Site Occupancy Preference and Magnetic Properties in Nd2(Fe,Co)14B
Abstract
:1. Introduction
2. Method and Computational Details
3. Results and Discussion
3.1. Substitution Energy and Site Preference of Co in Nd2(Fe,Co)14B
3.2. Atomic Resolved Magnetic Moments in Nd2(Fe,Co)14B
3.3. Exchange Interaction and Curie Temperature in Nd2(Fe,Co)14B
3.4. Magnetization of Nd2(Fe,Co)14B at Finite Temperature
4. Summary
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sagawa, M.; Fujimura, S.; Togawa, N.; Yamamoto, H.; Matsuura, Y. New Material for Permanent Magnets on a Base of Nd and Fe (Invited). J. Appl. Phys. 1984, 55, 2083–2087. [Google Scholar] [CrossRef]
- Croat, J.J.; Herbst, J.F.; Lee, R.W.; Pinkerton, F.E. Pr-Fe and Nd-Fe-Based Materials: A New Class of High-Performance Permanent Magnets (Invited). J. Appl. Phys. 1984, 55, 2078–2082. [Google Scholar] [CrossRef]
- Sugimoto, S. Current Status and Recent Topics of Rare-Earth Permanent Magnets. J. Phys. D Appl. Phys. 2011, 44, 064001. [Google Scholar] [CrossRef]
- McCallum, R.W.; Lewis, L.; Skomski, R.; Kramer, M.J.; Anderson, I.E. Practical Aspects of Modern and Future Permanent Magnets. Annu. Rev. Mater. Res. 2014, 44, 451–477. [Google Scholar] [CrossRef]
- Gutfleisch, O.; Willard, M.A.; Brück, E.; Chen, C.H.; Sankar, S.G.; Liu, J.P. Magnetic Materials and Devices for the 21st Century: Stronger, Lighter, and More Energy Efficient. Adv. Mater. 2011, 23, 821–842. [Google Scholar] [CrossRef]
- Herbst, J.F. R2Fe14B Materials: Intrinsic Properties and Technological Aspects. Rev. Mod. Phys. 1991, 63, 819–898. [Google Scholar] [CrossRef]
- Sepehri-Amin, H.; Ohkubo, T.; Hono, K. Grain Boundary Structure and Chemistry of Dy-Diffusion Processed Nd–Fe–B Sintered Magnets. J. Appl. Phys. 2010, 107, 09A745. [Google Scholar] [CrossRef]
- Gabay, A.M.; Marinescu, M.; Li, W.F.; Liu, J.F.; Hadjipanayis, G.C. Dysprosium-Saving Improvement of Coercivity in Nd-Fe-B Sintered Magnets by Dy2S3 Additions. J. Appl. Phys. 2011, 109. [Google Scholar] [CrossRef]
- Yue, M.; Liu, W.Q.; Zhang, D.T.; Jian, Z.G.; Cao, A.L.; Zhang, J.X. Tb Nanoparticles Doped Nd-Fe-B Sintered Permanent Magnet with Enhanced Coercivity. Appl. Phys. Lett. 2009, 94, 092501. [Google Scholar] [CrossRef]
- Cao, X.; Chen, L.; Guo, S.; Chen, R.; Yan, G.; Yan, A. Magnetic and Microstructural Properties of DyF3-Coated Sintered Nd-Fe-B Magnets by Electrophoretic Deposition. IEEE Trans. Magn. 2015, 51, 2101804. [Google Scholar] [CrossRef]
- Liu, X.; Wang, X.; Liang, L.; Zhang, P.; Jin, J.; Zhang, Y.; Ma, T.; Yan, M. Rapid Coercivity Increment of Nd-Fe-B Sintered Magnets by Dy69Ni31 Grain Boundary Restructuring. J. Magn. Magn. Mater. 2014, 370, 76–80. [Google Scholar] [CrossRef]
- Liu, X.B.; Altounian, Z. The Partitioning of Dy and Tb in NdFeB Magnets: A First-Principles Study. J. Appl. Phys. 2012, 111, 07A701. [Google Scholar] [CrossRef]
- Yosida, K.; Okiji, K.; Chikazumi, S. Magnetic Anisotropy of Localized State in Metals. Prog. Theor. Phys. 1965, 33, 559. [Google Scholar] [CrossRef]
- Delange, P.; Biermann, S.; Miyake, T.; Pourovskii, L. Crystal-Field Splittings in Rare-Earth-Based Hard Magnets: An Ab Initio Approach. Phys. Rev. B 2017, 96, 155132. [Google Scholar] [CrossRef]
- Gimaev, R.; Komlev, A.; Davydov, A.; Kovalev, B.; Zverev, V. Magnetic and Electronic Properties of Heavy Lanthanides (Gd, Tb, Dy, Er, Ho, Tm). Crystals 2021, 11, 82. [Google Scholar] [CrossRef]
- Lv, M.; Kong, T.; Zhang, W.; Zhu, M.; Jin, H.; Li, W.; Li, Y. Progress on Modification of Microstructures and Magnetic Properties of Nd-Fe-B Magnets by the Grain Boundary Diffusion Engineering. J. Magn. Magn. Mater. 2021, 517, 167278. [Google Scholar] [CrossRef]
- Chen, F. Recent Progress of Grain Boundary Diffusion Process of Nd-Fe-B Magnets. J. Magn. Magn. Mater. 2020, 514, 167227. [Google Scholar] [CrossRef]
- Liu, Z.; He, J.; Ramanujan, R.V. Significant Progress of Grain Boundary Diffusion Process for Cost-Effective Rare Earth Permanent Magnets: A Review. Mater. Des. 2021, 209, 110004. [Google Scholar] [CrossRef]
- Burzo, E. Permanent Magnets Based on R-Fe-B and R-Fe-C Alloys. Rep. Prog. Phys. 1998, 61, 1099–1266. [Google Scholar] [CrossRef]
- Li, W.F.; Ohkubo, T.; Akiya, T.; Kato, H.; Hono, K. The Role of Cu Addition in the Coercivity Enhancement of Sintered Nd-Fe-B Permanent Magnets. J. Mater. Res. 2009, 24, 413–420. [Google Scholar] [CrossRef]
- Liu, X.B.; Altounian, Z. The Role of Cu in Sintered Nd-Fe-b Magnets: Ab Initio Study. IEEE Trans. Magn. 2012, 48, 3144–3146. [Google Scholar] [CrossRef]
- Sepehri-Amin, H.; Li, W.F.; Ohkubo, T.; Nishiuchi, T.; Hirosawa, S.; Hono, K. Effect of Ga Addition on the Microstructure and Magnetic Properties of Hydrogenation-Disproportionation-Desorption-Recombination Processed Nd-Fe-B Powder. Acta Mater. 2010, 58, 1309–1316. [Google Scholar] [CrossRef]
- Liu, Y.; He, J.; Yu, H.; Liu, Z.; Zhang, G. Restoring and Enhancing the Coercivity of Waste Sintered (Nd,Ce,Gd)FeB Magnets by Direct Pr–Tb–Cu Grain Boundary Diffusion. Appl. Phys. A 2020, 126, 657. [Google Scholar] [CrossRef]
- Moze, O.; Pareti, L.; Solzi, M.; Bolzoni, F.; David, W.I.F.; Harrison, W.T.A.; Hewat, A.W. Magnetic Structure and Preferential Site Occupation in Manganese- and Chromium-Substituted Y2Fe14B Compounds. J. Less Common Met. 1988, 136, 375–383. [Google Scholar] [CrossRef]
- Herbst, J.F.; Yelon, W.B. Preferential Site Occupation and Magnetic Structure of Nd2(CoxFe1−x) 14B Systems. J. Appl. Phys. 1986, 60, 4224–4229. [Google Scholar] [CrossRef]
- van Noort, H.M.; Buschow, K.H.J. On the Site Preference of 3d Atoms in Compounds of the R2(Co1−xFex)14B Type. J. Less Common Met. 1985, 113, L9–L12. [Google Scholar] [CrossRef]
- Ryan, D.H.; Altounian, Z.; Liao, L.X.; Ström-Olsen, J.O.; Muir, W.B. Direct Determination of Cobalt Site Preferences at Infinite Dilution in Iron-Based Intermetallic Compounds (Invited). J. Appl. Phys. 1990, 67, 4742–4746. [Google Scholar] [CrossRef]
- Eslava, G.G.; Ito, M.; Colin, C.V.; Yano, M.; Shoji, T.; Kato, A.; Suard, E.; Dempsey, N.M.; Givord, D. Preferential Co and Fe Atom Occupancy in R2(Fe1−XCo)14B Intermetallic Compounds (R = Nd, Y and Ce). J. Alloys Compd. 2021, 851, 156168. [Google Scholar] [CrossRef]
- Liu, X.B.; Ma, Y.; Altounian, Z.; Zhang, Q.; Ping Liu, J. First-Principles Survey on the Doping of Ga in Nd2Fe14B. J. Appl. Phys. 2014, 115, 17A702. [Google Scholar] [CrossRef]
- Liu, X.B.; Nlebedim, I.C. Segregation of Al and Its Effect on Coercivity in Nd-Fe-B. AIP Adv. 2024, 14, 015030. [Google Scholar] [CrossRef]
- Tatetsu, Y.; Tsuneyuki, S.; Gohda, Y. First-Principles Study on Substitution Effects in Nd2(Fe, X)14B. Materialia 2018, 4, 388–394. [Google Scholar] [CrossRef]
- Girgis, K.; Kraft, M.; Weis, U.; Fischer, P.; Sostarich, M. Crystal and Magnetic Structure of the Permanent Magnet Materials Nd2Fe14−xCoxB (x = 0–14). J. Less Common Met. 1990, 162, 335–342. [Google Scholar] [CrossRef]
- Fuerst, C.D.; Herbst, J.F.; Alson, E.A. Magnetic Properties of Nd2(CoxFe1−x)14B Alloys. J. Magn. Magn. Mater. 1986, 54–57, 567–569. [Google Scholar] [CrossRef]
- Hu, B.P.; Li, H.S.; Gavigan, J.P.; Coey, J.M.D. Intrinsic Magnetic Properties of the Iron-Rich ThMn12-Structure Alloys R(Fe11Ti); R=Y, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm and Lu. J. Phys. Condens. Matter 1989, 1, 755. [Google Scholar] [CrossRef]
- Srinithi, A.K.; Sepehri-Amin, H.; Tang, X.; Tozman, P.; Li, J.; Zhang, J.; Kobayashi, S.; Ohkubo, T.; Nakamura, T.; Hono, K. Phase Relations and Extrinsic Magnetic Properties of Sm–(Fe,Co)–Ti–(Ga)-Based Alloys for ThMn12-Type Permanent Magnets. J. Magn. Magn. Mater. 2021, 529, 167866. [Google Scholar] [CrossRef]
- Hirayama, Y.; Takahashi, Y.K.; Hirosawa, S.; Hono, K. Intrinsic Hard Magnetic Properties of Sm(Fe1−xCox)12 Compound with the ThMn12 Structure. Scr. Mater. 2017, 138, 62. [Google Scholar] [CrossRef]
- Liu, X.B.; Ping Liu, J.; Zhang, Q.; Altounian, Z. The Fe Substitution in Nd2(Fe,M)14B (M = Si, Ge and Sn): A First-Principles Study. Comput. Mater. Sci. 2014, 85, 186–192. [Google Scholar] [CrossRef]
- Ozaki, T. Variationally Optimized Atomic Orbitals for Large-Scale Electronic Structures. Phys. Rev. B 2003, 67, 155108. [Google Scholar] [CrossRef]
- Ozaki, T.; Kino, H. Numerical Atomic Basis Orbitals from H to Kr. Phys. Rev. B 2004, 69, 195113. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef]
- Richter, M. Band Structure Theory of Magnetism in 3d-4f Compounds. J. Phys. D Appl. Phys. 1998, 31, 1017–1048. [Google Scholar] [CrossRef]
- Coey, J. Magnetism and Magnetic Materials; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Tolman, R.C. The Principles of Statistical Mechanics; Dover Pub. Inc.: New York, NY, USA, 1979. [Google Scholar]
- Pashov, D.; Acharya, S.; Lambrecht, W.R.L.; Jackson, J.; Belashchenko, K.D.; Chantis, A.; Jamet, F.; van Schilfgaarde, M. Questaal: A Package of Electronic Structure Methods Based on the Linear Muffin-Tin Orbital Technique. Comput. Phys. Commun. 2020, 249, 107065. [Google Scholar] [CrossRef]
- Andersen, O.K. Linear Methods in Band Theory. Phys. Rev. B 1975, 12, 3060–3083. [Google Scholar] [CrossRef]
- Jepsen, O.; Andersen, O.K. The Electronic Structure of h.c.p. Ytterbium. Solid State Commun. 1971, 9, 1763–1767. [Google Scholar] [CrossRef]
- Blöchl, P.E.; Jepsen, O.; Andersen, O.K. Improved Tetrahedron Method for Brillouin-Zone Integrations. Phys. Rev. B 1994, 49, 16223–16233. [Google Scholar] [CrossRef] [PubMed]
- van Schilfgaarde, M.; Antropov, V.P. First-Principles Exchange Interactions in Fe, Ni, and Co. J. Appl. Phys. 1999, 85, 4827–4829. [Google Scholar] [CrossRef]
- Matsuura, Y.; Hirosawa, S.; Yamamoto, H.; Fujimura, S.; Sagawa, M.; Osamura, K. Phase Diagram of the Nd-Fe-b Ternary System. Jpn. J. Appl. Phys. 1985, 24, 635–637. [Google Scholar] [CrossRef]
- Koch, E.; Fischem, W. DIDO95 and VOID95—Programs for the Calculation of Dirichlet Domains and Coordination Polyhedra. Z. Für Krist.-Cryst. Mater. 1996, 211, 251–253. [Google Scholar] [CrossRef]
- Kittel, C. Introduction to Solid State Physics, 8th ed.; John Wiley & Sons: Chicago, IL, USA, 2004. [Google Scholar]
- Miedema, A.R. Energy Effects and Charge Transfer in Metal Physics; Modelling in Real Space. Phys. B Condens. Matter 1992, 182, 1–17. [Google Scholar] [CrossRef]
- Momma, K.; Izumi, F. VESTA 3 for Three-Dimensional Visualization of Crystal, Volumetric and Morphology Data. J. Appl. Crystallogr. 2011, 44, 1272–1276. [Google Scholar] [CrossRef]
- Liu, X.B.; Altounian, Z. First-Principles Calculation on the Curie Temperature of GdFeSi. J. Appl. Phys. 2010, 107. [Google Scholar] [CrossRef]
- Liu, X.B.; Altounian, Z. Magnetic Moments and Exchange Interaction in Sm(Co, Fe)5 from First-Principles. Comput. Mater. Sci. 2011, 50, 841–846. [Google Scholar] [CrossRef]
Co (Nd2Fe13.75Co0.25B) | Fe (Nd2Co13.75Fe0.25B) | NN | WSV | |
---|---|---|---|---|
Esub(16k1) | −0.10 | −0.17 | 2Nd, 1B, 10Fe | 11.9 |
Esub(16k2) | −0.19 | −0.15 | 2Nd, 10Fe | 11.6 |
Esub(8j1) | −0.30 | −0.20 | 3Nd, 9Fe | 12.4 |
Esub(8j2) | 0.16 | −0.40 | 2Nd, 12Fe | 12.8 |
Esub(4e) | −0.04 | −0.13 | 2Nd, 2B, 9Fe | 12.1 |
Esub(4c) | −0.24 | −0.30 | 4Nd, 8Fe | 12.3 |
16k1 | 16k2 | 8j1 | 8j2 | 4e | 4c | |
---|---|---|---|---|---|---|
Fe | 2.30 | 2.37 | 2.31 | 2.68 | 2.11 | 2.48 |
Co | 1.37 | 1.48 | 1.42 | 1.70 | 1.23 | 1.53 |
Site | x = 0 | x = 0.25 (Co@8j1) | x = 13.75 (Fe@8j2) | x = 14 |
---|---|---|---|---|
16k1 | 2.29 | 2.29 | 1.23 | 1.23 |
16k2 | 2.36 | 2.36 | 1.45 | 1.45 |
8j1 | 2.30 | 2.18 | 1.51 | 1.51 |
8j2 | 2.68 | 2.68 | 1.71 | 1.57 |
4e | 2.11 | 2.12 | 1.05 | 1.06 |
4c | 2.48 | 2.48 | 1.60 | 1.60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Nlebedim, I.C. Site Occupancy Preference and Magnetic Properties in Nd2(Fe,Co)14B. Crystals 2024, 14, 370. https://doi.org/10.3390/cryst14040370
Liu X, Nlebedim IC. Site Occupancy Preference and Magnetic Properties in Nd2(Fe,Co)14B. Crystals. 2024; 14(4):370. https://doi.org/10.3390/cryst14040370
Chicago/Turabian StyleLiu, Xubo, and Ikenna C. Nlebedim. 2024. "Site Occupancy Preference and Magnetic Properties in Nd2(Fe,Co)14B" Crystals 14, no. 4: 370. https://doi.org/10.3390/cryst14040370
APA StyleLiu, X., & Nlebedim, I. C. (2024). Site Occupancy Preference and Magnetic Properties in Nd2(Fe,Co)14B. Crystals, 14(4), 370. https://doi.org/10.3390/cryst14040370