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This Special Issue of Crystals “Multifunctional Coordination Polymers: Synthesis,
Structure, Properties and Applications” [1] is dedicated to recent research related to the
design, synthesis, structure and properties of these high-value hybrid materials [2,3]. As
an attractive class of coordination polymers, metal–organic frameworks (MOFs) have also
been considered, with emphasis on their emerging applications in contemporary areas of
science and technology [4,5].

The papers published in this Special Issue [1] focus on current investigations into a
selected array of metal complexes and related coordination polymers. The synthesis of
multifunctional coordination polymers has been developed at a fast rate, covering a broad
range of main-group metals, transition metals, rare-earth metals and non-metallic elements
as constituents of their basic framework [6]. This large pool of constitutive elements
has allowed us to construct coordination polymers with unprecedented structures and
topologies and to specifically induce high-value physical and chemical properties in their
networks, thus widening their areas of application and making them more environmentally
friendly [7]. In this respect, new studies on coordination polymers containing main-group
metals and transition metals have been extended to Zn, Cd, Cu and Co mixed with ligands
of 1,4-di(1H-imidazol-4-yl)benzene and 4-methylphthalic acid [8,9].

The innovative progress of coordination polymers has unveiled interesting features in
their structure and morphology. Of interest for their unparalleled physical chemical proper-
ties and significant economic effect, novel networks based on Fe(II) MOF systems, display-
ing ligand-engineered spin crossover, have attracted significant attention [10]. Furthermore,
the extension of the incorporation of different transition metals such as Ni and Co into the
construction of stable two-dimensional cluster organic layers, suitable for high-performance
supercapacitors, has been properly demonstrated [11].

Coordination polymers designed for targeted hepatocellular carcinoma therapy have
been delivered on a core–shell nanostructured drug delivery platform based on a biocom-
patible metal–organic framework containing polyethyleneimine [12]. As an important
development, performant synthetic approaches have been revealed in a comprehensive
study, and their essential determinant parameters were defined for a variety of applications
in energy storage, drug delivery and wastewater treatment [13].

New MOF configurations of high value as therapy agents, drug carriers, imaging
agents and biosensors in cancer have been further described in new research [14]. Impor-
tant advances in the structure and applications of coordination polymers derived from
cyclohexane polycarboxylate ligands have recently been reported [15]. Furthermore, in a
very interesting study, the quantitative quantum sensing of lithium ions at room tempera-
ture was accomplished using an inventively designed radical-embedded metal–organic
framework [16].
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The fast-growing development of luminescent functional coordination polymers [17–22]
is due to their ability to be used in many analytical and biological applications [23], for
instance, as physical and chemical sensors for a variety of anions and cations [24–26] of
different gases and vapors. The identification of small or complex organic molecules [27–29]
and the detection of luminescent polymeric materials [30] have been consistently investi-
gated. Numerous analytical applications have been developed for food components [31]
and agricultural products [32], as well as for biomolecules, pharmaceuticals [33,34] and
medical investigations [35–38].

In the construction of multifunctional coordination polymers with luminescent prop-
erties, assembling various lanthanides as functional constitutive elements has been con-
vincingly outlined as a future trend in the economical utilization of these new materials
in optoelectronics [39] and communications [18]. Recent developments in luminescent
coordination polymers, and especially in their design strategies, sensing applications and
specified theoretical aspects, have also been made [40,41]. Moreover, details on the prepara-
tion, structure and spectroscopic properties of a diverse range of luminescent coordination
polymers have been fully provided [42].

Important research on luminescence thermometry based on one-dimensional benzoato-
bridged coordination polymers containing lanthanide ions has recently been carried out [43].
Additionally, innovative achievements in the synthesis, crystal structure and magnetic
properties of new cyanido-bridged heterometallic 3d-4f 1D coordination polymers have
been unveiled [44]. It is remarkable that the crystal structures in these studies displayed
crenel-like LnIII-MIII alternate chains with their LnIII ions connected by two cis cyanido
groups of the hexacyanido metalloligand. Notably, the field-induced slow relaxation of
their magnetization was accurately evidenced for two compounds, one of these being a new
attractive example of a polymer chain with the specific features of single-ion magnets. Of
much interest, molecule-based magnetic materials constructed from paramagnetic organic
ligands and two different metal ions have been comprehensively surveyed [45].

Bifunctional self-penetrating Co(II) polymers containing three-dimensional MOF struc-
tures have been carefully developed for high-performance environmental and energy stor-
age applications [46]. Emissive Pt(II) coordination polymers with promising applications
in artificial-light-harvesting systems endowed with sequential energy transfer have been ef-
fectively synthesized [47]. Of great interest for their specific properties, sulfur-based nodes
have been designed for the construction of coordination polymers and MOFs with spe-
cific desired functionalities [48]. These sulfur-based coordination polymers are promising
materials for use in semiconductors, conductivity applications and photocatalysis.

Studies on metal–organic frameworks for biomass conversion have been reported as
well [49]. The current state of the art and future developments of this important promising
domain have been fully illustrated. Trifunctional ionic metal–organic frameworks based on
imidazolium cation ligands have been employed as efficient catalysts for the CO2–epoxide
cycloaddition into cyclocarbonate without the use of a cocatalyst or solvent [50].

Lanthanide coordination polymers have attracted rich and productive investigations
from many research groups around the world [51]. The synthesis, structure and catalytic
applications of a considerable number of lanthanide coordination polymers have recently
been surveyed [2,52]. These reviews focus on the relevant structural features and coordina-
tion environment that modulate these coordination polymers’ catalytic properties through
their large pool of incorporated lanthanides and organic ligands. Such cutting-edge as-
semblies have allowed for their application in a diverse range of chemical transformations.
In one particular case, functional noncentrosymmetric lanthanide-based MOF materials,
exhibiting strong SHG activity and an NIR luminescence of Er3+ with the application in
nonlinear optical thermometry [53,54], took advantage of their ligand modulation protocol
to effectively expand the structural topologies of rare-earth porphyrinic metal–organic
frameworks. Furthermore, luminescent lanthanide coordination polymers with transfor-
mative energy transfer processes used for physical and chemical sensing applications have
also been widely described [25].
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A large variety of lanthanide coordination polymers have been designed and man-
ufactured, providing an attractive and useful platform for their successful application in
catalysis and photocatalysis. In this respect, well-defined isostructural lanthanide coordi-
nation polymers, associated with Tb and Eu through 2,2′-bipyridyl-4,4′-dicarboxylic acid
as an organic linker, have been synthesized and applied as catalysts with high activity
and selectivity in the Strecker reaction to α-amino nitriles [55]. New heterobimetallic
coordination polymers with Pr, Gd and Tb lanthanides have been assembled through
the same heteroleptic ligand [56]. In this protocol, a reticular synthesis approach was
applied to coordinate the nitrophilic Pd(II) units and oxophilic Ln(III) ions. Their effective
applications in Sonogashira, Suzuki–Miyaura and Heck cross-coupling reactions have
been illustrated [57]. Using the heteroleptic ligand mentioned above, 2,2′-bipyridine-4,4′-
dicarboxylic acid, in Ln/Pd coordination polymers with Nd, Sm, Eu and Dy, new catalysts
have been successfully employed in aqueous Heck and Suzuki–Miyaura cross-couplings.
An important array of lanthanide coordination polymers featuring Er, Tm and Yb and
containing a 1,3-bis(4-carboxyphenyl) imidazolium carboxylate ligand have been prepared,
and their utilization as heterogeneous catalysts for the coupling reactions between halo-
genated propylene oxides and CO2 and their corresponding cyclic carbonates has been
accurately documented [58].

The elaborated synthesis of heterodinuclear Pd-Ln complexes, combining Pd with Sm,
Eu, Gd and Tb by means of a 2,2′-bipyridine-5,5′-dicarboxylate linker, has been developed
for their use as efficient catalysts in the Suzuki–Miyaura cross-coupling of aryl halides with
phenylboronic acid and the Heck reaction of aryl halides with substituted olefins [59]. At
the same time, multifunctional lanthanide coordination polymers consisting of 12 connected
lanthanide clusters incorporating Yb, Dy and Sm as [Ln6(µ3-OH)8(COO−)12] secondary
building units have been synthesized as well, using 2-aminobenzenedicarboxylate as an
efficient organic linker. These cluster-based metal–organic frameworks have been produc-
tively used in CO2 adsorption and in a tandem deacetalization–Knoevenagel reaction [60].
To substantially improve the performance of catalytic processes, the high hydrolytic ro-
bustness of coordination polymers has been elaborated in an innovative procedure using
different lanthanides as constituents for their basic framework [61]. Notably, valuable
heterobimetallic coordination polymers built using the bifunctional organic ligand 1,1′-
di(p-carboxybenzyl)-2,2′-diimidazole and incorporating Sm, Eu, Tb and Dy into their
structure, as well as Pd, have been reported as generating almost quantitative yields in the
Suzuki–Miyaura cross-coupling reactions of aryl bromides with arylboronic acids [62].

Of particular scientific interest, unusual homochiral lanthanide coordination polymers
of Sm, Eu, Gd, Tb, Dy, Ho, Er and Yb, derived using achiral rigid ligand 5-[(pyridin-4-
ylmethyl)amino]-isophthalic acid, have been designed and consistently produced [63].
Significantly, and illustrating the versatility of rare-earth metals as constituents of new co-
ordination polymers endowed with attractive physical–chemical properties, a broad range
of lanthanides have been embedded into these unusual materials; in particular, Sm, Eu,
Gd, Tb, Dy, Ho, Er, Tm and Yb have been linked using 3,3′,5,5′-azobenzenetetracarboxylic
acid [64]. Their utility as excellent catalysts has been demonstrated in CO2 cycloaddition
reactions with epichlorohydrin under ambient CO2 pressure and solvent-free conditions.
Moreover, the effective application of a diverse range of coordination polymers and metal–
organic frameworks in many cutting-edge domains of materials science is only continuing
to expand [65–80].

In summary, we hope that the numerous emerging trends of development in the
area of multifunctional coordination polymers, fully revealed in this account, along with
the latest contributions published in this Special Issue of Crystals, will bring to light new
information on the current state of the field and open new directions for the future advances
of this fascinating domain of chemical research.

Conflicts of Interest: The authors declare no conflicts of interest.
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