible explanation is the loss of the stabilizing element
N in austenite during SLM, as shown in Table 4. It is for these reasons that the as-built
specimens are almost completely ferritic.
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Table 4. Nitrogen content in the 2205 DSS powder and as-built specimen.

N wt/%

Powder 0.19
As-built 0.16

There is no precipitation of harmful phases during the solution annealing at
1000 ◦C (Figure 16b). The austenite formed during solid solution annealing differs from
that formed after welding. Welding incurs two types of austenite formations: (1) the liquid
phase first transforms into ferrite, and then the ferrite transforms into austenite through a
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solid-state phase transformation; or (2) the liquid phase transforms into ferrite because of
the enrichment of Cr and Mo in ferrite and the depletion of Ni, Ni-rich regions are formed
near the ferrite, and the residual liquid phase near these regions can directly solidify into
austenite. Most of these austenite samples precipitate at the ferrite grain boundaries, and
secondary austenite samples can also form after multipass welding.

However, because 1000 ◦C is below the material’s liquidus temperature, the austenite
formed after solid solution annealing at 1000 ◦C can only be formed through the solid-state
phase transformation of ferrite, which resembles the “diffusion-limited” displacement
mechanism [49]. Figure 17 shows a schematic of the ferrite-to-austenite transformation.
The elemental distribution in the SLM-manufactured DSS is initially uniform, as in the as-
built samples (Figure 17a). However, during solution annealing, enriched Ni and depleted
Cr, Mo, and Mn regions form inside the ferrite (Figure 17b), the ferrite transforms into
austenite in these regions, and the oxide inclusions provide nucleation sites for austenite
formation. With increasing solution annealing time, these regions gradually increase in
size, and the austenite and oxide inclusions also grow (Figure 17c). These austenites are
randomly distributed inside the ferrite and are all primary austenites.
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Figure 17. Schematic diagram of the solid-state phase transformation from ferrite to austenite:
(a) as-built status, (b) after solution annealing, (c) after increased solution annealing time.

The ferrite in the as-built specimen is directly formed through solidification. Its grain
morphology is determined by the ratio of the temperature gradient (G) to the growth rate
(R) of the solid–liquid interface, known as G/R. Columnar grains are more likely to appear
at higher G/R values [50]. During the solidification process, the grain growth rate R at the
edge of the melt pool is slower than that at the center, whereas the temperature gradient
G distribution is the opposite. A higher G/R value led to the growth of columnar grains
along the direction perpendicular to the melt pool boundary, opposite to the direction of
heat conduction, with the resulting columnar grains oriented along the <001> direction, as
shown in Figure 5a.

The texture strength is reduced after solution annealing owing to phase transforma-
tion [51]. The phase transformation from BCC to FCC is similar to that of the Bain model
for martensitic transformations [52]. During the phase transformation, the new austenite
does not retain the original orientation of the ferrite, having a density of only 1/3 of that
of the original ferrite orientation [53]. Therefore, this particular phase transformation not
only weakens the texture strength generally but also leads to a relatively weaker texture
strength of austenite compared to ferrite (Figure 5e–g). However, the textural strength of
the HT-120 specimen is higher than that of the HT-30 specimen with the increased degree
of phase transformation. This is because, with an increase in the solution annealing time,
the grain sizes of austenite and ferrite increase (as shown in Table 3 for the HT-120 speci-
men), resulting in an increase in the texture strength. Hutchinson et al. [54] also observed
texture-sharpening in ferrites after normal grain growth.
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4.3. Evolution of Mechanical Properties

In tensile tests, the as-built SLM-manufactured DSS specimens exhibit high UTS but
low elongation. This is explained by several factors. First, the ferritic phase is harder than
the austenitic phase, and the microstructure of the as-built specimen is predominantly
ferritic, making this phenomenon more pronounced. Additionally, high-density disloca-
tions (evident in Figure 10a) severely reduce the dislocation slip pathways and impede
dislocation motion. Furthermore, the dispersion-strengthening effect of the nanoscale oxide
inclusions and the strong texture of the specimens in the <001> direction may also be
influential factors.

After solution annealing, the strength of all specimens is lower compared to that of
the as-built specimen, while the elongation increases significantly. This is mainly due
to the significant increase in the austenite content (as shown in Figure 4). In addition,
solution annealing greatly reduces dislocation density (Figure 10b), as well as the texture
strength (during the phase transformation process). Crystal orientation relationships (K-S
and Pitsch) are adopted between the parent and daughter phases (Figure 9), minimizing
the interfacial energy of the nucleation and growth processes. This orientation relationship
not only facilitates the propagation of dislocations from one phase to another but also
reduces the distribution of residual stress [55]. Finally, the dynamic recrystallization
process transforms the microstructure from columnar grains to equiaxed grains, resulting
in a significant reduction in the grain size (Table 2), which leads to a more balanced
mechanical performance.

The UTS and YS of the specimens gradually decreased with an increase in the solution
annealing time, and this can be attributed to the coarsening of the grain size and the
reduction in ferrite content. However, the elongation rate demonstrates a different trend,
i.e., initially increasing and then decreasing with annealing time. The initial increase is
explained by the same factors as the decreased strength after solution annealing. The focus
now is on explaining the subsequent decrease in elongation.

First, the main explanation behind this is the coarsening of the grain size in the HT-120
specimen, which causes an increase in the texture strength, as mentioned in Section 4.2.
Additionally, the number of HAGBs in the HT-120 specimen is significantly lower than
that in the HT-30 specimen (Figure 8). In general, the plasticity level of a material can be
understood as the amount of energy absorbed by the material during deformation and
fracture. The energy absorbed by the material is manifested at the microstructural level
as the formation of defects or the dissipation of energy due to their movement. Grain
boundaries, as planar defects, play an important role in this process by coordinating
adjacent grains, hindering defect motion, and altering crack propagation paths. Compared
with LAGBs, HAGBs exhibit irregular atomic arrangements, making crack propagation
more difficult. The plasticity (and hence elongation) of HT-120 is thus lower than that
of HT-30.

5. Conclusions

The 2205 DSS specimens are successfully prepared by SLM, and their microstructure
and mechanical properties before and after solution annealing are studied. The following
conclusions are obtained:

1. The as-built (un-annealed) specimen exhibits a high strength (UTS = 1078.8 MPa) and
low elongation (15.2%). This is attributed to its predominantly ferritic microstructure,
high-density dislocations, and strong {001} texture.

2. Solid-solution treatment can restore the dual-phase microstructure, reduce the dislo-
cation density, weaken the texture, and decrease the grain size of DSS, leading to a
significant improvement in the elongation of the annealed samples and a correspond-
ing decrease in strength. The UTS and YS of the HT-30 specimen are measured as
802.8 MPa and 547.3 MPa, respectively, with an elongation of 32.2%. Except for their
elongation, the mechanical properties of the annealed DSS specimens are generally
superior to those of the rolled specimens.
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3. Extending the solution annealing time increases the extent of transformation from
ferrite to austenite, thereby reducing the texture strength. However, if the time is
further increased, the grain size will also increase, leading to an increase in texture
strength. Additionally, the nucleation of austenite on the surface of ferrite always
results inLAGBs, which leads to a reduction in HAGBs. These factors contribute to a
nonlinear change in elongation in response to solution annealing time.

4. During solution annealing, enriched Ni and depleted Cr, Mo, and Mn regions form
inside the ferrite, and the ferrite in these regions is transformed into austenite. Si-
multaneously, the transformation of MnSiO3 into CrMnO4 provides nucleation sites
for austenite formation. Together, these result in the recovery of the dual-phase
microstructure of DSS.
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