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Abstract: Cracks and crack-like defects in engineering structures have greatly reduced the structural
strength. An interface crack with one contact area in a combined tension–shear field of decagonal
quasicrystal bi-material is investigated. Based on the deformation compatibility equation and dis-
placement potential function, the complex representation of stress and displacement is given. Using
the mixed boundary conditions, the closed-form expressions for the stresses and the displacement
jumps in the phonon field and phason field on the material interface are obtained. The results show
that the stress intensity factor at the crack tip is zero for the phason field. The variation in the
stress intensity factor and the length of the contact zone in the phonon field is given, and the result
is consistent with the properties of the crystal. The design of safe engineering structures and the
formulation of reasonable quality acceptance standards may benefit from the theoretical research
carried out here.
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1. Introduction

Quasicrystals, as a lightweight, high-strength material suitable for medium-temperature
operation, are becoming a new functional and structural material. With the help of various
special properties of quasicrystal materials, scientists have made new breakthroughs in
various research fields, which has also promoted the development of quasicrystal material
applications. Different from ordinary crystals [1–3], the two-dimensional decagonal qua-
sicrystals are periodic in the direction of the decagonal rotational symmetry axis, while the
arrangement of plane atoms perpendicular to the decagonal rotational symmetry axis is
quasi-periodic, which leads to the additional elastic degrees of freedom that do not exist
in ordinary crystals and increases the complexity of fracture mechanics research. The qua-
sicrystal phase of the electron diffraction pattern with 10 rotationally symmetric axes was
found by Bendersky [4]. At the same time, Feng et al. found the decagonal quasicrystal
phase in rapidly cooled Al-Fe alloy [5]. In 1989, two types of dislocation in decagonal
quasicrystals were confirmed by the comparative analysis of electron diffraction [6]. Based
on the multiplication of the basis sites’ groups, Girzhon et al. proposed the model of the
reciprocal lattice of decagonal quasicrystal [7]. By atomic resolution high-angle annular
dark-field scanning transmission electron microscopy, Ma and He observed the largest
decagonal subunits, which expanded to 5.2 nm in a decagonal shape [8].

There is a lot of the literature on defects in decagonal quasicrystals. By using the
Eshelby method, the elastic field and energy of a decagonal quasicrystal with a special
dislocation line are given [9]. Fan’s research team used the complex solution of classical
elastic theory and introduced the displacement potential function and stress potential
function to transform the final governing equation of the two-dimensional decagonal
quasicrystal plane elastic problem into a quadruple harmonic equation [10]. Using this
theory and conformal transformation of a complex function, the elliptical notch problem is
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solved [11]. Wang and Zhong studied the interaction between a semi-infinite crack and a
line dislocation in a decagonal quasicrystal solid using the complex variable method [12]. Li
constructed the complex potential theory of two-dimensional decagonal quasicrystals and
further developed Muskhelishvili’s complex variable method [13]. Fan et al. studied the
interface crack problem of two-dimensional decagonal quasicrystal bi-material using the
propagation displacement discontinuity method [14]. Wang and Schiavone investigated the
elastic field near the tip of an anti-crack in a homogeneous decagonal quasicrystal material
and presented explicit and elegant expressions for the anti-crack contraction force [15].
The plane problem of a two-dimensional decagonal quasicrystal with a rigid circular
inclusion under infinite tension and concentrated force is studied by Zhai et al. [16]. Based
on the complex representation of stress and displacement of two-dimensional decagonal
quasicrystal, the above problem is transformed into the Riemann boundary problem by
using the analytic continuation principle of complex variable function. Zhao et al. extended
the displacement and temperature discontinuity method to the two-dimensional decagonal
quasicrystal coating structure and studied the mechanical behavior of the interface crack
under thermal–mechanical loads [17]. The plane elastic problem of two asymmetric edge
cracks in a two-dimensional decagonal quasicrystal elliptical hole under far-field tensile
stress is considered by Yu [18]. Li et al. established a phase field framework to simulate the
macroscopic brittle fracture of quasicrystal materials [19]. In this phase field model, the
volume fraction parameter is introduced into the fracture toughness to reflect the phase
wall effect for the first time.

The classical interface crack model [20] assumes that the crack is completely open,
which leads to oscillating singularity at the crack tips. By assuming that there is a small
contact zone near the crack tip, the unreal vibration singularity is eliminated [21]. Using
a singular integral equation formulation, Qin and Mai investigated interface cracks with
contact zones in thermo-piezoelectric materials [22]. An analytical solution for an interface
crack with one contact zone in anisotropic material was studied by Herrmann and Lo-
boda [23]. Kharun and Loboda studied the crack problem at the interface of two isotropic
materials under mixed-mode loading [24]. The interface crack is assumed to be fully open,
partially closed, friction-free contact zone, and fully closed. The problem is reduced to a
homogeneous combined Dirichlet Riemann boundary value problem and solved in closed
form. The problem of interface crack with a frictionless contact zone at the right crack tip
between two semi-infinite piezoelectric/piezomagnetic spaces is considered by Herrmann
et al. [25]. Saikia and Muthu studied the interface crack by using the non-intrinsic cohesive
zone model to eliminate the stress singularity at the crack tip [26]. However, to the best of
the authors’ knowledge, the problem of interface crack with contact zone at the crack tip in
decagonal quasicrystals has not been studied.

In the present study, the interface crack theory in elastic fracture mechanics is extended
to the elastic fracture mechanics of decagonal quasicrystal bi-material. The interface crack
problem with a contact zone in decagonal quasicrystal bi-material is considered, which
has a contact zone penetrating the solid along the quasi-periodic direction. By using the
method of complex variable function, the mixed boundary value problem is transformed
into the Dirichlet Riemann boundary value problem, and the closed solution of the problem
is obtained.

2. Basic Equations

The stress and strain of decagonal quasicrystal satisfy generalized Hooke’s law [10,27,28]:

σxx = C11εxx + C12εyy + R
(
ωxx + ωyy

)
σyy = C12εxx + C11εyy − R

(
ωxx + ωyy

)
σxy = σyx = (C11 − C12)εxy + R

(
ωyx − ωxy

)
Hxx = K1ωxx + K2ωyy + R

(
εxx − εyy

)
Hyy = K2ωxx + K1ωyy + R

(
εxx − εyy

)
Hxy = K1ωxy − K2ωyx − 2Rεxy
Hyx = K1ωyx − K2ωxy + 2Rεxy

(1)
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From Equation (1), the strain relation expressed by stress can be written as

εxx = 1
4(C12+C66)

(
σxx + σyy

)
+ K1+K2

4r
(
σxx − σyy

)
− R

2r
(

Hxx + Hyy
)

εyy = 1
4(C12+C66)

(
σxx + σyy

)
− K1+K2

4r
(
σxx − σyy

)
+ R

2r
(

Hxx + Hyy
)

εxy = εyx = K1+K2
2r σxy +

R
2r
(

Hxy − Hyx
) (2)

ωxx = 1
2(K1−K2)

(
Hxx − Hyy

)
+ C66

2r
(

Hxx + Hyy
)
− R

2r
(
σxx − σyy

)
ωyy = − 1

2(K1−K2)

(
Hxx − Hyy

)
+ C66

2r
(

Hxx + Hyy
)
− R

2r
(
σxx − σyy

)
ωxy = R

r σxy +
1

2(K1−K2)

(
Hxy + Hyx

)
+ C66

2r
(

Hxy − Hyx
)

ωyx = − R
r σxy +

1
2(K1−K2)

(
Hxy + Hyx

)
− C66

2r
(

Hxy − Hyx
) (3)

where σks, εks and Cij(k, s = x, y; i, j = 1, 2) are stresses, strains, and elastic constants in the
phonon field, respectively; Hks, ωks, and Ki are the stresses, strains, and elastic constants in
the phason field, respectively; R is the phonon–phason coupling elastic constant.

The strain relation of the plane elastic problem on the quasi-periodic plane of decagonal
quasicrystal can be expressed by displacements as

εxx = ∂ux
∂x , εyy =

∂uy
∂y , εxy = 1

2

(
∂ux
∂y +

∂uy
∂x

)
ωxx = ∂wx

∂x , ωyy =
∂wy
∂y , ωxy = ∂wx

∂y , ωyx =
∂wy
∂x

(4)

After eliminating the displacement, the deformation coordinate equation expressed by
strain is

∂2εxx
∂y2 +

∂2εyy
∂x2 = 2 ∂2εxy

∂x∂y
∂ωxy

∂x = ∂ωxx
∂y

∂ωyx
∂y =

∂ωyy
∂x

(5)

Introducing stress potential functions ϕ(x, y), ψ1(x, y), ψ2(x, y), the stress–strain rela-
tionship can be expressed as

σxx = ∂2ϕ

∂y2 , σyy = ∂2ϕ
∂x2 , σxy = σyx = − ∂2ϕ

∂x∂y ,

Hxx = ∂ψ1
∂y , Hxy = − ∂ψ1

∂x , Hyx = − ∂ψ2
∂y , Hyy = ∂ψ2

∂x

(6)

Substituting Equation (5) into Equations (2) and (3), one obtains

εxx = 1
4(C12+C66)

∇2ϕ + K1+K2
4r

(
∂2ϕ

∂y2 − ∂2ϕ

∂x2

)
− R

2r

(
∂ψ1
∂y + ∂ψ2

∂x

)
εyy = 1

4(C12+C66)
∇2ϕ − K1+K2

4r

(
∂2ϕ

∂y2 − ∂2ϕ

∂x2

)
+ R

2r

(
∂ψ1
∂y + ∂ψ2

∂x

)
εxy = εyx = −K1+K2

2r
∂2ϕ

∂x∂y + R
2r

(
∂ψ2
∂y − ∂ψ1

∂x

) (7)

ωxx = 1
2(K1−K2)

(
∂ψ1
∂y − ∂ψ2

∂x

)
+ C66

2r

(
∂ψ1
∂y + ∂ψ2

∂x

)
− R

2r

(
∂2ϕ

∂y2 − ∂2ϕ

∂x2

)
ωyy = − 1

2(K1−K2)

(
∂ψ1
∂y − ∂ψ2

∂x

)
+ C66

2r

(
∂ψ1
∂y + ∂ψ2

∂x

)
− R

2r

(
∂2ϕ

∂y2 − ∂2ϕ

∂x2

)
ωxy = − R

r
∂2ϕ

∂x∂y − 1
2(K1−K2)

(
∂ψ1
∂x + ∂ψ2

∂y

)
+ C66

2r

(
∂ψ2
∂y − ∂ψ1

∂x

)
ωyx = R

r
∂2ϕ

∂x∂y − 1
2(K1−K2)

(
∂ψ1
∂x + ∂ψ2

∂y

)
+ C66

2r

(
∂ψ1
∂x − ∂ψ2

∂y

)
(8)



Crystals 2024, 14, 316 4 of 15

Substituting Equations (7) and (8) into Equation (5) yields(
1

2(C12+C66)
+ K1+K2

2r

)
∇2∇2ϕ + R

r

(
∂

∂y Π1ψ1 − ∂
∂x Π2ψ2

)
= 0(

r
K1−K2

+ C66

)
∇2ψ1 + R ∂

∂y Π1ϕ = 0(
r

K1−K2
+ C66

)
∇2ψ2 − R ∂

∂x Π2ϕ = 0

(9)

where
∇2 = ∂2

∂x2 +
∂2

∂y2 , Π1 = 3 ∂2

∂x2 − ∂2

∂y2 , Π2 = 3 ∂2

∂y2 − ∂2

∂x2 , r = C66(K1 + K2)− 2R2.
Introducing a new function G(x, y), one obtains

ϕ = r1∇2∇2G, ψ1 = −R
∂

∂y
Π1∇2G, ψ2 = R

∂

∂x
Π2∇2G (10)

where r1 = r
K1−K2

+ C66.
Equation (9) is automatically satisfied, so G is called the stress function. One has [29]

∇2∇2∇2∇2G = 0 (11)

Therefore, the final control function based on stress potential is a quadruple harmonic
equation. Substituting Equation (10) into Equation (6), one obtains

σxx = r1
∂2

∂y2 ∇2∇2G, σyy = r1
∂2

∂x2 ∇2∇2G,

σxy = σyx = −r1
∂2

∂x∂y∇
2∇2G,

(12)

Hxx = −R ∂2

∂y2 Π1∇2G, Hxy = R ∂2

∂x∂y Π1∇2G,

Hyx = −R ∂2

∂x∂y Π2∇2G, Hyy = R ∂2

∂x2 Π2∇2G
(13)

Based on the method of stress potential function, Li and Fan [30] developed the
complex variable function solution of the quartic harmonic equation. The fundamental
solution of Equation (11) is

G = 2Re
(

g1(z) + zg2(z) +
1
2

z2g3(z) +
1
6

z3g4(z)
)

(14)

in which gj(z)(j = 1, 2, 3, 4) is about four analytic functions of complex variables; z = x+ iy,
and i =

√
−1. Superscript “−” indicates complex conjugation, i.e. z = x − iy.

Substituting Equation (14) into Equations (12) and (13), the complex expression of
stress function is obtained as

σxx = −32r1Re
(

g(4)3 (z) + zg(4)4 (z)− 2g′′′
4 (z)

)
σyy = 32r1Re

(
g(4)3 (z) + zg(4)4 (z) + 2g′′′

4 (z)
)

σxy = σyx = 32r1Im
(

g(4)3 (z) + zg(4)4 (z)
) (15)

Hxx = 32RRe
(

g(5)2 (z) + zg(5)3 (z) + 1
2 z2g(5)4 (z)− g(4)3 (z)− zg(4)4 (z)

)
Hyy = −32RRe

(
g(5)2 (z) + zg(5)3 (z) + 1

2 z2g(5)4 (z) + g(4)3 (z) + zg(4)4 (z)
)

Hxy = −32RIm
(

g(5)2 (z) + zg(5)3 (z) + 1
2 z2g(5)4 (z) + g(4)3 (z) + zg(4)4 (z)

)
Hyx = −32RIm

(
g(5)2 (z) + zg(5)3 (z) + 1

2 z2g(5)4 (z)− g(4)3 (z)− zg(4)4 (z)
)

(16)
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New analytic functions f j(z)(j = 2, 3, 4) are introduced to make

f2(z) = g(4)2 (z), f3(z) = g′′′
3 (z), f4(z) = g′′

4 (z) (17)

Then, Equations (15) and (16) can be rewritten as

σxx = −32r1Re
(

f ′3(z) + z f ′′4 (z)− 2 f ′4(z)
)

σyy = 32r1Re
(

f ′3(z) + z f ′′4 (z) + 2 f ′4(z)
)

σxy = σyx = 32r1Im
(

f ′3(z) + z f ′′4 (z)
) (18)

Hxx = 32RRe
(

f ′2(z) + z f ′′3 (z) +
1
2 z2 f ′′′4 (z)− f ′3(z)− z f ′′4 (z)

)
Hyy = −32RRe

(
f ′2(z) + z f ′′3 (z) +

1
2 z2 f ′′′4 (z) + f ′3(z) + z f ′′4 (z)

)
Hxy = −32RIm

(
f ′2(z) + z f ′′3 (z) +

1
2 z2 f ′′′4 (z) + f ′3(z) + z f ′′4 (z)

)
Hyx = −32RIm

(
f ′2(z) + z f ′′3 (z) +

1
2 z2 f ′′′4 (z)− f ′3(z)− z f ′′4 (z)

)
(19)

3. Statement of the Problem

Consider an interface crack with one contact area between two bonded semi-infinite
decagonal quasicrystals. σ and τ are uniformly loaded in the phonon field, and σ

(I)∞
xx , σ

(II)∞
xx ,

H(I)∞
xx , H(II)∞

xx are applied at infinity, as shown in Figure 1.
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Figure 1. Schematic diagram of an interface crack with one contact area between decagonal quasicrys-
tal bi-materials under infinite load.

The continuity conditions on the interface can be written as follows
(

σ
(I)
yy (x, 0)− iσ(I)

xy (x, 0)
)
−

(
σ
(II)
yy (x, 0)− iσ(II)

xy (x, 0)
)
= 0(

H(I)
yy (x, 0)− iH(I)

xy (x, 0)
)
−

(
H(II)

yy (x, 0)− iH(II)
xy (x, 0)

)
= 0

x ∈ (−∞, ∞) (20)


(

u(I)
x (x, 0) + iu(I)

y (x, 0)
)
−

(
u(II)

x (x, 0) + iu(II)
y (x, 0)

)
= 0(

w(I)
x (x, 0) + iw(I)

y (x, 0)
)
−

(
w(II)

x (x, 0) + iw(II)
y (x, 0)

)
= 0

x ∈ (−∞, c) ∪ (a, ∞) (21)
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The boundary conditions on the crack face can be expressed as follows:
σ
(I)
xy (x, 0) = 0

H(I)
xy (x, 0) = 0

u(I)
y (x, 0)− u(II)

y (x, 0) = 0

w(I)
y (x, 0)− w(II)

y (x, 0) = 0

x ∈ (b, a) (22)

{
σ
(I)
yy (x, 0)− iσ(I)

xy (x, 0) = 0

H(I)
yy (x, 0)− iH(I)

xy (x, 0) = 0
x ∈ (c, b) (23)

where σ
(k)
12 (x, y); σ

(k)
22 (x, y), u(k)

1 (x, y), and u(k)
2 (x, y) are the phonon field of shear stresses,

normal stresses, and displacements along x- and y-axes, respectively. H(k)
12 (x, y), H(k)

22 (x, y),

w(k)
1 (x, y), and w(k)

2 (x, y) are the phason field of shear stresses, normal stresses, and dis-
placements along x- and y-axes, respectively. Subscripts k = I and k = II mean, respectively,
the upper and lower half-planes. Intervals (−∞, c) ∪ (a, ∞), [c, b], and (b, a) denote the
bond, open part of the crack, and contact zone, respectively.

4. Theoretical Derivation of Interface Stresses and Displacement Jump

For the plane elastic problems, the stresses and displacements in the decagonal qua-
sicrystal of point groups, 10 can be expressed in terms of the complex potentials as follows: σ

(k)
yy (x, y)− iσ(k)

xy (x, y) = 32r(k)1

(
f ′4k(z) + f ′3k(z) + z f ′′4k(z) + f ′4k(z)

)
u(k)

x (x, y) + iu(k)
y (x, y) = 32r(k)6 f4k(z)− 32r(k)5

(
f3k(z) + z f ′4k(z)

) (24)

 H(k)
yy (x, y)− iH(k)

xy (x, y) = −32R(k)
(

f ′2k(z) + z f ′′3k(z) +
1
2 z2 f ′′′4k(z) + f ′3k(z) + z f ′′4k(z)

)
w(k)

x (x, y) + iw(k)
y (x, y) = 32r(k)7

(
f2k(z) + z f ′3k(z) +

1
2 z2 f ′′4k(z)

) (25)

 σ
(k)
xx (x, y) + σ

(k)
yy (x, y) = 64r(k)1

(
f ′4k(z) + f ′4k(z)

)
H(k)

xx (x, y) + H(k)
yy (x, y) = −32R(k)

(
f ′3k(z) + z f ′′4k(z) + f ′3k(z) + z f ′′4k(z)

) (26)

in which
r(k) = C(k)

66

(
K(k)

1 + K(k)
2

)
− 2R(k)2, r(k)1 = r(k)

K(k)
1 −K(k)

2

+ C(k)
66 ,

r(k)2 = 1
2
(

C(k)
12 +C(k)

66

) +
K(k)

1 +K(k)
2

2r(k)
, r(k)3 = R(k)2

r(k)
, r(k)4 =

K(k)
1 +K(k)

2
r(k)

,

r(k)5 = r(k)1 r(k)4 − r(k)3 , r(k)6 = 4r(k)1 r(k)2 − r(k)3 − r(k)1 r(k)4 , r(k)7 = R(k)

K(k)
1 −K(k)

2
Introducing two new functions

sk(z) = f 3k(z) + z f
′
4k(z) (27)

tk(z) = f 2k(z) + z f
′
3k(z) +

1
2

z2 f ′′4k(z) (28)

Replacing z with z in Equations (27) and (28) to obtain the following expressions

f3k(z) = sk(z)− z f ′4k(z) (29)

f2k(z) = tk(z)− z f ′3k(z)−
1
2

z2 f ′′4k(z) (30)

The differential of the above formula is

f ′3k(z) + f ′4k(z) = s′k(z)− z f ′′4k(z) (31)
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f ′′3k(z) + 2 f ′′4k(z) = s′′k (z)− z f ′′′4k(z) (32)

f ′2k(z) + f ′3k(z) = t′k(z)− z f ′′4k(z)− z f ′′3k(z)−
1
2

z2 f ′′′4k(z) (33)

Substituting Equations (27), (29) and (31) into Equation (24) yields σ
(k)
yy (x, y)− iσ(k)

xy (x, y) = 32r(k)1

(
Ik(z) + Γk(z) + (z − z)I′k(z)

)
u(k)

x (x, y) + iu(k)
y (x, y) = 32r(k)6 f4k(z)− 32r(k)5

(
sk(z) + (z − z)Ik(z)

) (34)

Substituting Equations (28), (30) and (32) into Equation (25), one obtains H(k)
yy (x, y)− iH(k)

xy (x, y) = −32R(k)
(

Hk(z) + (z − z)
(

Γ′
k(z)− I′k(z)

)
+ 1

2 (z − z)2I′′k (z)
)

w(k)
x (x, y) + iw(k)

y (x, y) = 32r(k)7

(
tk(z) + (z − z) f ′3k(z) +

1
2
(
z2 − z2) f ′′4k(z)

) (35)

Introduce the following notation

Ik(z) = f ′4k(z), Γk(z) = s′k(z), Hk(z) = t′k(z) (36)

Thus,
f ′3k(z) = Γk(z)− Ik(z)− zI′k(z),
f ′3k(z) = Γk(z)− Ik(z)− zI′k(z),

(37)

f ′′3k(z) = Γ′
k(z)− 2I′k(z)− zI′′k (z)

Substituting Equation (37) into Equations (34) and (35), one obtains
σ
(k)
yy (x, y)− iσ(k)

xy (x, y) = 32r(k)1

(
Ik(z) + Γk(z) + (z − z)I′k(z)

)
∂
(

u(k)
x (x,y)+iu(k)

y (x,y)
)

∂x = 32r(k)6 Ik(z)− 32r(k)5

(
Γk(z) + (z − z)I′k(z)

) (38)


H(k)

yy (x, y)− iH(k)
xy (x, y) = −32R(k)

(
Hk(z) + (z − z)

(
Γ′

k(z)− I′k(z)
)
+ 1

2 (z − z)2I′′k (z)
)

∂
(

w(k)
x (x,y)+iw(k)

y (x,y)
)

∂x = 32r(k)7

(
Hk(z) + (z − z)

(
Γ′

k(z)− Γ′
k(z)

)
+ 1

2 (z − z)2I′′k (z)
) (39)

Equation (26) can be represented as σ
(k)
xx (x, y) + σ

(k)
yy (x, y) = 128r(k)1 ReIk(z)

H(k)
xx (x, y) + H(k)

yy (x, y) = −64R(k)Re
(

Γk(z)− Ik(z) + (z − z)I′k(z)
) (40)

Combined with continuity conditions Equations (20) and (21), the following equations
are given:{

r(I)1 I+I (x)− r(II)1 Γ+
II (x) = r(II)1 I−II (x)− r(I)1 Γ−

I (x) x ∈ (−∞, ∞)

r(I)6 I+I (x) + r(II)5 Γ+
II (x) = r(II)6 I−II (x) + r(I)5 Γ−

I (x) x ∈ (−∞, c) ∪ (a, ∞)
(41)

{
R(II)H+

II (x) = R(I)H−
I (x) x ∈ (−∞, ∞)

r(II)7 H+
II (x) = r(I)7 H−

I (x) x ∈ (−∞, c) ∪ (a, ∞)
(42)

where superscripts “+” and “−” denote the limit values of the analytical functions, when
z → x + i0 and z → x − i0 , respectively.
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Both sides of Equation (41) represent the boundary values of two analytical functions
in their respective half-planes, and the two functions can be analytically extended into the
whole plane. For the phonon field, we can introduce the following functions:

A1(z) =

{
r(I)1 II(z)− r(II)1 ΓII(z) y > 0

r(II)1 III(z)− r(I)1 ΓI(z) y < 0
(43)

and

A2(z) =

{
r(I)6 II(z) + r(II)5 ΓII(z) y > 0

r(II)6 III(z) + r(I)5 ΓI(z) y < 0
(44)

Corresponding, for the phason field, introducing new functions B1(z) and B2(z)

B1(z) =

{
R(II)HII(z) y > 0
R(I)HI(z) y < 0

(45)

and

B2(z) =

{
r(II)7 HII(z) y > 0
r(I)7 HI(z) y < 0

(46)

A1(z) and B1(z) are two analytical functions in the whole plane; A2(z) and B2(z)
are analytical in the region (−∞, c) ∪ (a, ∞), and the functions Ik(z), Γk(z) and Hk(z) are
bounded at infinity. Based on Liouvill’s theorem, we can conclude that A1(z) and B1(z) are
constants in the whole plane. That is

A1(z) ≡ A (47)

B1(z) ≡ B (48)

After algebraic manipulations, Equations (43) and (44) can be represented in the form r(I)1 II(z) = g
(

A2(z) + r(II)8 A
)

y > 0

r(II)1 III(z) = gγ
(

A2(z) + r(I)8 A
)

y < 0
(49)

and  r(II)1 ΓII(z) = g
(

A2(z) + r(II)8 A
)
− A y > 0

r(I)1 ΓI(z) = gγ
(

A2(z) + r(I)8 A
)
− A y < 0

(50)

{
HII(z) = B

R(II) y > 0

HI(z) = B
R(I) y < 0

(51)

where

g =
r(I)1 r(II)1

r(I)1 r(II)5 +r(II)1 r(I)6

, γ =
r(I)1 r(II)5 +r(II)1 r(I)6

r(II)1 r(I)5 +r(I)1 r(II)6

, r(k)8 =
r(k)5

r(k)1

.

The expressions for stresses in the phonon field can be rewritten as

σyy(x, y)− iσxy(x, y) =

 32
(

g
(

A2(z) + r(II)8 A
)
+ gγ

(
A2(z) + r(I)8 A

)
− A + g(z − z)A′

2(z)
)

y > 0

32
(

gγ
(

A2(z) + r(I)8 A
)
+ g

(
A2(z) + r(II)8 A

)
− A + gγ(z − z)A′

2(z)
)

y < 0
(52)

and

σxx(x, y) + σyy(x, y) = 128

 gRe
(

A2(z) + r(II)8 A
)

, y > 0

gγRe
(

A2(z) + r(I)8 A
)

, y < 0
(53)

The expressions for stresses in the phason field can be rewritten as
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Hyy(x, y)− iHxy(x, y) = −32


B + R(I)(z − z) g

r(I)1

(
γA′

2(z)− A′
2(z)

)
+ 1

2 (z − z)2 A′′
2 (z), y > 0

B + R(II)(z − z) g

r(II)1

(
A′

2(z)− γA′
2(z)

)
+ 1

2 γ(z − z)2 A′′
2 (z), y < 0

(54)

and

Hxx(x, y) + Hyy(x, y) = −64


R(I)

r(I)1

Re
(

g
(
γA2(z)− A2(z) + (z − z)A′

2(z)
)
+

(
gγr(I)8 − gr(II)8 − 1

)
A
)

, y > 0

R(II)

r(II)1

Re
(

g
(

A2(z)− γA2(z) + (z − z)γA′
2(z)

)
+

(
gr(II)8 − gγr(I)8 − 1

)
A
)

, y < 0
(55)

The expressions for displacements in the phonon and phason fields can be rewritten
in the form

∂
(
ux(x, y) + iuy(x, y)

)
∂x

= 32



r(I)6 g
(

A2(z) + r(II)8 A
)

−r(I)5

(
gγ

(
A2(z) + r(I)8 A

)
− A + g(z − z)A′

2(z)
)

, y > 0

r(II)6 gγ
(

A2(z) + r(I)8 A
)

−r(II)5

(
g
(

A2(z) + r(II)8 A
)
− A + gγ(z − z)A′

2(z)
)

, y < 0

(56)

and

∂
(
wx(x, y) + iwy(x, y)

)
∂x

=


32r(I)7

(
B

R(I) +
g

r(I)1

(z − z)
(

γA′
2(z)− A′2(z) + 1

2 (z − z)A′′
2 (z)

))
, y > 0

32r(II)7

(
B

R(II) +
g

r(II)1

(z − z)
(

A′
2(z)− γA′2(z) + 1

2 γ(z − z)A′′
2 (z)

))
, y < 0

(57)

Using Equations (49)–(54), we can introduce the following functions:

F(z) = A2(z) + pA (58)

H(z) = B2(z) (59)

Substituting Equations (58) and (59) into Equations (54) and (55), one obtains

σyy(x, y)− iσxy(x, y)
32g

=

{
F(z) + γF(z) + (z − z)F′

(z) y > 0
γF(z) + F(z) + γ(z − z)F′

(z) y < 0
(60)

and

σxx(x, y) + σyy(x, y) = 128

 gRe
(

F(z) +
(

r(II)8 − p
)

A
)

, y > 0

gRe
(

γF(z) + γ
(

r(I)8 − p
)

A
)

, y < 0
(61)

Hyy(x, y)− iHxy(x, y)
−32g

=


R(I)

(
HI(z) +

(z−z)

r(I)1

((
γF′(z)− F′

(z)
)
+ 1

2 (z − z)F′′
(z)

))
, y > 0

R(II)
(

HII(z) +
(z−z)

r(II)1

(
F′(z)− γF′

(z)
)
+ γ

2 (z − z)F′′
(z)

)
, y < 0

(62)

and

Hxx(x, y) + Hyy(x, y) = −64


R(I)

r(I)1

Re
(

g
(
γF(z)− F(z) + (z − z)F′(z)

)
+ gp(1 − γ)A +

(
gγr(I)8 − gr(II)8 − 1

)
A
)

, y > 0

R(II)

r(II)1

Re
(

g
(

F(z)− γF(z) + (z − z)γF′(z)
)
+ gp(γ − 1)A +

(
gr(II)8 − gγr(I)8 − 1

)
A
)

, y < 0
(63)
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∂
(
ux + iuy

)
∂x

= 32g



r(I)6

r(I)1

(
F(z) + r(II)8 A − pA

)
− r(I)5

r(I)1

(
γ
(

F(z)− pA + r(I)8 A
)
− A

g + (z − z)F′
(z)

)
y > 0

r(II)6

r(II)1

γ
(

F(z) + r(I)8 A − pA
)

− r(II)5

r(II)1

((
F(z) + r(II)8 A − pA

)
− A

g + (z − z)γF′
(z)

)
y < 0

(64)

∂

∂x
(
wx(x, y) + iwy(x, y)

)
=


32r(I)7

(
HI(z) +

g

r(I)1

(z − z)
((

γF′(z)− F′
(z)

)
+ 1

2 (z − z)F′′
(z)

))
, y > 0

32r(II)7

(
HII(z) +

g

r(II)1

(z − z)
((

F′(z)− γF′
(z)

)
+ γ

2 (z − z)F′′
(z)

))
, y < 0

(65)

Thus, the complex function expressions of the stresses and displacement jump deriva-
tives on the interface are written as σ

(I)
yy (x, 0)− iσ(I)

xy (x, 0) = 32g(F+(x) + γF−(x))
∂

∂x

((
u(I)

x (x) + iu(I)
y (x)

)
−

(
u(II)

x (x) + iu(II)
y (x)

))
= 32(F+(x)− F−(x))

(66)

 H(I)
yy (x, 0)− iH(I)

xy (x, 0) = −32
(

K(I)
1 − K(I)

2

)
H−(x)

∂
∂x

((
w(I)

x (x, 0) + iw(I)
y (x, 0)

)
−

(
w(II)

x (x, 0) + iw(II)
y (x, 0)

))
= 32

(
r(I)7 H−(x)− r(II)7 H+(x)

) (67)

5. Complex Potential Solution of the Problem

From the derivation in the previous section, the problem is transformed into the
homogeneous Dirichlet–Riemann boundary value problem{

F+(x) + γF−(x) = 0, x ∈ (c, b)
ImF±(x) = 0, x ∈ (b, a)

(68)

{
H−(x) = 0, x ∈ (c, b)
ImH∓(x) = 0, x ∈ (b, a)

(69)

From the second equation of the above equations, one obtains

H(z) = 0 (70)

Thus, the stresses and displacements of the phason field can be expressed as

Hyy(x, y)− iHxy(x, y)
−32g

=


R(I)

r(I)1

(z − z)
((

γF′(z)− F′
(z)

)
+ 1

2 (z − z)F′′
(z)

)
, y > 0

R(II)

r(II)1

(z − z)
((

F′(z)− γF′
(z)

)
+ γ

2 (z − z)F′′
(z)

)
, y < 0

(71)

∂

∂x
(
wx(x, y) + iwy(x, y)

)
=


32gr(1)7

r(I)1

(z − z)
((

γF′(z)− F′
(z)

)
+ 1

2 (z − z)F′′
(z)

)
, y > 0

32gr(1I)
7

r(II)1

(z − z)
((

F′(z)− γF′
(z)

)
+ γ

2 (z − z)F′′
(z)

)
, y < 0

(72)

when x ∈ (−∞, c) ∪ (a, ∞), F+(x) = F−(x) = F(x) is valid.
Using the conditions at infinity, one obtains

32g(1 + γ)F(x) = σ − iτ, x ∈ (−∞, c) ∪ (a, ∞) (73)
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Function F(z) is analytic at infinity; one obtains

F(z)|z→∞ =
σ − iτ

32g(1 + γ)
(74)

The general solution of Equation (68) of the combined Dirichlet–Riemann boundary
value problem from [30] is unbounded at all points a, b, c and can be written as

F(z) = iP(z)X1(z) + Q(z)X2(z) (75)

where
P(z) = C1z + C2, Q(z) = D1z + D2,
X1(z) = eiφ(z)√

(z−a)
√

(z−c)
, X2(z) = eiφ(z)√

(z−b)
√

(z−c)

φ(z) = 2ε ln
√

(a−b)(z−c)√
(a−c)(z−b)+

√
(b−c)(z−a)

ε = 1
2π ln γ

Replacing z with z in Equations (31)–(33), one has

F(z) = iP(z)X1(z) + Q(z)X2(z) (76)

derived by differentiation

F′(z) = iC1X1(z) + iP(z)X′
1(z) + D1X2(z) + Q(z)X′

2(z)
F′′ (z) = 2iC1X′

1(z) + iP(z)X′′
1 (z) + 2D1X′

2(z) + Q(z)X′′
2 (z)

F′(z) = iC1X1(z) + iP(z)X′
1(z) + D1X2(z) + Q(z)X′

2(z)

F′′ (z) = 2iC1X′
1(z) + iP(z)X′′

1 (z) + 2D1X′
2(z) + Q(z)X′′

2 (z)

(77)

X1(z) and X2(z) have an oscillating singularity at the point z = c + i0 and square-root
singularities at the points z = a + i0 and z = b + i0, respectively. X1(z) and X2(z) at infinity
can be written as

X1(z) = z−2eiβ(z + iβ1 +
c+a

2
)
+ O

(
z−3)

X2(z) = z−2eiβ
(

z + iβ1 +
c+b

2

)
+ O

(
z−3) (78)

where
β = ε ln

√
a−c−

√
b−c√

a−c+
√

b−c
, β1 = ε

√
(a − c)(b − c),

The arbitrary constants C1, C2, D1, D2 have the following forms

C1 = −τ cos β − σ sin β, C2 = − c+a
2 C1 − β1D1,

D1 = σ cos β − τ sin β, D2 = β1C1 − c+b
2 D1,

(79)

The stresses and the derivatives of the displacement jumps for z = x + i0 can be
expressed as follows:

for x > a:

σ
(I)
yy (x, 0)− iσ(I)

xy (x, 0) = 32g(1 + γ)
(

Q(x)√
x−b

+ i P(x)√
x−a

)
exp[iφ(x)]√

x−c

H(I)
yy (x, 0)− iH(I)

xy (x, 0) = 0
(80)

for x ∈ (b, a):

σ
(1)
yy = 32gP(x)√

(x−c)(a−x)
((1 − γ)chφ0(x) + (1 + γ)shφ0(x))

+ 32gQ(x)√
(x−c)(x−b)

((1 + γ)chφ0(x) + (1 − γ)shφ0(x))
(81)
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(
u(I)

x − u(II)
x

)′
=

2√
x − c

(
P(x)√
a − x

chφ0(x) +
Q(x)√
x − b

shφ0(x)
)

(82)

for x ∈ (c, b):(
u(I)

x (x) + iu(I)
y (x)

)′
−

(
u(II)

x (x) + iu(II)
y (x)

)′
= 32(1+γ)√

γ

(
P(x)√

a−x − i Q(x)√
b−x

)
exp(iφ∗(x))√

x−c(
w(I)

x (x) + iw(I)
y (x)

)′
−

(
w(II)

x (x) + iw(II)
y (x)

)′
= 0

(83)

where
φ∗(x) = 2ε ln

√
(a−b)(x−c)√

(a−c)(b−x)+
√

(b−c)(a−x)
,

φ0(x) = 2εarctan
√

(b−c)(a−x)
(a−c)(x−b)

From Equations (80) and (82), it can be seen that the normal stress in the phonon field
has a square-root singularity for x → b + 0 , and the shear stress has the same singularity
for x → a + 0 . The relevant stress intensity factors in the phonon field can be defined as

KS1 = lim
x→b+0

√
2(x − b)σyy(x, 0), KS2 = lim

x→a+0

√
2(x − a)σxy(x, 0), (84)

and can be written as

KS1 = 64g
√

πγ
Q(b)√
b − c

, KS2 = −32g(1 + γ)

√
2π

a − c
P(a) (85)

Further, the stress intensity factors can be expressed in the form

KS1 =
√

πγ
1+γ

(√
b − c(σ cos β − τ sin β)− 2ε

√
a − c(σ sin β + τ cos β)

)
KS2 =

√
π
2

(√
a − c(σ sin β + τ cos β) + 2ε

√
b − c(σ cos β − τ sin β)

) (86)

The asymptotic behavior of the stresses and the displacement jumps in the phonon
field at the points a and b can be written as

σ
(I)
yy (x, 0)

∣∣∣
x→b+0

= KS1√
2π(x−b)

, σ
(I)
xy (x, 0)

∣∣∣
x→a+0

= KS2√
2π(x−a)

,(
u(I)

y (x, 0)− u(II)
y (x, 0)

)∣∣∣
x→b−0

= KS1
16g

√
2πγ

√
b − x,(

u(I)
x (x, 0)− u(II)

x (x, 0)
)∣∣∣

x→a−0
= KS2

8g(1+γ)
√

2π

√
a − x

(87)

6. Numerical Results and Discussion

The elastic constants of Al Ni Co quasicrystal alloy are taken as the elastic constants of
the phonon field, phason field, and coupling constants of the phonon–phason field [31],
as shown in Tables 1 and 2. In order to avoid matrix ill condition caused by material
parameters in different orders of magnitude, the material constants are dimensionless, and
the dimensionless stress intensity factors in the phonon field are obtained.

Table 1. Material I constants of decagonal quasicrystal.

Elastic Constants The Value of Elastic Constant

Phonon field elastic constant/GPa C11 = 234.33, C66 = 88.46

Phason field elastic constant/GPa K1 = 122, K2 = 24

Coupling constant/GPa R = 0.8846
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Table 2. Material II constants of decagonal quasicrystal.

Elastic Constants The Value of Elastic Constant

Phonon field elastic constant/GPa C11 = 214.33, C66 = 68.46

Phason field elastic constant/GPa K1 = 102, K2 = 22

Coupling constant/GPa R = 0.8646

It is clear from Equations (84)–(86) that the length of the contact zone depends only on
point b. Figure 2 shows the change in the stress intensity factor with the crack contact zone,
where the relative contact zone length of a crack with a right contact zone is given. It can
be found that for any point, the model framework that only considers the contact area can
clearly define the area with a large contact area. The smaller the contact length, the greater
the normal stress intensity factor. This is consistent with the trend of classical elasticity.
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7. Conclusions

The interface crack contact zone of decagonal quasicrystal bi-materials under far-field
mixed loading is studied. Based on the theory of complex variable function, the problem
is transformed into a Dirichlet–Riemann problem for analytical solution. The expressions
of stress, stress intensity factor, and displacement jump along the material interface are
obtained by using the closed analytical formula of the interface crack in the single contact
zone of the decagonal quasicrystal bi-materials, and the relationship between the fracture
mechanics parameters of the interface crack is given. The analytical expression obtained
can be used to verify some numerical analysis and can also accurately show the physical
nature of the crack problem in the contact zone of decagonal quasicrystal materials.
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