Next Article in Journal
Layered Structure Based on PANi and SiO2 to Absorb HPM to Protect Systems and Devices
Previous Article in Journal
Design and Study of Composite Film Preparation Platform
Previous Article in Special Issue
Recent Research on Indium-Gallium-Nitride-Based Light-Emitting Diodes: Growth Conditions and External Quantum Efficiency
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Editorial

III-Nitride Materials: Properties, Growth, and Applications

Changsha Semiconductor Technology and Application Innovation Research Institute, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha 410082, China
Crystals 2024, 14(5), 390; https://doi.org/10.3390/cryst14050390
Submission received: 10 April 2024 / Accepted: 22 April 2024 / Published: 23 April 2024
(This article belongs to the Special Issue III-Nitride Materials: Properties, Growth, and Applications)

1. Introduction

Since the activation of magnesium (Mg) in p-type gallium nitride (GaN) [1,2], striking progress has been made in III-nitride materials in terms of properties, growth, and applications [3]. Nowadays, aluminum nitride (AlN) epitaxially grown on nano-patterned AlN/sapphire template has a lower dislocation density as low as 3.3 × 104 cm−2 [4,5,6]. The behavior of impurities such as carbon in GaN has also been thoroughly investigated [7]. Recently, methods for characterizing the edge dislocation density of a thin film [8] or the interface roughness of multiple quantum wells (MQWs) or superlattice structures have also been further developed [9]. In addition, the light emission mechanisms of InGaN have also been investigated through the clarification of localized states [10] and the direct observation of carrier transportation between different localized states [11,12]. Some mechanisms still need to be unveiled, such as the abnormal enhancement of photoluminescence (PL) intensity in the mid-temperature range of InGaN materials during the temperature-dependent photoluminescence (TDPL) measurement [13,14,15,16,17,18].
Due to their high luminous efficiency and widely tunable bandgap, InGaN light-emitting diodes (LEDs) have permeated our daily lives. The properties of InGaN LEDs are still being improved, such as the light-output power, the lower leakage current, the efficiency of green, yellow, orange, red, and ultraviolet LEDs, etc. [19,20,21,22,23,24,25,26,27]. The external quantum efficiency (EQE) of InGaN blue LEDs is over 80% [28], while that of green ones surpasses 50% [29,30]. Great breakthroughs are also made in the “green gap” range [31]. Novel treatments of the quantum barrier have also rendered thrilling properties [32,33,34,35]. Single-chip white light has also been investigated [36]. In recent years, with their merits of high brightness, fast response, and high resolution, microLEDs have played an important role in next-generation displays such as augmented reality, full-color matrix automotive lamps, pico-projectors, etc. [30,37,38,39,40,41,42]. The EQE of InGaN red microLEDs has already reached 7.4%, demonstrating promise for application soon [43,44]. Blue and green InGaN lasers have also achieved inspiring performances [45,46]. Photonic integrated circuits with lower power consumption may alleviate the heat dissipation problem in computers. Microdisk lasers are promising light sources in photonic integrated circuits [47]. The threshold, quality, and other properties are gradually being improved [47,48,49,50,51,52].
Owing to the polarization effect, two-dimensional electron gas (2DEG) can be generated adjacent to the AlGaN/GaN interface, thus facilitating the development of high-electron-mobility transistors (HEMTs) [53]. The enhancement-mode (i.e., normally off) GaN HEMT has been demonstrated by fluoride-based plasma treatment for the first time [54]. Nowadays, the p-GaN gate is more commonly used to obtain enhancement-mode GaN HEMTs [55]. At present, p-channel GaN field effect transistors (FETs) are attracting attention, with potential in fabricating GaN-based complementary integrated circuits [56,57,58,59].
Benefiting from the inversed polarization field, N-polar GaN may surmount the bottlenecks faced by their incumbent Ga-polar counterparts [60,61]. Achievements have been made in the metal–organic chemical vapor deposition (MOCVD) growth of N-polar GaN [62,63,64,65,66]. Additionally, HEMTs based on N-polar GaN have exhibited transcendental performance in some aspects [67,68,69].
This Special Issue has collected recent research focused on the properties, growth, and applications of III-nitride materials. It contains ten articles and two reviews, which will be briefly described in the following paragraphs.

2. An Overview of Published Articles

Li et al.’s article (contribution 1) used an intelligent algorithm to investigate the light extraction surface structure for deep-ultraviolet LEDs (DUV-LEDs). As a result, compared to conventional structures, the optimized truncated pyramid array (TPA) and truncated cone array (TCA) structures enhanced the light extraction efficiency (LEE) of the DUV LED with an emission wavelength of 280 nm by 221% and 257%, respectively.
Chen et al. (contribution 2) investigated the surface evolution and emission properties of InGaN/GaN MQWs with different ammonia flow rates by MOCVD. Different ammonia flow rates led to different temperature-dependent photoluminescence (TDPL) behaviors. Combined with atomic force microscopy (AFM), the underlying mechanisms were investigated in detail.
The third article (contribution 3) was composed by Tian et al., who investigated GaN/MoS2 heterostructures by first-principles calculations. The heterojunctions of N-polarity GaN/MoS2 and Ga-polarity GaN/MoS2 are compared from the binding energy. A type-II energy band alignment occurs between both the Ga-polarity and N-polarity GaN/MoS2 polar heterojunctions, although the directions of the built-in electric field are opposite. Moreover, the energy band alignment could change from type II to type I by exerting in-plane biaxial strains on GaN/MoS2 heterostructures.
The fourth article (contribution 4) by N’Dohi et al. investigated the physical and electrical properties of vertical GaN Schottky diodes. The correlation between the reverse leakage current and doping, as well as dislocations, was investigated.
Zhang et al. (contribution 5) fabricated a normally off p-GaN gate HEMT with an air-bridge source connection. The as-fabricated HEMT exhibited an on-resistance as low as 36 Ω·m, a threshold voltage of 1.8 V, a maximum drain current of 240 mA/mm, and a breakdown voltage of 715 V.
In the sixth article (contribution 6), Guo et al. quantitatively analyzed the relationship between carrier energy and the potential height to be surmounted in the GaAs/InGaAs MQW structure by considering the Heisenberg uncertainty principle. Pump–probe technology is adopted to determine the lifetime of the photo-generated carriers under short circuit (SC) and open circuit (OC) conditions.
Liu et al. (contribution 7) employed plasma-enhanced atomic layer deposition (PEALD) to grow aluminum nitride (AlN) thin films on Si (100), Si (111), and c-plane sapphire substrates at a low temperature of 250 °C. The as-grown polycrystalline AlN thin films had a hexagonal wurtzite structure with a preferred c-axis orientation regardless of the substrate. The surface morphology and refractive index were compared between the three samples and the mechanisms behind it were discussed.
Mukhopadhyay et al. (contribution 8) reported a crack-free AlGaN/AlN/GaN HEMT structure with a high aluminum composition (>35%) and thick barrier (>30 nm) grown on sapphire substrate. It exhibited ultra-low sheet resistivity (<250 Ω/□). The optimized growth conditions were detailed. The density of 2DEG was as high as 1.46 × 1013 cm−2 and the mobility reached 1710 cm2/V·s at room temperature.
The ninth article (contribution 9) also comes from Mukhopadhyay et al., who prepared carbon-doped semi-insulating N-polar GaN on a sapphire substrate through a propane precursor. As N-polar GaN usually contains more oxygen than its Ga-polar counterparts, thus resulting in a high unintentionally doped electron concentration, this work provides a feasible method to grow semi-insulating N-polar GaN.
In Zhang et al.’s article (contribution 10), InGaN-based red microLEDs (μLEDs) of different sizes were prepared. The KOH wet treatment was investigated to alleviate the surface damage to sidewalls after dry etching. It could significantly inhibit the surface non-radiative recombination processes, thus enhancing the optical and electrical performances of the 5 μm μLEDs.
Han et al. (contribution 10) reviewed the research progress and development prospects of enhanced GaN HEMTs. The importance and merits of Si-based GaN HEMTs were illustrated. The MOCVD growth technology, HEMT structures, reliability, and CMOS compatibility were delineated and compared. Future development directions were also envisioned.
The twelfth text is also a review by Jafar et al. (contribution 12) on the growth conditions and EQEs of InGaN LEDs. The challenges of InGaN growth were reviewed. The mechanisms behind the efficiency droop were analyzed. Furthermore, novel approaches to improve the EQE were also discussed.

3. Conclusions

This compilation of articles is devoted to the growth, device fabrication, and theoretical calculations of III-nitride materials and structures. DUV LEDs, green lasers, red microLEDs, HEMTs, the low-temperature growth of III-nitride by PEALD, N-polar GaN, the heterostructure of GaN/MoS2, vertical GaN Schottky diodes, and the mechanism of carrier transportation in multiple quantum wells are investigated by researchers globally. All the studies are important issues in the realm of III-nitride materials and applications. We hope the methods and results in this Special Issue will promote the exploration of III-nitride materials and applications, which keep providing discoveries that will change our daily lives.

Conflicts of Interest

The author declares no conflicts of interest.

List of Contributions

  • Li, Z.; Lu, H.; Wang, J.; Zhu, Y.; Yu, T.; Tian, Y. Maximizing the Light Extraction Efficiency for AlGaN-Based DUV-LEDs with Two Optimally Designed Surface Structures under the Guidance of PSO. Crystals 2022, 12, 1700. https://doi.org/10.3390/cryst12121700.
  • Chen, Z.; Liang, F.; Zhao, D.; Yang, J.; Chen, P.; Jiang, D. Investigation into the MOCVD Growth and Optical Properties of InGaN/GaN Quantum Wells by Modulating NH3 Flux. Crystals 2023, 13, 127. https://doi.org/10.3390/cryst13010127.
  • Tian, F.; Kong, D.; Qiu, P.; Liu, H.; Zhu, X.; Wei, H.; Song, Y.; Chen, H.; Zheng, X.; Peng, M. Polarization Modulation on Charge Transfer and Band Structures of GaN/MoS2 Polar Heterojunctions. Crystals 2023, 13, 563. https://doi.org/10.3390/cryst13040563.
  • N’Dohi, A.J.E.; Sonneville, C.; Saidi, S.; Ngo, T.H.; De Mierry, P.; Frayssinet, E.; Cordier, Y.; Phung, L.V.; Morancho, F.; Maher, H.; et al. Micro-Raman Spectroscopy Study of Vertical GaN Schottky Diode. Crystals 2023, 13, 713. https://doi.org/10.3390/cryst13050713.
  • Zhang, Y.; Ding, G.; Wang, F.; Yu, P.; Feng, Q.; Yu, C.; He, J.; Wang, X.; Xu, W.; He, M.; et al. Normally-Off p-GaN Gate High-Electron-Mobility Transistors with the Air-Bridge Source-Connection Fabricated Using the Direct Laser Writing Grayscale Photolithography Technology. Crystals 2023, 13, 815. https://doi.org/10.3390/cryst13050815.
  • Guo, J.; Liu, W.; Ding, D.; Tan, X.; Zhang, W.; Han, L.; Wang, Z.; Gong, W.; Li, J.; Zhai, R.; et al. Analysis of Photo-Generated Carrier Escape in Multiple Quantum Wells. Crystals 2023, 13, 834. https://doi.org/10.3390/cryst13050834.
  • Liu, S.; Li, Y.; Tao, J.; Tang, R.; Zheng, X. Structural, Surface, and Optical Properties of AlN Thin Films Grown on Different Substrates by PEALD. Crystals 2023, 13, 910. https://doi.org/10.3390/cryst13060910.
  • Mukhopadhyay, S.; Liu, C.; Chen, J.; Tahmidul Alam, M.; Sanyal, S.; Bai, R.; Wang, G.; Gupta, C.; Pasayat, S.S. Crack-Free High-Composition (>35%) Thick-Barrier (>30 nm) AlGaN/AlN/GaN High-Electron-Mobility Transistor on Sapphire with Low Sheet Resistance (<250 Ω/□). Crystals 2023, 13, 1456. https://doi.org/10.3390/cryst13101456.
  • Mukhopadhyay, S.; Sanyal, S.; Wang, G.; Gupta, C.; Pasayat, S.S. First Demonstration of Extrinsic C-Doped Semi-Insulating N-Polar GaN Using Propane Precursor Grown on Miscut Sapphire Substrate by MOCVD. Crystals 2023, 13, 1457. https://doi.org/10.3390/cryst13101457.
  • Zhang, S.; Fan, Q.; Ni, X.; Tao, L.; Gu, X. Study on the Influence of KOH Wet Treatment on Red μLEDs. Crystals 2023, 13, 1611. https://doi.org/10.3390/cryst13121611.
  • Han, L.; Tang, X.; Wang, Z.; Gong, W.; Zhai, R.; Jia, Z.; Zhang, W. Research Progress and Development Prospects of Enhanced GaN HEMTs. Crystals 2023, 13, 911. https://doi.org/10.3390/cryst13060911.
  • Jafar, N.; Jiang, J.; Lu, H.; Qasim, M.; Zhang, H. Recent Research on Indium-Gallium-Nitride-Based Light-Emitting Diodes: Growth Conditions and External Quantum Efficiency. Crystals 2023, 13, 1623. https://doi.org/10.3390/cryst13121623.

References

  1. Amano, H.; Kito, M.; Hiramatsu, K.; Akasaki, I. P-Type Conduction in Mg-Doped GaN Treated with Low-Energy Electron Beam Irradiation (LEEBI). Jpn. J. Appl. Phys. 1989, 28, L2112–L2114. [Google Scholar] [CrossRef]
  2. Nakamura, S.; Mukai, T.; Senoh, M.; Iwasa, N. Thermal Annealing Effects on P-Type Mg-Doped GaN Films. Jpn. J. Appl. Phys. 1992, 31, L139–L142. [Google Scholar] [CrossRef]
  3. Nakamura, S.; Mukai, T.; Senoh, M. Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes. Appl. Phys. Lett. 1994, 64, 1687–1689. [Google Scholar] [CrossRef]
  4. Wang, J.; Xie, N.; Xu, F.; Zhang, L.; Lang, J.; Kang, X.; Qin, Z.; Yang, X.; Tang, N.; Wang, X.; et al. Group-III nitride heteroepitaxial films approaching bulk-class quality. Nat. Mater. 2023, 22, 853–859. [Google Scholar] [CrossRef] [PubMed]
  5. Shen, J.; Yang, X.; Liu, D.; Cai, Z.; Wei, L.; Xie, N.; Xu, F.; Tang, N.; Wang, X.; Ge, W.; et al. High quality AlN film grown on a nano-concave-circle patterned Si substrate with an AlN seed layer. Appl. Phys. Lett. 2020, 117, 022103. [Google Scholar] [CrossRef]
  6. Wang, J.; Xu, F.; Liu, B.; Lang, J.; Zhang, N.; Kang, X.; Qin, Z.; Yang, X.; Wang, X.; Ge, W.; et al. Control of dislocations in heteroepitaxial AlN films by extrinsic supersaturated vacancies introduced through thermal desorption of heteroatoms. Appl. Phys. Lett. 2021, 118, 162103. [Google Scholar] [CrossRef]
  7. Wu, S.; Yang, X.; Zhang, H.; Shi, L.; Zhang, Q.; Shang, Q.; Qi, Z.; Xu, Y.; Zhang, J.; Tang, N.; et al. Unambiguous Identification of Carbon Location on the N Site in Semi-insulating GaN. Phys. Rev. Lett. 2018, 121, 145505. [Google Scholar] [CrossRef] [PubMed]
  8. Li, Y.; Yan, S.; Hu, X.; Song, Y.; Deng, Z.; Du, C.; Wang, W.; Ma, Z.; Wang, L.; Jia, H.; et al. Characterization of edge dislocation density through X-ray diffraction rocking curves. J. Cryst. Growth 2020, 551, 125893. [Google Scholar] [CrossRef]
  9. Li, Y.; Die, J.; Yan, S.; Deng, Z.; Ma, Z.; Wang, L.; Jia, H.; Wang, W.; Jiang, Y.; Chen, H. Characterization of periodicity fluctuations in InGaN/GaN MQWs by the kinematical simulation of X-ray diffraction. Appl. Phys. Express 2019, 12, 045502. [Google Scholar] [CrossRef]
  10. Zhu, Y.; Lu, T.; Zhou, X.; Zhao, G.; Dong, H.; Jia, Z.; Liu, X.; Xu, B. Origin of huge photoluminescence efficiency improvement in InGaN/GaN multiple quantum wells with low-temperature GaN cap layer grown in N2/H2 mixture gas. Appl. Phys. Express 2017, 10, 061004. [Google Scholar] [CrossRef]
  11. Li, Y.; Deng, Z.; Ma, Z.; Wang, L.; Jia, H.; Wang, W.; Jiang, Y.; Chen, H. Visualizing carrier transitions between localization states in a InGaN yellow–green light-emitting-diode structure. J. Appl. Phys. 2019, 126, 095705. [Google Scholar] [CrossRef]
  12. Li, Y.; Li, Y.; Zhang, J.; Wang, Y.; Li, T.; Jiang, Y.; Jia, H.; Wang, W.; Yang, R.; Chen, H. Direct Observation of Carrier Transportation between Localized States in InGaN Quantum Wells. Crystals 2022, 12, 1837. [Google Scholar] [CrossRef]
  13. Ma, J.; Ji, X.; Wang, G.; Wei, X.; Lu, H.; Yi, X.; Duan, R.; Wang, J.; Zeng, Y.; Li, J.; et al. Anomalous temperature dependence of photoluminescence in self-assembled InGaN quantum dots. Appl. Phys. Lett. 2012, 101, 131101. [Google Scholar] [CrossRef]
  14. Lu, T.; Ma, Z.; Du, C.; Fang, Y.; Wu, H.; Jiang, Y.; Wang, L.; Dai, L.; Jia, H.; Liu, W.; et al. Temperature-dependent photoluminescence in light-emitting diodes. Sci. Rep. 2014, 4, 6131. [Google Scholar] [CrossRef] [PubMed]
  15. Liu, W.; Zhao, D.G.; Jiang, D.S.; Chen, P.; Liu, Z.S.; Zhu, J.J.; Shi, M.; Zhao, D.M.; Li, X.; Liu, J.P.; et al. Localization effect in green light emitting InGaN/GaN multiple quantum wells with varying well thickness. J. Alloys Compd. 2015, 625, 266–270. [Google Scholar] [CrossRef]
  16. Weng, G.-E.; Zhao, W.-R.; Chen, S.-Q.; Akiyama, H.; Li, Z.-C.; Liu, J.-P.; Zhang, B.-P. Strong localization effect and carrier relaxation dynamics in self-assembled InGaN quantum dots emitting in the green. Nanoscale Res. Lett. 2015, 10, 31. [Google Scholar] [CrossRef] [PubMed]
  17. Yang, J.; Zhao, D.G.; Jiang, D.S.; Chen, P.; Zhu, J.J.; Liu, Z.S.; Le, L.C.; Li, X.J.; He, X.G.; Liu, J.P.; et al. Optical and structural characteristics of high indium content InGaN/GaN multi-quantum wells with varying GaN cap layer thickness. J. Appl. Phys. 2015, 117. [Google Scholar] [CrossRef]
  18. Li, Y.; Jin, Z.; Han, Y.; Zhao, C.; Huang, J.; Tang, C.W.; Wang, J.; Lau, K.M. Surface morphology and optical properties of InGaN quantum dots with varying growth interruption time. Mater. Res. Express 2019, 7, 015903. [Google Scholar] [CrossRef]
  19. Li, Y.; Yang, R.; Jiang, Y.; Jia, H.; Wang, W.; Chen, H. In Situ AlGaN Interlayer for Reducing the Reverse Leakage Current of InGaN Light-Emitting Diodes. IEEE Electron. Device Lett. 2023, 44, 777–780. [Google Scholar] [CrossRef]
  20. Jiang, Y.; Li, Y.; Li, Y.; Deng, Z.; Lu, T.; Ma, Z.; Zuo, P.; Dai, L.; Wang, L.; Jia, H.; et al. Realization of high-luminous-efficiency InGaN light-emitting diodes in the “green gap” range. Sci. Rep. 2015, 5, 10883. [Google Scholar] [CrossRef]
  21. Bi, Z.; Lenrick, F.; Colvin, J.; Gustafsson, A.; Hultin, O.; Nowzari, A.; Lu, T.; Wallenberg, R.; Timm, R.; Mikkelsen, A.; et al. InGaN Platelets: Synthesis and Applications toward Green and Red Light-Emitting Diodes. Nano Lett. 2019, 19, 2832–2839. [Google Scholar] [CrossRef]
  22. Iida, D.; Zhuang, Z.; Kirilenko, P.; Velazquez-Rizo, M.; Najmi, M.A.; Ohkawa, K. 633-nm InGaN-based red LEDs grown on thick underlying GaN layers with reduced in-plane residual stress. Appl. Phys. Lett. 2020, 116, 162101. [Google Scholar] [CrossRef]
  23. Kneissl, M.; Seong, T.-Y.; Han, J.; Amano, H. The emergence and prospects of deep-ultraviolet light-emitting diode technologies. Nat. Photonics 2019, 13, 233–244. [Google Scholar] [CrossRef]
  24. Lee, D.-g.; Choi, Y.; Jung, S.; Kim, Y.; Park, S.; Choi, P.; Yoon, S. High-efficiency InGaN red light-emitting diodes with external quantum efficiency of 10.5% using extended quantum well structure with AlGaN interlayers. Appl. Phys. Lett. 2024, 124, 121109. [Google Scholar] [CrossRef]
  25. Liu, C.; Ooi, Y.K.; Islam, S.M.; Xing, H.G.; Jena, D.; Zhang, J. 234 nm and 246 nm AlN-Delta-GaN quantum well deep ultraviolet light-emitting diodes. Appl. Phys. Lett. 2018, 112, 011101. [Google Scholar] [CrossRef]
  26. Xing, K.; Hu, J.; Pan, Z.; Xia, Z.; Jin, Z.; Wang, L.; Jiang, X.; Wang, H.; Zeng, H.; Wang, X. Demonstration of 651 nm InGaN-based red light-emitting diode with an external quantum efficiency over 6% by InGaN/AlN strain release interlayer. Opt. Express 2024, 32, 11377. [Google Scholar] [CrossRef]
  27. Zhang, S.; Zhang, J.; Gao, J.; Wang, X.; Zheng, C.; Zhang, M.; Wu, X.; Xu, L.; Ding, J.; Quan, Z.; et al. Efficient emission of InGaN-based light-emitting diodes: Toward orange and red. Photonics Res. 2020, 8, 1671. [Google Scholar] [CrossRef]
  28. Narukawa, Y.; Ichikawa, M.; Sanga, D.; Sano, M.; Mukai, T. White light emitting diodes with super-high luminous efficacy. J. Phys. D-Appl. Phys. 2010, 43, 354002. [Google Scholar] [CrossRef]
  29. Lv, Q.; Liu, J.; Mo, C.; Zhang, J.; Wu, X.; Wu, Q.; Jiang, F. Realization of Highly Efficient InGaN Green LEDs with Sandwich-like Multiple Quantum Well Structure: Role of Enhanced Interwell Carrier Transport. ACS Photonics 2018, 6, 130–138. [Google Scholar] [CrossRef]
  30. Chen, Z.; Yan, S.; Danesh, C. MicroLED technologies and applications: Characteristics, fabrication, progress, and challenges. J. Phys. D-Appl. Phys. 2021, 54, 123001. [Google Scholar] [CrossRef]
  31. Jiang, F.; Zhang, J.; Xu, L.; Ding, J.; Wang, G.; Wu, X.; Wang, X.; Mo, C.; Quan, Z.; Guo, X.; et al. Efficient InGaN-based yellow-light-emitting diodes. Photonics Res. 2019, 7, 144. [Google Scholar] [CrossRef]
  32. Zhou, X.; Lu, T.; Zhu, Y.; Zhao, G.; Dong, H.; Jia, Z.; Yang, Y.; Chen, Y.; Xu, B. Surface Morphology Evolution Mechanisms of InGaN/GaN Multiple Quantum Wells with Mixture N2/H2-Grown GaN Barrier. Nanoscale Res. Lett. 2017, 12, 354. [Google Scholar] [CrossRef] [PubMed]
  33. Wu, Q.-f.; Cao, S.; Mo, C.-l.; Zhang, J.-l.; Wang, X.-l.; Quan, Z.-j.; Zheng, C.-d.; Wu, X.-m.; Pan, S.; Wang, G.-X.; et al. Effects of Hydrogen Treatment in Barrier on the Electroluminescence of Green InGaN/GaN Single-Quantum-Well Light-Emitting Diodes with V-Shaped Pits Grown on Si Substrates. Chin. Phys. Lett. 2018, 35, 098501. [Google Scholar] [CrossRef]
  34. Li, Y.; Yan, S.; Hu, X.; Song, Y.; Deng, Z.; Du, C.; Wang, W.; Ma, Z.; Wang, L.; Jia, H.; et al. Effect of H2 treatment in barrier on interface, optical and electrical properties of InGaN light emitting diodes. Superlattices Microstruct. 2020, 145, 106606. [Google Scholar] [CrossRef]
  35. Li, Y.; Yan, S.; Die, J.; Hu, X.; Song, Y.; Deng, Z.; Du, C.; Wang, W.; Ma, Z.; Wang, L.; et al. The influence of excessive H2 during barrier growth on InGaN light-emitting diodes. Mater. Res. Express 2020, 7, 105907. [Google Scholar] [CrossRef]
  36. Li, Y.; Liu, C.; Zhang, Y.; Jiang, Y.; Hu, X.; Song, Y.; Su, Z.; Jia, H.; Wang, W.; Chen, H. Realizing Single Chip White Light InGaN LED via Dual-Wavelength Multiple Quantum Wells. Materials 2022, 15, 3998. [Google Scholar] [CrossRef] [PubMed]
  37. Behrman, K.; Kymissis, I. Micro light-emitting diodes. Nat. Electron. 2022, 5, 564–573. [Google Scholar] [CrossRef]
  38. Sheen, M.; Ko, Y.; Kim, D.-u.; Kim, J.; Byun, J.-h.; Choi, Y.; Ha, J.; Yeon, K.Y.; Kim, D.; Jung, J.; et al. Highly efficient blue InGaN nanoscale light-emitting diodes. Nature 2022, 608, 56–61. [Google Scholar] [CrossRef]
  39. Wang, L.; Ma, J.; Su, P.; Huang, J. High-Resolution Pixel LED Headlamps: Functional Requirement Analysis and Research Progress. Appl. Sci. 2021, 11, 3368. [Google Scholar] [CrossRef]
  40. Xiong, J.; Hsiang, E.-L.; He, Z.; Zhan, T.; Wu, S.-T. Augmented reality and virtual reality displays: Emerging technologies and future perspectives. Light-Sci. Appl. 2021, 10, 216. [Google Scholar] [CrossRef]
  41. Yu, L.; Wang, L.; Yang, P.; Hao, Z.; Yu, J.; Luo, Y.; Sun, C.; Xiong, B.; Han, Y.; Wang, J.; et al. Metal organic vapor phase epitaxy of high-indium-composition InGaN quantum dots towards red micro-LEDs. Opt. Mater. Express 2022, 12, 3225. [Google Scholar] [CrossRef]
  42. Zhuang, Z.; Iida, D.; Ohkawa, K. Ultrasmall and ultradense InGaN-based RGB monochromatic micro-light-emitting diode arrays by pixilation of conductive p-GaN. Photonics Res. 2021, 9, 2429. [Google Scholar] [CrossRef]
  43. Chen, Z.; Sheng, B.; Liu, F.; Liu, S.; Li, D.; Yuan, Z.; Wang, T.; Rong, X.; Huang, J.; Qiu, J.; et al. High-Efficiency InGaN Red Mini-LEDs on Sapphire Toward Full-Color Nitride Displays: Effect of Strain Modulation. Adv. Funct. Mater. 2023, 33, 2300042. [Google Scholar] [CrossRef]
  44. Li, P.; Li, H.; Yao, Y.; Lim, N.; Wong, M.; Iza, M.; Gordon, M.J.; Speck, J.S.; Nakamura, S.; DenBaars, S.P. Significant Quantum Efficiency Enhancement of InGaN Red Micro-Light-Emitting Diodes with a Peak External Quantum Efficiency of up to 6%. ACS Photonics 2023, 10, 1899–1905. [Google Scholar] [CrossRef]
  45. Sun, Y.; Zhou, K.; Sun, Q.; Liu, J.; Feng, M.; Li, Z.; Zhou, Y.; Zhang, L.; Li, D.; Zhang, S.; et al. Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si. Nat. Photonics 2016, 10, 595–599. [Google Scholar] [CrossRef]
  46. Yang, T.; Chen, Y.-H.; Wang, Y.-C.; Ou, W.; Ying, L.-Y.; Mei, Y.; Tian, A.-Q.; Liu, J.-P.; Guo, H.-C.; Zhang, B.-P. Green Vertical-Cavity Surface-Emitting Lasers Based on InGaN Quantum Dots and Short Cavity. Nano-Micro Lett. 2023, 15, 223. [Google Scholar] [CrossRef] [PubMed]
  47. Raun, A.; Hu, E. Ultralow Thresh. Blue Quantum Dot Lasers: What’s True Recipe Success? Nanophotonics 2020, 10, 23–29. [Google Scholar] [CrossRef]
  48. Wang, D.; Zhu, T.; Oliver, R.A.; Hu, E.L. Ultra-low-threshold InGaN/GaN quantum dot micro-ring lasers. Opt. Lett. 2018, 43, 799–802. [Google Scholar] [CrossRef] [PubMed]
  49. Feng, M.; Zhao, H.; Zhou, R.; Tang, Y.; Liu, J.; Sun, X.; Sun, Q.; Yang, H. Continuous-Wave Current Injected InGaN/GaN Microdisk Laser on Si(100). ACS Photonics 2022, 10, 2208–2215. [Google Scholar] [CrossRef]
  50. Zi, H.; Fu, W.Y.; Cheung, Y.F.; Damilano, B.; Frayssinet, E.; Alloing, B.; Duboz, J.-Y.; Boucaud, P.; Semond, F.; Choi, H.W. Comparison of lasing characteristics of GaN microdisks with different structures. J. Phys. D-Appl. Phys. 2022, 55, 355107. [Google Scholar] [CrossRef]
  51. Tajiri, T.; Sosumi, S.; Shimoyoshi, K.; Uchida, K. Fabrication and optical characterization of GaN micro-disk cavities undercut by laser-assisted photo-electrochemical etching. Jpn. J. Appl. Phys. 2023, 62, SC1069. [Google Scholar] [CrossRef]
  52. Zhao, L.; Chen, J.; Liu, C.; Lin, S.; Ge, X.; Li, X.; Hu, T.; Ding, S.; Wang, K. Low-threshold InGaN-based whispering gallery mode laser with lateral nanoporous distributed Bragg reflector. Opt. Laser Technol. 2023, 164, 109480. [Google Scholar] [CrossRef]
  53. Chen, K.J.; Häberlen, O.; Lidow, A.; Tsai, C.l.; Ueda, T.; Uemoto, Y.; Wu, Y. GaN-on-Si Power Technology: Devices and Applications. IEEE Trans. Electron. Devices 2017, 64, 779–795. [Google Scholar] [CrossRef]
  54. Cai, Y.; Zhou, Y.; Chen, K.J.; Lau, K.M. High-performance enhancement-mode AlGaN/GaN HEMTs using fluoride-based plasma treatment. IEEE Electron. Device Lett. 2005, 26, 435–437. [Google Scholar] [CrossRef]
  55. Cui, J.; Wei, J.; Wang, M.; Wu, Y.; Yang, J.; Li, T.; Yu, J.; Yang, H.; Yang, X.; Wang, J.; et al. 6500-V E-mode Active-Passivation p-GaN Gate HEMT with Ultralow Dynamic RON. In Proceedings of the 2023 International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 9–13 December 2023; pp. 1–4. [Google Scholar] [CrossRef]
  56. Zheng, Z.; Song, W.; Zhang, L.; Yang, S.; Wei, J.; Chen, K.J. High ION and ION/IOFF Ratio Enhancement-Mode Buried p-Channel GaN MOSFETs on p-GaN Gate Power HEMT Platform. IEEE Electron. Device Lett. 2020, 41, 26–29. [Google Scholar] [CrossRef]
  57. Zheng, Z.; Zhang, L.; Song, W.; Feng, S.; Xu, H.; Sun, J.; Yang, S.; Chen, T.; Wei, J.; Chen, K.J. Gallium nitride-based complementary logic integrated circuits. Nat. Electron. 2021, 4, 595–603. [Google Scholar] [CrossRef]
  58. Chen, J.; Liu, Z.; Wang, H.; He, Y.; Zhu, X.; Ning, J.; Zhang, J.; Hao, Y. A GaN Complementary FET Inverter With Excellent Noise Margins Monolithically Integrated With Power Gate-Injection HEMTs. IEEE Trans. Electron. Devices 2022, 69, 51–56. [Google Scholar] [CrossRef]
  59. Xie, Q.; Yuan, M.; Niroula, J.; Sikder, B.; Greer, J.A.; Rajput, N.S.; Chowdhury, N.; Palacios, T. Highly Scaled GaN Complementary Technology on a Silicon Substrate. IEEE Trans. Electron. Devices 2023, 70, 2121–2128. [Google Scholar] [CrossRef]
  60. Keller, S.; Li, H.; Laurent, M.; Hu, Y.; Pfaff, N.; Lu, J.; Brown, D.F.; Fichtenbaum, N.A.; Speck, J.S.; DenBaars, S.P.; et al. Recent progress in metal-organic chemical vapor deposition of (000) N-polar group-III nitrides. Semicond. Sci. Technol. 2014, 29, 113001. [Google Scholar] [CrossRef]
  61. Li, Y.; Jiang, Y.; Jia, H.; Wang, W.; Yang, R.; Chen, H. Superior Optoelectronic Performance of N-Polar GaN LED to Ga-Polar Counterpart in the “Green Gap” Range. IEEE Access 2022, 10, 95565–95570. [Google Scholar] [CrossRef]
  62. Li, C.; Zhang, K.; Qiaoyu, Z.; Yin, X.; Ge, X.; Wang, J.; Wang, Q.; He, C.; Zhao, W.; Chen, Z. High quality N-polar GaN films grown with varied V/III ratios by metal–organic vapor phase epitaxy. RSC Adv. 2020, 10, 43187–43192. [Google Scholar] [CrossRef] [PubMed]
  63. Li, Y.; Hu, X.; Song, Y.; Su, Z.; Wang, W.; Jia, H.; Wang, W.; Jiang, Y.; Chen, H. Epitaxy N-polar GaN on vicinal Sapphire substrate by MOCVD. Vacuum 2021, 189, 110173. [Google Scholar] [CrossRef]
  64. Li, Y.; Hu, X.; Song, Y.; Su, Z.; Wang, W.; Jia, H.; Wang, W.; Jiang, Y.; Chen, H. The role of AlN thickness in MOCVD growth of N-polar GaN. J. Alloys Compd. 2021, 884, 161134. [Google Scholar] [CrossRef]
  65. Li, Y.; Hu, X.; Song, Y.; Su, Z.; Jia, H.; Wang, W.; Jiang, Y.; Chen, H. The influence of temperature of nitridation and AlN buffer layer on N-polar GaN. Mater. Sci. Semicond. Process. 2022, 141, 106423. [Google Scholar] [CrossRef]
  66. Yamada, S.; Shirai, M.; Kobayashi, H.; Arai, M.; Kachi, T.; Suda, J. Realization of low specific-contact-resistance on N-polar GaN surfaces using heavily-Ge-doped n-type GaN films deposited by low-temperature reactive sputtering technique. Appl. Phys. Express 2024, 17, 036501. [Google Scholar] [CrossRef]
  67. Romanczyk, B.; Wienecke, S.; Guidry, M.; Li, H.; Ahmadi, E.; Zheng, X.; Keller, S.; Mishra, U.K. Demonstration of Constant 8 W/mm Power Density at 10, 30, and 94 GHz in State-of-the-Art Millimeter-Wave N-Polar GaN MISHEMTs. IEEE Trans. Electron. Devices 2018, 65, 45–50. [Google Scholar] [CrossRef]
  68. Koksaldi, O.S.; Haller, J.; Li, H.; Romanczyk, B.; Guidry, M.; Wienecke, S.; Keller, S.; Mishra, U.K. N-Polar GaN HEMTs Exhibiting Record Breakdown Voltage Over 2000 V and Low Dynamic On-Resistance. IEEE Electron Device Lett. 2018, 39, 1014–1017. [Google Scholar] [CrossRef]
  69. Hamwey, R.; Hatui, N.; Akso, E.; Wu, F.; Clymore, C.; Keller, S.; Speck, J.S.; Mishra, U.K. First Demonstration of an N-Polar InAlGaN/GaN HEMT. IEEE Electron Device Lett. 2024, 45, 328–331. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Li, Y. III-Nitride Materials: Properties, Growth, and Applications. Crystals 2024, 14, 390. https://doi.org/10.3390/cryst14050390

AMA Style

Li Y. III-Nitride Materials: Properties, Growth, and Applications. Crystals. 2024; 14(5):390. https://doi.org/10.3390/cryst14050390

Chicago/Turabian Style

Li, Yangfeng. 2024. "III-Nitride Materials: Properties, Growth, and Applications" Crystals 14, no. 5: 390. https://doi.org/10.3390/cryst14050390

APA Style

Li, Y. (2024). III-Nitride Materials: Properties, Growth, and Applications. Crystals, 14(5), 390. https://doi.org/10.3390/cryst14050390

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop