Adsorption of Ni(II) from Aqueous Media on Biodegradable Natural Polymers—Sarkanda Grass Lignin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Procedure
2.2.1. Adsorption Experiments
2.2.2. Germination Experiments
2.3. Characterization Methods
2.3.1. Spectrophotometric Determination of Ni(II)
2.3.2. Isotherm Models
2.3.3. Kinetics Modeling
2.3.4. Biological Stability
2.3.5. Surface Morphology
3. Results and Discussion
3.1. Evaluation of Ni(II) Adsorption Efficiency on Sarkanda Grass Lignin through Analysis of Experimental Parameters Analyzed
3.1.1. Lignin Dose
3.1.2. Initial Concentration of Ni(II)
3.1.3. Contact Time
3.1.4. pH Initial Solution
3.2. Ni(II) Adsorption Efficiency on Sarkanda Grass Lignin Evaluated by Adsorption Isotherms
3.3. Efficiency Evaluation of Ni(II) Adsorption on Sarkanda Grass Lignin through Kinetic Modeling
3.4. Efficiency of Ni(II) Adsorption on Sarkanda Grass Lignin Evaluated through Biological Parameters
3.4.1. Number of Germinated Wheat Seeds, Glosa Variety
3.4.2. Germination Energy and Capacity of Wheat Seeds, Glosa Variety
3.5. Efficiency of Ni(II) Adsorption on Sarkanda Grass Lignin Evaluated through Surface Analyses
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fornea, V.; Trupină, S.; Iosub, A.V.; Bulgariu, L. Spectrophotometric determination of Cu(II), Co(II) and Ni(II) ions in mono and multi-component systems. Bul. Inst. Polit. 2016, 62, 11–20. [Google Scholar]
- Pavel, L.V. Behavioral Studies of Heavy Metals in the Soil and of some Remedy Alternatives. Ph.D. Thesis, “Gh. Asachi” Polytechnic University of Iasi, Iasi, Romania, 2012; pp. 31–39. [Google Scholar]
- Jaishankar, M.; Tseten, T.; Anbalagan, N.; Mathew, B.B.; Mathew, K.N. Toxicity, mechanism and health effects of some heavy metals. Rev. Interdiscip. Toxicol. 2014, 7, 60–72. [Google Scholar] [CrossRef] [PubMed]
- Duruibe, J.O.; Ogwuegbu, M.O.C.; Egwurugwu, J.N. Heavy metal pollution and human biotoxic effects. Phys. Sci. Int. J. 2007, 2, 112–118. [Google Scholar]
- Begum, W.; Rai, S.; Banerjee, S.; Bhattacharjee, S.; Mondal, M.H.; Bhattarai, A.; Saha, B. A comprehensive review on the sources, essentiality and toxicological profile of nickel. RSC Adv. 2022, 12, 9139–9153. [Google Scholar] [CrossRef] [PubMed]
- Cavani, A. Breaking tolerance to nickel. Toxicology 2005, 209, 119–121. [Google Scholar] [CrossRef] [PubMed]
- Rothenberg, S.J.; Karchmer, S.; Schnaas, L.; Perroni, E.; Zea, F.; Fernandez, A.J. Change in serial blood lead levels during pregnancy. Environ. Health. Perspect. 1994, 102, 876–880. [Google Scholar] [CrossRef] [PubMed]
- Pokorska-Niewiada, K.; Rajkowska-Myśliwiec, M.; Protasowicki, M. Acute lethal toxicity of heavy metals to the seeds of plants of high importance to humans. Bull. Environ. Contam. 2018, 101, 222–228. [Google Scholar] [CrossRef] [PubMed]
- Khan, Z.I.; Ahmad, K.; Ahmad, T.; Zafar, A.; Alrefaei, A.F.; Ashfaq, A.; Akhtar, S.; Mahpara, S.; Mehmood, N.; Ugulu, I. Evaluation of nickel toxicity and potential health implications of agriculturally diversely irrigated wheat crop varieties. Arab. J. Chem. 2023, 16, 104934. [Google Scholar] [CrossRef]
- Genchi, G.; Carocci, A.; Lauria, G.; Sinicropi, M.S.; Catalano, A. Nickel: Human Health and Environmental Toxicology. Int. J. Environ. Res. Public. Health 2020, 17, 679. [Google Scholar] [CrossRef]
- Shen, H.M.; Zhang, Q.F. Risk assessment of nickel carcinogenicity and occupational lung cancer. Environ. Health Perspect. 1994, 102, 275–282. [Google Scholar] [CrossRef]
- Ellen, T.P.; Kluz, T.; Harder, M.E.; Xiong, J.; Costa, M. Heterochromatinization as a potential mechanism of nickel-induced carcinogenesis. Biochemistry 2009, 48, 4626–4632. [Google Scholar] [CrossRef] [PubMed]
- Zou, L.; Su, L.; Sun, Y.; Han, A.; Chang, X.; Zhu, A.; Liu, F.; Li, J.; Sun, Y. Nickel sulfate induced apoptosis via activating ROS-dependent mitochondria and endoplasmic reticulum stress pathways in rat Leydig cells. Environ. Toxicol. 2017, 32, 1918–1926. [Google Scholar] [CrossRef] [PubMed]
- Sciban, M.; Klasnja, M.; Skrbic, B. Modified softwood sawdust as adsorbent of heavy metal ions from water. J. Hazard. Mater. 2006, 136, 266–271. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.Y.; Zhang, A.Z.; Shan, X.Q. Adsorption of metal ions on lignin. J. Hazard. Mater. 2008, 151, 134–142. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Chen, Y.; Wang, D.; Yu, D.; Wu, C. Lignin-based adsorbents for heavy metals. Ind. Crops Prod. 2023, 193, 116119. [Google Scholar] [CrossRef]
- Hubbe, M.A.; Beck, K.R.; O’Neal, W.G.; Sharma, Y.C. Cellulosic substrates for removal of pollutants from aqueous systems: A review. 2. Dyes. BioResources 2012, 7, 2592–2687. [Google Scholar] [CrossRef]
- Ungureanu, E.; Trofin, A.; Trincă, L.C.; Ariton, A.M.; Ungureanu, O.C.; Fortună, M.E.; Jităreanu, C.D.; Popa, V.I. Studies on kinetics and adsorption equilibrium of lead and zinc ions from aqueous solutions on Sarkanda Grass lignin. Cellul. Chem. Technol. 2021, 55, 939–948. [Google Scholar] [CrossRef]
- Ungureanu, E.; Jităreanu, C.D.; Trofin, A.; Fortună, M.E.; Ungureanu, O.C.; Ariton, A.M.; Trincă, L.C.; Brezuleanu, S.; Popa, V.I. Use of Sarkanda Grass lignin as a possible adsorbent for As (III) from aqueous solutions-kinetic and equilibrium studies. Cellul. Chem. Technol. 2022, 56, 681–689. [Google Scholar] [CrossRef]
- Ungureanu, E.; Fortună, M.E.; Țopa, D.C.; Brezuleanu, C.O.; Ungureanu, V.I.; Chiruță, C.; Rotaru, R.; Tofanică, B.M.; Popa, V.I.; Jităreanu, D.C. Comparison adsorption of Cd (II) onto Lignin and Polysaccharide-based polymers. Polymers 2023, 15, 3794. [Google Scholar] [CrossRef]
- Rusu, G. Studies on the Use of Cellulosic Wastes in Reducing Environmental Pollution. Ph.D. Thesis, “Gh. Asachi” Polytechnic University of Iasi, Iasi, Romania, 2015; pp. 29–48. [Google Scholar]
- Ungureanu, E. Aspects of Composites Biodegradation Based on Lignocelluloses Materials. Ph.D. Thesis, “Gh. Asachi” Polytechnic University of Iasi, Iasi, Romania, 2008; pp. 15–20. [Google Scholar]
- Sethupathy, S.; Morales, G.M.; Gao, L.; Wang, H.; Yang, B.; Jiang, J.; Sun, J.; Zhu, D. Lignin valorization: Status, challenges and opportunities. Bioresour. Technol. 2022, 347, 126696. [Google Scholar] [CrossRef]
- Mabrouka, A.; Erdociab, X.; Alriolsb, M.G.; Labidib, J. Techno-Economic Evaluation for Feasibility of Lignin Valorisation Process for the Production of Bio-Based Chemicals. Chem. Eng. Trans. 2017, 61, 428–432. [Google Scholar]
- Garcia-Valls, R.; Hatto, T.A. Metal ion complexation with lignin derivatives. J. Chem. Eng. 2003, 94, 99–105. [Google Scholar] [CrossRef]
- Todorciuc, T. Contributions to Some Complex Combinations of Natural Products with Aromatic Structure. Ph.D. Thesis, “Gh. Asachi” Polytechnic University of Iasi, Iasi, Romania, 2016; pp. 62–78. [Google Scholar]
- Wang, X.; Li, X.; Peng, L.; Han, S.; Hao, C.; Jiang, C.; Wang, H.; Fan, X. Effective removal of heavy metals from water using porous lignin-based adsorbents. Chemosphere 2021, 279, 130504. [Google Scholar] [CrossRef]
- Weber, W.J.J.; McGinley, P.M.; Katz, L.E. Sorption phenomena in subsurface systems: Concepts, models and effects on contaminant fate and transport. Water Res. 1991, 25, 499–528. [Google Scholar] [CrossRef]
- Chong, K.H.; Volesky, B. Description of two-metal biosorption equilibria by Langmuir-type models. Biotechnol. Bioeng. 1995, 47, 451–460. [Google Scholar] [CrossRef]
- Rajeev, A. Adsorption of Heavy Metals—A Review. Mater. Today Proc. 2019, 18, 4745–4750. [Google Scholar]
- Marcuello, C.; Foulon, L.; Chabbert, B.; Aguié-Béghin, V.; Molinari, M. Atomic force microscopy reveals how relative humidity impacts the Young’s modulus of lignocellulosic polymers and their adhesion with cellulose nanocrystals at the nanoscale. Int. J. Biol. Macromol. 2020, 147, 1064–1075. [Google Scholar] [CrossRef] [PubMed]
- Azizian, S. Kinetic models of sorption: A theoretical analysis. J. Colloid Interface Sci. 2004, 276, 47–52. [Google Scholar] [CrossRef]
- Revellame, E.D.; Fortela, D.L.; Sharp, W.; Hernandez, R.; Zappi, M.E. Adsorption kinetic modeling using pseudo-first order and pseudo-second order rate laws: A review. Clean. Eng. Technol. 2020, 1, 100032. [Google Scholar] [CrossRef]
- Samuil, C. General Plant Technologies; University of Agricultural Sciences and Veterinary Medicine Ion Ionescu de la Brad: Iasi, Romania, 2010; p. 280. [Google Scholar]
- Ayawei, N.; Ebelegi, A.N.; Wankasi, D. Modelling and Interpretation of Adsorption Isotherms. J. Chem. 2017, 2017, 3039817. [Google Scholar] [CrossRef]
- Hanif, M.A.; Tauqeer, H.M.; Aslam, N.; Hanif, A.; Yaseen, M.; Khera, R.A. Correct Interpretation of sorption mechanism by Isothermal, Kinetic and Thermodynamic models. Int. J. Chem. Biochem. Sci. 2017, 12, 53–67. [Google Scholar]
- Koble, R.A.; Corrigan, T.E. Adsorption isotherms for pure hydrocarbons. J. Ind. Eng. Chem. 1952, 44, 383–387. [Google Scholar] [CrossRef]
- Dabrowski, A. Adsorption—From theory to practice. Adv. Colloid Interface Sci. 2001, 93, 135–224. [Google Scholar] [CrossRef] [PubMed]
- Boparai, H.K.; Joseph, M.; O’Carroll, D.M. Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles. J. Hazard. Mater. 2011, 186, 458–465. [Google Scholar] [CrossRef] [PubMed]
- Ho, Y.S.; McKay, G. Pseudo-second order model for sorption processes. Process Biochem. 1999, 34, 451–465. [Google Scholar] [CrossRef]
- Major, G.H.; Chatterjee, S.; Linford, M.R. Resolving a mathematical inconsistency in the Ho and McKay adsorption equation. Appl. Surf. Sci. 2020, 504, 144157. [Google Scholar] [CrossRef]
- Tan, K.L.; Hameed, B.H. Insight into the Adsorption Kinetics Models for the Removal of Contaminants from Aqueous Solutions. J. Taiwan Inst. Chem. Eng. 2017, 74, 25–48. [Google Scholar]
- Iyem, E.; Yildirim, M.; Kizilgeci, F. Germination, seedling growth and physio-biochemical indices of bread wheat (Triticum aestivum l.) genotypes under peg induced drought stress. Agric. For. 2021, 67, 163–180. [Google Scholar] [CrossRef]
- Mohammed, A.; Abdullah, A. Scanning Electron Microscopy (SEM): A Review. In Proceedings of the 2018 International Conference on Hydraulics and Pneumatics—HERVEX, Băile Govora, Romania, 7–9 November 2018; Volume 1, pp. 77–85. [Google Scholar]
- Aziam, R.; Chibana, M.; Eddaoudi, H.; Soudani, A.; Zerbet, M.; Sinan, F. Kinetic modeling, equilibrium isotherm and thermodynamic studies on a batch adsorption of anionic dye onto eco-friendly dried Carpobrotus edulis plant. Eur. J. Phys. 2017, 226, 977–992. [Google Scholar] [CrossRef]
- Kainth, S.; Piyush Sharma, P.; Pandey, O.P. Green sorbents from agricultural wastes: A review of sustainable adsorption materials. Appl. Surf. Sci. Adv. 2024, 19, 100562–100583. [Google Scholar] [CrossRef]
- Raji, Z.; Karim, A.; Karam, A.; Khalloufi, S. Adsorption of Heavy Metals: Mechanisms, Kinetics, and Applications of Various Adsorbents in Wastewater Remediation—A Review. Waste 2023, 1, 775–805. [Google Scholar] [CrossRef]
Pollutant | Time (min) | Freundlich Model | Langmuir Model | ||||
---|---|---|---|---|---|---|---|
R2 | 1/n | kF | R2 | qm (mg/g) | KL | ||
Ni(II) | 30 | 0.9822 | 0.9028 | 2.1586 | 0.9179 | 12.4073 | 0.0801 |
60 | 0.9942 | 0.9205 | 2.0075 | 0.8920 | 12.5206 | 0.0795 | |
90 | 0.9844 | 0.9994 | 1.9776 | 0.7766 | 12.5398 | 0.0794 |
Pollutant | ci (mg/mL) | Lagergren Model | Ho–McKay Model | ||||
---|---|---|---|---|---|---|---|
R2 | qe (mg/g) | K1 (min−1) | R2 | qe (mg/g) | K2 (g/mg·min) | ||
Ni(II) | 10 | 0.7903 | 1.1235 | −0.0019 | 1 | 0.9421 | 1.2245 |
20 | 0.7312 | 1.1643 | −0.0016 | 1 | 5.5079 | 2.3469 | |
30 | 0.7759 | 4.1903 | −0.0017 | 1 | 3.4399 | 4.1903 | |
40 | 0.6170 | 4.4132 | −0.0021 | 1 | 6.1278 | 2.4210 | |
50 | 0.7052 | 5.4321 | −0.0019 | 1 | 7.9889 | 2.9563 | |
60 | 0.8596 | 6.0234 | −0.0017 | 1 | 8.8834 | 2.4369 | |
70 | 0.8477 | 7.2134 | −0.0020 | 1 | 9.8973 | 1.8561 | |
80 | 0.7606 | 7.8321 | −0.0020 | 1 | 10.0023 | 4.7597 | |
90 | 0.7697 | 8.0251 | −0.0018 | 1 | 10.8250 | 2.8646 | |
100 | 0.8731 | 8.3267 | −0.0019 | 1 | 10.6879 | 2.5011 |
Lignin/Ni(II) (mg/L) | Contact Time (Min) | Lignin/Ni(II) (mg/L) Filtered | Contact Time (Min) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
30 | 60 | 90 | 30 | 60 | 90 | 30 | 60 | 90 | 30 | 60 | 90 | ||
Eg, % | Fg, % | Eg, % | Fg, % | ||||||||||
0 | 95 | 95 | 95 | 95 | 95 | 95 | 0 | 100 | 100 | 100 | 100 | 100 | 100 |
5.8693 | 80 | 70 | 65 | 0 | 0 | 0 | 5.8693 | 90 | 95 | 95 | 90 | 95 | 95 |
11.738 | 75 | 45 | 40 | 0 | 0 | 0 | 11.738 | 90 | 95 | 95 | 95 | 95 | 100 |
17.6079 | 60 | 40 | 40 | 0 | 0 | 0 | 17.6079 | 85 | 100 | 95 | 95 | 100 | 100 |
23.4772 | 55 | 35 | 30 | 0 | 0 | 0 | 23.4772 | 85 | 100 | 100 | 95 | 100 | 100 |
29.3465 | 50 | 30 | 25 | 0 | 0 | 0 | 29.3465 | 85 | 95 | 95 | 90 | 95 | 100 |
35.2158 | 45 | 10 | 10 | 0 | 0 | 0 | 35.2158 | 80 | 100 | 100 | 85 | 100 | 100 |
41.0851 | 20 | 0 | 0 | 0 | 0 | 0 | 41.0851 | 80 | 100 | 100 | 80 | 100 | 100 |
46.9544 | 0 | 0 | 0 | 0 | 0 | 0 | 46.9544 | 75 | 90 | 95 | 75 | 95 | 100 |
52.8237 | 0 | 0 | 0 | 0 | 0 | 0 | 52.8237 | 75 | 90 | 95 | 75 | 95 | 95 |
58.693 | 0 | 0 | 0 | 0 | 0 | 0 | 58.693 | 75 | 100 | 100 | 75 | 100 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ungureanu, E.; Samuil, C.; Țopa, D.C.; Ungureanu, O.C.; Tofanica, B.-M.; Fortună, M.E.; Brezuleanu, C.O. Adsorption of Ni(II) from Aqueous Media on Biodegradable Natural Polymers—Sarkanda Grass Lignin. Crystals 2024, 14, 381. https://doi.org/10.3390/cryst14040381
Ungureanu E, Samuil C, Țopa DC, Ungureanu OC, Tofanica B-M, Fortună ME, Brezuleanu CO. Adsorption of Ni(II) from Aqueous Media on Biodegradable Natural Polymers—Sarkanda Grass Lignin. Crystals. 2024; 14(4):381. https://doi.org/10.3390/cryst14040381
Chicago/Turabian StyleUngureanu, Elena, Costel Samuil, Denis C. Țopa, Ovidiu C. Ungureanu, Bogdan-Marian Tofanica, Maria E. Fortună, and Carmen O. Brezuleanu. 2024. "Adsorption of Ni(II) from Aqueous Media on Biodegradable Natural Polymers—Sarkanda Grass Lignin" Crystals 14, no. 4: 381. https://doi.org/10.3390/cryst14040381
APA StyleUngureanu, E., Samuil, C., Țopa, D. C., Ungureanu, O. C., Tofanica, B. -M., Fortună, M. E., & Brezuleanu, C. O. (2024). Adsorption of Ni(II) from Aqueous Media on Biodegradable Natural Polymers—Sarkanda Grass Lignin. Crystals, 14(4), 381. https://doi.org/10.3390/cryst14040381