Potentials and Limits of PMN-PT and PIN-PMN-PT Single Crystals for Pyroelectric Energy Harvesting
Abstract
:1. Introduction
Figure of Merit (FOM) for Pyroelectric Energy Harvesting
2. Experiment
3. Results and Discussion
3.1. PMN-PT-Based Single Crystals for Pyroelectric Energy Harvesting
Material | p, C/m2K 10−6 | εr (1 kHz) | FOM−W0 K−1 × 10−6 | FOM’ (m3J−1) 10−11 |
---|---|---|---|---|
PMN-27PT | 1100 | 580 | 94.3 | 3.77 |
PMN-28PT | 1080 | 550 | 95.85 | 3.83 |
PMN-29PT | 1030 | 605 | 79.25 | 3.17 |
PMN-30PT | 980 | 650 | 66.80 | 2.67 |
LiTaO3 | 176 * | 44 | 24.85 | 0.77 |
3.2. <111> PIN-PMN-PT Single Crystals as Promising Alternative to PMN-PT
3.3. Technological Aspects: The Effects of Domain Structure, Poling Conditions and Thickness on the Properties of PMN-PT Base Crystals
3.3.1. Effects of Domain State and Poling Conditions
3.3.2. Thickness Effects
3.3.3. Ageing Effects
3.4. Perspectives in Materials and Process Development
3.5. Pyroelectric Energy Harvesters Based on PMN-PT Single Crystals
4. Conclusions
Supplementary Materials
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Geffroy, C.; Lilley, D.; Sanchez, P.; Prasher, P.R. Techno-economic analysis of waste-heat conversion. Joule 2021, 5, 3080. [Google Scholar] [CrossRef]
- Al-Sayyab, A.K.S.; Navarro-Esbrí, J.; Mota-Babiloni, A. Energy, exergy, and environmental (3E) analysis of a compound ejector-heat pump with low GWP refrigerants for simultaneous data center cooling and district heating. Int. J. Refrig. 2022, 133, 61. [Google Scholar] [CrossRef]
- Champier, D. Thermoelectric generators: A review of applications. Energy Convers Manag. 2017, 140, 167. [Google Scholar] [CrossRef]
- Moulson, A.J.; Herbert, J.M. Electrocermaics, 2nd ed.; John Wiley &Sons Ltd.: Chichester, UK, 2003; pp. 411–432. [Google Scholar]
- Bowen, C.R.; Taylor, J.; LeBoulbar, E.; Zabek, D.; Chauhan, A.; Vaish, R. Pyroelectric materials and devices for energy harvesting applications. Energy Environ. Sci. 2014, 7, 3836. [Google Scholar] [CrossRef]
- Toprak, A.; Tigli, O. Piezoelectric energy harvesting: State-of-the-art and challenges. Appl. Phys. Rev. 2014, 1, 031104. [Google Scholar] [CrossRef]
- Noheda, B.; Cox, D.E.; Shirane, G.; Gao, J.; Ye, Z.-G. Phase diagram of the ferroelectric relaxor (1−x)PbMg1/3Nb2/3O3-xPbTiO3. Phys. Rev. B 2002, 66, 054104. [Google Scholar] [CrossRef]
- Tang, Y.; Luo, L.; Jia, Y.; Luo, H.; Zhao, X.; Xu, H.; Lin, D.; Sun, J.; Meng, X.; Zhu, J.; et al. Mn-Doped 0.71Pb(Mg1/3Nb2/3)O3–0.29PbTiO3 Pyroelectric Crystals for Uncooled Infrared Focal Plane Arrays Applications. Appl. Phys. Lett. 2006, 89, 162906. [Google Scholar] [CrossRef]
- Yu, P.; Ji, Y.; Neumann, N.; Lee, S.-G.; Luo, H.-S.; Es-Souni, M. Application of Single-Crystalline PMN–PTand PIN–PMN–PT in High Performance Pyroelectric Detectors. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2012, 59, 1983–1989. [Google Scholar] [CrossRef]
- Katzke, H.; Dietze, M.; Lahmar, A.; Es-Souni, M.; Neumann, N.; Lee, S.G. Dielectric, ultraviolet/visible, and Raman spectroscopic investigations of the phase transition sequence in 0.71Pb(Mg1/3Nb2/3)O3-0.29PbTiO3 crystals. Phys. Rev. B 2011, 83, 174115. [Google Scholar] [CrossRef]
- Papapetrou, M.; Kosmadakis, G.; Cipollina, A.; La Commare, U.; Micale, G. Industrial waste heat: Estimation of the technically available resource in the EU per industrial sector, temperature level and country. Appl. Therm. Eng. 2018, 138, 207. [Google Scholar] [CrossRef]
- Ebrahimi, K.; Jones, G.F.; Fleischer, A.S. A review of data center cooling technology, operating conditions and the corresponding low-grade waste heat recovery opportunities. Renew. Sustain. Energy Rev. 2014, 31, 622. [Google Scholar] [CrossRef]
- Dietze, M.; Krause, J.; Solterbeck, C.-H.; Es-Souni, M. Thick film polymer-ceramic composites for pyroelectric applications. J. Appl. Phys. 2007, 101, 054113. [Google Scholar] [CrossRef]
- Es-Souni, M.; Kuhnke, M.; Iakovlev, S.; Solterbeck, C.H.; Piorra, A. Self-poled (Pb, Zr)TiO3 films with improved pyroelectric properties via the use of La0.8Sr0.2MnO3/metal substrate heterostructures. Appl. Phys. Lett. 2005, 86, 022907. [Google Scholar] [CrossRef]
- Wang, D.; Cao, M.; Zhang, S. Phase diagram and properties of Pb(In1/2Nb1/2)O3–Pb(Mg1/3Nb2/3)O3–PbTiO3 polycrystalline ceramics. J. Eur. Ceram. Soc. 2012, 32, 433. [Google Scholar] [CrossRef]
- Li, F.; Zhang, S.; Xu, Z.; Wei, X.; Luo, J.; Shrout, T.R. Composition and phase dependence of the intrinsic and extrinsic piezoelectric activity of domain engineered (1 − x)Pb (Mg1/3Nb2/3)O3−xPbTiO3 crystals. J. Appl. Phys. 2010, 108, 034106. [Google Scholar] [CrossRef] [PubMed]
- Dietze, M.; Katzke, H.; Es-Souni, M.; Neumann, N.; Luo, H.-S. Single domain vs. polydomain [111] 0.72Pb(Mg1/3Nb2/3)O3-0.28PbTiO3 single crystal. Polarization switching, dielectric and pyroelectric properties. Appl. Phys. Lett. 2012, 100, 242905. [Google Scholar] [CrossRef]
- Rajan, K.K.; Shanthi, M.; Chang, W.S.; Jin, J.; Lim, L.C. Dielectric and piezoelectric properties of [0 0 1] and [0 1 1]-poled relaxor ferroelectric PZN–PT and PMN–PT single crystals. Sens. Actuat. A 2007, 133, 110. [Google Scholar] [CrossRef]
- Pandya, S.; Wilbur, J.; Kim, J.; Gao, R.; Dasgupta, A.; Chris Dames, C.; Martin, L.W. Pyroelectric energy conversion with large energy and power density in relaxor ferroelectric thin films. Nature Mater. 2018, 17, 432. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.M.; Zhao, J.; Cross, L.E. Aging of the dielectric and piezoelectric properties of relaxor ferroelectric lead magnesium niobate–lead titanate in the electric field biased state. J. Appl. Phys. 1996, 79, 3181. [Google Scholar] [CrossRef]
- Zhang, S.; Li, F.; Sherlock, N.P.; Luo, J.; Lee, H.J.; Xia, R.; Meyer, R.J., Jr.; Hackenberger, W.; Shrout, T.R. Recent developments on high Curie temperature PIN–PMN–PT ferroelectric crystals. J. Cryst. Grow. 2011, 318, 846. [Google Scholar] [CrossRef]
- Qi, X.; Sun, E.; Lü, W.; Li, S.; Yang, B.; Zhang, R.; Cao, W. Dynamic characteristics of defect dipoles in Mn-doped 0.24Pb(In1/2Nb1/2)O3–0.47Pb(Mg1/3Nb2/3)O3–0.29PbTiO3 single crystal. CrystEngComm 2019, 21, 348. [Google Scholar] [CrossRef]
- Genenko, Y.A.; Glaum, J.; Hoffmann, M.J.; Albe, K. Mechanisms of aging and fatigue in ferroelectrics. Mater. Sci. Eng. B 2015, 192, 52. [Google Scholar] [CrossRef]
- Luo, N.; Zhang, S.; Li, Q.; Yan, Q.; Zhang, Y.; Ansell, T.; Luo, J.; Shrout, T.R. Crystallographic dependence of internal bias in domain engineered Mn-doped relaxor-PbTiO3 single crystals. J. Mater. Chem. C 2016, 4, 4568–4576. [Google Scholar] [CrossRef]
- Luo, L.; Dietze, M.; Solterbeck, C.-H.; Luo, H.-S.; Es-Souni, M. Tuning the functional properties of PMN-PT single crystals via doping and thermoelectrical treatments. J. Appl. Phys. 2013, 114, 224112. [Google Scholar] [CrossRef]
- Kobor, D.; Guiffard, B.; Lebrun, L.; Hajjaji, A.; Guyomar, D. Oxygen vacancies effect on ionic conductivity and relaxation phenomenon in undoped and Mn doped PZN-4.5PT single crystals. J. Phys. D Appl. Phys. 2007, 40, 2920. [Google Scholar] [CrossRef]
- Li, L.; Choudhury, S.; Liu, Z.K.; Chen, L.Q. Effect of external mechanical constraints on the phase diagram of epitaxial PbZr 1−xTix O3 thin films—Thermodynamic calculations and phase-field simulations. Appl. Phys. Lett. 2003, 83, 1608–1610. [Google Scholar] [CrossRef]
- Olsen, R.B.; Bruno, D.A.; Briscoe, J.M. Pyroelectric conversion cycles. J. Appl. Phys. 1985, 58, 4709. [Google Scholar] [CrossRef]
- Hunter, S.R.; Lavrik, N.V.; Bannuru, T.; Mostafa, S.; Rajic, S.; Datskos, P.G. Development of MEMS based pyroelectric thermal energy harvesters. In Energy Harvesting and Storage: Materials, Devices, and Applications II; Dhar, N.K., Wijewarnasuriya, P.S., Dutta, A.K., Eds.; SPIE: Bellingham, WA, USA, 2011; Volume 8035. [Google Scholar] [CrossRef]
- Pandya, S.; Velarde, G.; Zhang, L.; Wilbur, J.D.; Smith, A.; Hanrahan, B.; Dames, C.; Martin, L.W. New approach to waste-heat energy harvesting: Pyroelectric energy conversion. NPG Asia Mater. 2019, 11, 26. [Google Scholar] [CrossRef]
Single Crystal Stoichiometry | TR−T, °C | Tc, °C | p, 10−6 C/m2K | εr | FOM−W0, 10−6K−1 |
---|---|---|---|---|---|
32PIN-42PMN-27PT:Mn | 131 | 172 | 770 | 530 | 48.7 |
22PIN-53PMN-25PT:Mn | 120 | 158 | 910 | 543 | 68.9 |
25PIN-42PMN-32PT:Mn | 121 | 170 | 788 | 514 | 51.7 |
PMN-37PT (tetragonal) | - | 145 | 650 | 769 | 24.8 |
PMN-29PT | 100 | 124 | 1030 | 605 | 79.25 |
Property | As-Received | Repoled at RT | Repoled at 80 °C |
---|---|---|---|
εr | 600 | 560 | 543 |
tanδ | 0.0017 | 0.0015 | 0.0013 |
p, μC/m2K | 845 | 887 | 910 |
FOM−W0, 10−6K−1 | 53.8 | 63.5 | 68.9 |
εr | tanΔ | p, μC/m2K | Domain State * | |
---|---|---|---|---|
Sample-1a | 542 | 0.0025 | 767 | Few stripe domains |
Sample-1b | 574 | 0.0025 | 765 | More domains |
Sample-1c | 632 | 0.003 | 727 | Many more domains |
Sample-2a | 514 | 0.0022 | 788 | Very few domains at sample edge |
Sample-2b | 705 | 0.0033 | 706 | Many more domains |
Sample-2c | 674 | 0.0034 | 685 | Many more domains |
Property | Annealed @ 350 °C, Repoled @ RT | Annealed @ 500 °C, Repoled @ RT |
---|---|---|
700 | 550 | |
0.004 | 0.0015 | |
650 | 780 | |
FOM−W0, 10−6K−1 | 27.3 | 50.0 |
Property | Sample 1, Annealed, Poled at RT | Sample 2, Annealed, Poled at RT | 25PIN-42-PMN-33PT:Mn Repoled at 80 °C |
---|---|---|---|
εr | 484 | 497 | 543 |
tanδ | 0.0043 | 0.0032 | 0.0013 |
p, μC/m2K | 727 | 744 | 910 |
FOM−W0, 10−6 K−1 | 49.4 | 50.4 | 68.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Es-Souni, M. Potentials and Limits of PMN-PT and PIN-PMN-PT Single Crystals for Pyroelectric Energy Harvesting. Crystals 2024, 14, 236. https://doi.org/10.3390/cryst14030236
Es-Souni M. Potentials and Limits of PMN-PT and PIN-PMN-PT Single Crystals for Pyroelectric Energy Harvesting. Crystals. 2024; 14(3):236. https://doi.org/10.3390/cryst14030236
Chicago/Turabian StyleEs-Souni, Mohammed. 2024. "Potentials and Limits of PMN-PT and PIN-PMN-PT Single Crystals for Pyroelectric Energy Harvesting" Crystals 14, no. 3: 236. https://doi.org/10.3390/cryst14030236
APA StyleEs-Souni, M. (2024). Potentials and Limits of PMN-PT and PIN-PMN-PT Single Crystals for Pyroelectric Energy Harvesting. Crystals, 14(3), 236. https://doi.org/10.3390/cryst14030236