Ruby from Longido, Tanzania: Mining, Color, Inclusion, and Chemical Features
Abstract
:1. Introduction
2. Geological Background
3. Mining and Production
4. Materials and Methods
5. Results
5.1. Standard Gemological Analysis
5.2. Wall Rock and Crystal Habit
5.3. Associated Minerals
5.3.1. Pargasite Amphibole
5.3.2. Zoisite
5.3.3. Labradorite Feldspar
5.3.4. Paragonite Mica
5.4. Associated Minerals and Inclusions
5.4.1. Rutile
5.4.2. Diaspore
5.4.3. Growth Structures
5.4.4. Fluid Inclusions
5.5. FTIR Spectrum
- A flat line without any noticeable peak;
- A small peak at 3309 cm−1;
- Distinct peaks 3311 and 3083 cm−1 followed two small peaks at 2121 and 1992 cm−1.
5.6. UV-Vis Spectrum
5.7. Chemical Composition
6. Discussion
6.1. Rutile
6.2. Fluorescence
6.3. Trace Elements
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shor, R. Auction Houses: A Powerful Market Influence on Major Diamonds and Colored Gemstones. Gems Gemol. 2013, 49, 2–15. [Google Scholar] [CrossRef]
- Garnier, V.; Giuliani, G.; Ohnenstetter, D.; Fallick, A.E.; Dubessy, J.; Banks, D.; Vinh, H.Q.; Lhomme, T.; Maluski, H.; Pecher, A.; et al. Marble- hosted ruby deposits from Central and Southeast Asia: Towards a new genetic model. Ore Geol. Rev. 2008, 34, 169–191. [Google Scholar] [CrossRef]
- Giuliani, G.; Ohnenstetter, D.; Fallick, A.E.; Groat, L.; Fagan, J. The geology and genesis of gem corundum deposits. In Geology of Gem Deposits, 2nd ed.; Groat, L.A., Ed.; Short Course Series; Mineralogical Association of Canada: Québec, QC, Canada, 2014; Volume 44, pp. 29–112. [Google Scholar]
- Garnier, V.; Maluski, H.; Giuliani, G.; Ohnenstetter, D.; Schwarz, D. Ar-Ar and U-Pb ages of marble-hosted ruby deposits from central and southeast Asia. Can. J. Earth Sci. 2003, 43, 509–532. [Google Scholar] [CrossRef]
- Zaw, K.; Sutherland, L.; Yui, T.F.; Meffre, S.; Thu, K. Vanadium-rich ruby and sapphire within Mogok Gemfield, Myanmar: Implications for gem color and genesis. Miner. Depos. 2014, 50, 25–39. [Google Scholar] [CrossRef]
- Searle, M.P.; Morley, C.K.; Waters, D.J.; Gardiner, N.J.; Htun, U.K.; Nu, T.T.; Robb, L. Chapter 12 Tectonic and metamorphic evolution of the Mogok Metamorphic and Jade Mines belts and ophiolitic terranes of Burma (Myanmar). Geol. Soc. Lond. Mem. 2017, 48, 261–293. [Google Scholar] [CrossRef]
- Peretti, A.; Schmetzer, K.; Bernhardt, H.J.; Mouawad, F. Rubies from Mong Hsu. Gems Gemol. 1995, 31, 2–26. [Google Scholar]
- Long, P.V.; Vinh, H.Q.; Nghia, N.X. Inclusions in Vietnamese Quy Chau ruby and their origin. Aust. Gemmol. 2004, 22, 67–71. [Google Scholar]
- Long, P.V.; Vinh, H.Q.; Garnier, V.; Giuliani, G.; Ohnenstetter, D. Marble-hosted ruby from Vietnam. Can. Gemmol. 2004, 25, 83–95. [Google Scholar]
- Long, P.V.; Vinh, H.Q.; Garnier, V.; Giuliani, G.; Ohnenstetter, D.; Lhomme, T.; Schwarz, D.; Fallick, A.; Dubessy, J.; Trinh, P.T. Gem corundum deposits in Vietnam. J. Gemmol. 2004, 29, 129–147. [Google Scholar] [CrossRef]
- Huang, W.; Ni, P.; Shui, T.; Pan, J.; Fan, M.; Yang, Y.; Chi, Z.; Ding, J. Trace Element Geochemistry and Mineral Inclusions Constraints on the Petrogenesis of a Marble–Hosted Ruby Deposit in Yunnan Province, China. Can. Mineral. 2021, 59, 381–408. [Google Scholar] [CrossRef]
- Huang, W.; Ni, P.; Zhou, J.; Shui, T.; Ding, J.; Zhu, R.; Cai, Y.; Fan, M. Discovery of Disulfane (H2S2) in Fluid Inclusions in Rubies from Yuanjiang, China, and Its Implications. Crystals 2021, 11, 1305. [Google Scholar] [CrossRef]
- Levinson, A.A.; Cook, F.A. Gem Corundum in Alkali Basalt: Origin and Occurrence. Gems Gemol. 1994, 30, 253–262. [Google Scholar]
- Lin Sutherland, F.; Hoskin, P.W.O.; Fanning, C.M.; Coenraads, R.R. Models of corundum origin from alkali basaltic terrains: A reappraisal. Contrib. Mineral. Petrol. 1998, 133, 356–372. [Google Scholar] [CrossRef]
- Sutherland, F.L.; Coenraads, R.R. An unusual ruby-sapphire-sapphirine-spinel assemblage from the Tertiary Barrington Volcanic province, New South Wales, Australia. Mineral. Mag. 1996, 60, 623–638. [Google Scholar] [CrossRef]
- Yui, T.F.; Zaw, K.; Limtrakun, P. Oxygen isotope composition of the Denchai sapphire, Thailand: A clue to its enigmatic origin. Lithos 2003, 67, 153–161. [Google Scholar] [CrossRef]
- Saminpanya, S.; Sutherland, F.L. Different origins of Thai area sapphire and ruby, derived from mineral inclusions and co-existing minerals. Eur. J. Mineral. 2011, 23, 683–694. [Google Scholar] [CrossRef]
- Palke, A.C.; Wong, J.; Verdel, C.; Avila, J.N. A common origin for Thai/Cambodian rubies and blue and violet sapphires from Yogo Gulch, Montana, U.S.A.? Am. Mineral. 2018, 103, 469–479. [Google Scholar] [CrossRef]
- Chapin, M.; Pardieu, V.; Lucas, A. Mozambique: A Ruby Discovery for the 21st Century. Gems Gemol. 2015, 51, 44–54. [Google Scholar]
- Sorokina, E.S.; Rösel, D.; Häger, T.; Mertz-Kraus, R.; Saul, J.M. LA-ICP-MS U–Pb dating of rutile inclusions within corundum (ruby and sapphire): New constraints on the formation of corundum deposits along the Mozambique belt. Miner. Depos. 2017, 52, 641–649. [Google Scholar] [CrossRef]
- Vertriest, W.; Saeseaw, S. A Decade of Ruby from Mozambique: A Review. Gems Gemol. 2019, 55, 162–183. [Google Scholar] [CrossRef]
- Mercier, A.; Rakotondrazafy, M.; Ravolomiandrinarivo, B. Ruby mineralization in southwest Madagascar. Gondwana Res. 1999, 2, 433–438. [Google Scholar] [CrossRef]
- Cartier, L.E. Ruby and sapphire from Marosely, Madagascar. J. Gemmol. 2009, 31, 171–179. [Google Scholar] [CrossRef]
- Goff, E.L.; Deschamps, Y.; Guerrot, C. Tectonic implications of new single zircon Pb–Pb evaporation data in the Lossogonoi and Longido ruby-districts, Mozambican metamorphic Belt of north-eastern Tanzania. C. R. Geosci. 2010, 342, 36–45. [Google Scholar] [CrossRef]
- Smith, C.P.; Fagan, A.J.; Clark, B. Ruby and Pink Sapphire from Aappaluttoq, Greenland. J. Gemmol. 2016, 35, 294–306. [Google Scholar] [CrossRef]
- Yakymchuk, C.; Szilas, K. Corundum formation by metasomatic reactions in Archean metapelite, SW Greenland: Exploration vectors for ruby deposits within high-grade greenstone belts. Geosci. Front. 2018, 9, 727–749. [Google Scholar] [CrossRef]
- Keulen, N.; Thomsen, T.B.; Schumacher, J.C.; Poulsen, M.D.; Kalvig, P.; Vennemann, T.; Salimi, R. Formation, origin, and geographic typing of corundum (ruby and pink sapphire) from the Fiskenæsset complex, Greenland. Lithos 2020, 366, 105536. [Google Scholar] [CrossRef]
- Pignatelli, I.; Morlot, C.; Giuliani, G.; Pardieu, V. The ‘Star of David’ Pattern and Presence of Macro-steps on Ruby and Sapphire Crystals from Aappaluttoq, Greenland. J. Gemmol. 2022, 38, 364–375. [Google Scholar] [CrossRef]
- Giuliani, G.; Groat, L.A. Geology of Corundum and Emerald Gem Deposits: A Review. Gems Gemol. 2019, 55, 464–489. [Google Scholar] [CrossRef]
- Palke, A.C.; Saeseaw, S.; Renfro, N.D.; Sun, Z.; McClure, S.F. Geographic Origin Determination of Ruby. Gems Gemol. 2019, 55, 480–613. [Google Scholar] [CrossRef]
- Dirlam, D.M.; Misiorowski, E.B.; Tozer, R.; Stark, K.B.; Bassett, A.M. Gem wealth of Tanzania. Gems Gemol. 1992, 28, 80–102. [Google Scholar]
- Hanni, H.A.; Schmetzer, K. New rubies from the Morogoro area, Tanzania. Gems Gemol. 1991, 27, 156–167. [Google Scholar]
- Schwarz, D.; Pardieu, V.; Saul, J.; Schmetzer, K.; Laurs, B.; Giuliani, G.; Klemm, L.; Malsy, A.; Erel, E.; Hauzenberger, C.; et al. Rubies and Sapphires from Winza, Central Tanzania. Gems Gemol. 2008, 44, 322–347. [Google Scholar] [CrossRef]
- Hanni, H. On corundum from Umba Valley, Tanzania. J. Gemmol. 1987, 20, 278–284. [Google Scholar] [CrossRef]
- Chankhantha, C.; Kidkhunthod, P.; Amphon, R.; Shen, A.H. Gemological and XANES Investigations Of Pink Spinel From Mahenge, Tanzania. In Proceedings of the 3rd International Conference on Radiation and Emission in Materials (ICREM), Chiang Mai, Thailand, 15–18 December 2020. [Google Scholar]
- Chankhantha, C.; Amphon, R.; Rehman, H.; Shen, A. Characterisation of Pink-to-Red Spinel from Four Important Localities. J. Gemmol. 2020, 37, 393–403. [Google Scholar] [CrossRef]
- Feneyrol, J.; Giuliani, G.; Demaiffe, D.; Ohnenstetter, D.; Fallick, A.E.; Dubessy, J.; Martelat, J.; Rakotondrazafy, A.F.; Omito, E.; Ichangi, D.; et al. Age and Origin of the Tsavorite and Tanzanite Mineralizing Fluids in the Neoproterozoic Mozambique Metamorphic Belt. Can. Mineral. 2017, 55, 763–786. [Google Scholar] [CrossRef]
- Pohl, W.L. The Tsavorite (Gem Quality Vanadium Grossularite) Minerogenetic System in East Africa. In The Structural Geology Contribution to the Africa-Eurasia Geology: Basement and Reservoir Structure, Ore Mineralization and Tectonic Modelling. CAJG 2018. Advances in Science, Technology & Innovation; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Schmetzer, K.; Malsy, A.-K. Alexandrite and color-change chrysoberyl from the Lake Manyara alexandrite-emerald deposit in northern Tanzania. J. Gemmol. 2011, 32, 179–209. [Google Scholar] [CrossRef]
- Leelawatanasuk, T.; Susawee, N.; Bupparenoo, P. Characteristics of Faceted-Quality Ruby from Longido, Tanzania. Bull. Earth Sci. Thail. 2021, 10, 1–7. [Google Scholar]
- Kongsomart, B.; Vertriest, W.; Weeramonkhonlert, V. Preliminary Observations on Facet-Grade Ruby from Longido, Tanzania. Gems Gemol. 2017, 53, 472–473. [Google Scholar]
- Sumritvanicha, N.; Sripoonjan, T.; Wanthanachaisaeng, B. Indication of Low-Temperature Heat Treatment: The Case Study of Ruby from Longido, Tanzania. In Proceedings of the 43rd Congress on Science and Technology of Thailand (STT 43), Bangkok, Thailand, 17–19 October 2017. [Google Scholar]
- Gao, Y.J.; Lucas, A.; Sun, X.Y.; Ju, D. Gemological Study of Rubies from Longido, Tanzania. In Proceedings of the 2021 International Jewelry Academic Exchange Conference, Guangzhou, China, 19 November 2021; pp. 70–75. [Google Scholar]
- Schlüter, T. Geological Atlas of Africa. In With Notes on Stratigraphy, Tectonics, Economic Geology, Geohazards and Geosites of Each Country; Springer: Berlin/Heidelberg, Germany, 2006; pp. 226–231. [Google Scholar]
- Balmer, W.; Hauzenberger, C.; Fritz, H.; Sutthirat, C. Marble-hosted ruby deposits of the Morogoro Region, Tanzania. J. Afr. Earth Sci. 2017, 134, 626–643. [Google Scholar] [CrossRef]
- Abduriyim, A.; Kitawaki, H. Applications of Laser Ablation—Inductively Coupled Plasma—Mass Spectrometry (LA-ICP-MS) to Gemology. Gems Gemol. 2006, 42, 98–118. [Google Scholar] [CrossRef]
- Hu, Z.C.; Gao, S.; Liu, Y.S.; Hu, S.H.; Chen, H.H.; Yuan, H.L. Signal enhancement in laser ablation ICP-MS by addition of nitrogen in the central channel gas. J. Anal. At. Spectrom. 2008, 23, 1093–1101. [Google Scholar] [CrossRef]
- Liu, Y.S.; Hu, Z.C.; Gao, S.; Gunther, D.; Xu, J.; Gao, C.G.; Chen, H.H. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chem. Geol. 2008, 257, 34–43. [Google Scholar] [CrossRef]
- Liu, Y.S.; Gao, S.; Hu, Z.C.; Gao, C.G.; Zong, K.Q.; Wang, D.B. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China orogen: U\Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. J. Petrol. 2010, 51, 537–571. [Google Scholar] [CrossRef]
- Gao, Y.; Lin, M.; Li, X.; Sun, X. Trace elements and big data application to gemology by x-ray fluorescence. In Artificial Intelligence and Spectroscopic Techniques for Gemology Applications; IOP Publishing: Bristol, UK, 2022. [Google Scholar] [CrossRef]
- Anthony, J.W. Handbook of Mineralogy: Silica, Silicates; Mineral Data Pub, 1995. [Google Scholar]
- Beran, A.; Rossman, G.R. OH in naturally occurring corundum. Eur. J. Mineral. 2006, 18, 441–447. [Google Scholar] [CrossRef]
- Dubinsky, E.V.; Stone-Sundberg, J.; Emmett, J.L. A Quantitative Description of the Causes of Color in Corundum. Gems Gemol. 2020, 56, 2–28. [Google Scholar] [CrossRef]
Rock Matrices | Source |
---|---|
Marble | Burma (Mogok/Mong Hsu) Vietnam China (Ailao Shan, Yunnan Province) |
Amphibolite | Mozambique Madagascar Tanzania |
Basalt-related | Thailand/Cambodia New South Wales Australia Montana, USA |
Property | Rubies in This Study |
---|---|
Color | red, medium to high saturation |
Transparency | transparent |
Quality | faceted quality |
Pleochroism | red, purplish red |
Refractive Index | no = 1.762, ne = 1.770 |
Birefringence | 0.008 |
Specific Gravity | 4.00 |
Spectroscope | typical chromium spectrum, wide bands at about 410 nm to 555 nm from Cr3+; luminescence line at 694 nm from Cr3+ |
Fluorescence | L.W. (365 nm): strong red S.W. (265 nm): nearly inert to weak red |
Chemical Fingerprint | high Cr concentration, relatively low Fe concentration |
Internal features | twinning, color banding, needles, triangular platy, dark granular mineral, and diaspore |
Oxides (wt%) | Corundum | Labradorite-Andesine | Pargasite | Zoisite | ||
---|---|---|---|---|---|---|
Range (n = 11) a | Average | Range (n = 2) a | Average | (n = 1) | (n = 1) | |
BeO | bdl–0.04 | 0.01 | — | — | — | 0.0001 |
Na2O | bdl–0.01 | 0.001 | 6.03–6.11 (6.07) b | 6.07 | 3.27 | 0.001 |
MgO | 0.002–0.063 | 0.01 | 0.0009–0.0010 (0.001) | 0.001 | 14.69 | 0.05 |
Al2O3 | 97.10–98.40 | 97.88 | 27.60–27.94 (27.77) | 27.77 | 19.69 | 32.27 |
SiO2 | 0.85–1.57 | 1.11 | 55.62–55.91 (55.76) | 55.76 | 41.46 | 40.57 |
P2O5 | bdl–0.25 | 0.06 | 0.11–0.15 (0.13) | 0.13 | 0.06 | — |
K2O | bdl–0.02 | 0.003 | 0.0535–0.0538 (0.0536) | 0.0536 | 0.4 | — |
CaO | bdl–0.07 | 0.02 | 9.82–9.84 (9.83) | 9.83 | 12.85 | 24.71 |
FeO | 0.16–0.74 | 0.48 | 0.027–0.036 (0.032) | 0.032 | 6.4 | 1.73 |
Total | 99.574 | 99.6466 | 98.82 | 99.3311 |
Associated Mineral | Ideal Chemical Compositions | Chemical Compositions in This Study |
---|---|---|
Pargasite | NaCa2[(Mg,Fe)4Al](Si6Al2)O22(OH)2 | (Na0.85 K0.07□0.08)(Ca1.95Na0.05)(Mg3.10Fe0.75Al0.15)Al1.00(Si5.87Al2.13)O22(OH)2 |
Zoisite | Ca2Al3(SiO4)(Si2O7)O(OH) | Ca2(Fe0.41Al2.59) (SiO4)(Si2O7)O(OH) |
Paragonite | NaAl2(Si3Al)O10(OH)2 | Not detected |
Labradorite-Andesine | Na0:5-0:3Ca0:5-0:7Al1:5-1:7Si2:5-2:3O8 | (Na0.53Ca0.47)[Al1.47Si2.53O8] |
Trace Element | Ti | V | Cr | Fe | Ga |
---|---|---|---|---|---|
Range (ppm) | 3.64–94.54 | 5.58–12.47 | 6319.47–17,057.60 | 1014.34–2817.72 | 23.48–37.51 |
X (ppm) a | 32.14 | 8.83 | 9962.72 | 1711.89 | 28.55 |
S (ppm) b | 15.69 | 1.68 | 1983.57 | 355.08 | 3.66 |
CV c | 48.82% | 19.06% | 19.91% | 20.74% | 12.81% |
Test Point Number | Origin | Fe | Cr | Cr/Fe |
---|---|---|---|---|
Moz-1 | Mozambique | 5330 | 1077 | 0.2 |
Moz-2 | Mozambique | 5246 | 1056 | 0.2 |
Moz-3 | Mozambique | 4997 | 974 | 0.19 |
On Average | 5191 | 1036 | 0.2 | |
Tan-1 | Longido, Tanzania | 1278 | 8588 | 6.72 |
Tan-2 | Longido, Tanzania | 1252 | 8361 | 6.68 |
Tan-3 | Longido, Tanzania | 1262 | 8308 | 6.58 |
On Average | 1264 | 8419 | 6.66 | |
Bur-1 | Mogok, Burma | 49 | 1643 | 33.33 |
Bur-2 | Mogok, Burma | 52 | 2547 | 49.08 |
Bur-1 | Mogok, Burma | 51 | 2578 | 50.16 |
On Average | 51 | 2256 | 44.35 | |
Syn-1 | Flame Grown method | 42 | 3233 | 77.72 |
Syn-1 | Flame Grown method | 46 | 3271 | 70.95 |
Syn-1 | Flame Grown method | 38 | 3197 | 85.25 |
On Average | 42 | 3234 | 77.48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, Y.; He, M.; Lucas, A.C.; Sun, X.; Zhou, D.; Huang, T.; Li, K.; Fortaleché, D.; Lin, M.; Zhu, Y.; et al. Ruby from Longido, Tanzania: Mining, Color, Inclusion, and Chemical Features. Crystals 2024, 14, 383. https://doi.org/10.3390/cryst14040383
Gao Y, He M, Lucas AC, Sun X, Zhou D, Huang T, Li K, Fortaleché D, Lin M, Zhu Y, et al. Ruby from Longido, Tanzania: Mining, Color, Inclusion, and Chemical Features. Crystals. 2024; 14(4):383. https://doi.org/10.3390/cryst14040383
Chicago/Turabian StyleGao, Yujie, Mingyue He, Andrew Christopher Lucas, Xueying Sun, Dan Zhou, Tiantian Huang, Kai Li, Darwin Fortaleché, Moqing Lin, Yuan Zhu, and et al. 2024. "Ruby from Longido, Tanzania: Mining, Color, Inclusion, and Chemical Features" Crystals 14, no. 4: 383. https://doi.org/10.3390/cryst14040383
APA StyleGao, Y., He, M., Lucas, A. C., Sun, X., Zhou, D., Huang, T., Li, K., Fortaleché, D., Lin, M., Zhu, Y., & Jin, X. (2024). Ruby from Longido, Tanzania: Mining, Color, Inclusion, and Chemical Features. Crystals, 14(4), 383. https://doi.org/10.3390/cryst14040383