III-Nitride Materials: Properties, Growth, and Applications
1. Introduction
2. An Overview of Published Articles
3. Conclusions
Conflicts of Interest
List of Contributions
- Li, Z.; Lu, H.; Wang, J.; Zhu, Y.; Yu, T.; Tian, Y. Maximizing the Light Extraction Efficiency for AlGaN-Based DUV-LEDs with Two Optimally Designed Surface Structures under the Guidance of PSO. Crystals 2022, 12, 1700. https://doi.org/10.3390/cryst12121700.
- Chen, Z.; Liang, F.; Zhao, D.; Yang, J.; Chen, P.; Jiang, D. Investigation into the MOCVD Growth and Optical Properties of InGaN/GaN Quantum Wells by Modulating NH3 Flux. Crystals 2023, 13, 127. https://doi.org/10.3390/cryst13010127.
- Tian, F.; Kong, D.; Qiu, P.; Liu, H.; Zhu, X.; Wei, H.; Song, Y.; Chen, H.; Zheng, X.; Peng, M. Polarization Modulation on Charge Transfer and Band Structures of GaN/MoS2 Polar Heterojunctions. Crystals 2023, 13, 563. https://doi.org/10.3390/cryst13040563.
- N’Dohi, A.J.E.; Sonneville, C.; Saidi, S.; Ngo, T.H.; De Mierry, P.; Frayssinet, E.; Cordier, Y.; Phung, L.V.; Morancho, F.; Maher, H.; et al. Micro-Raman Spectroscopy Study of Vertical GaN Schottky Diode. Crystals 2023, 13, 713. https://doi.org/10.3390/cryst13050713.
- Zhang, Y.; Ding, G.; Wang, F.; Yu, P.; Feng, Q.; Yu, C.; He, J.; Wang, X.; Xu, W.; He, M.; et al. Normally-Off p-GaN Gate High-Electron-Mobility Transistors with the Air-Bridge Source-Connection Fabricated Using the Direct Laser Writing Grayscale Photolithography Technology. Crystals 2023, 13, 815. https://doi.org/10.3390/cryst13050815.
- Guo, J.; Liu, W.; Ding, D.; Tan, X.; Zhang, W.; Han, L.; Wang, Z.; Gong, W.; Li, J.; Zhai, R.; et al. Analysis of Photo-Generated Carrier Escape in Multiple Quantum Wells. Crystals 2023, 13, 834. https://doi.org/10.3390/cryst13050834.
- Liu, S.; Li, Y.; Tao, J.; Tang, R.; Zheng, X. Structural, Surface, and Optical Properties of AlN Thin Films Grown on Different Substrates by PEALD. Crystals 2023, 13, 910. https://doi.org/10.3390/cryst13060910.
- Mukhopadhyay, S.; Liu, C.; Chen, J.; Tahmidul Alam, M.; Sanyal, S.; Bai, R.; Wang, G.; Gupta, C.; Pasayat, S.S. Crack-Free High-Composition (>35%) Thick-Barrier (>30 nm) AlGaN/AlN/GaN High-Electron-Mobility Transistor on Sapphire with Low Sheet Resistance (<250 Ω/□). Crystals 2023, 13, 1456. https://doi.org/10.3390/cryst13101456.
- Mukhopadhyay, S.; Sanyal, S.; Wang, G.; Gupta, C.; Pasayat, S.S. First Demonstration of Extrinsic C-Doped Semi-Insulating N-Polar GaN Using Propane Precursor Grown on Miscut Sapphire Substrate by MOCVD. Crystals 2023, 13, 1457. https://doi.org/10.3390/cryst13101457.
- Zhang, S.; Fan, Q.; Ni, X.; Tao, L.; Gu, X. Study on the Influence of KOH Wet Treatment on Red μLEDs. Crystals 2023, 13, 1611. https://doi.org/10.3390/cryst13121611.
- Han, L.; Tang, X.; Wang, Z.; Gong, W.; Zhai, R.; Jia, Z.; Zhang, W. Research Progress and Development Prospects of Enhanced GaN HEMTs. Crystals 2023, 13, 911. https://doi.org/10.3390/cryst13060911.
- Jafar, N.; Jiang, J.; Lu, H.; Qasim, M.; Zhang, H. Recent Research on Indium-Gallium-Nitride-Based Light-Emitting Diodes: Growth Conditions and External Quantum Efficiency. Crystals 2023, 13, 1623. https://doi.org/10.3390/cryst13121623.
References
- Amano, H.; Kito, M.; Hiramatsu, K.; Akasaki, I. P-Type Conduction in Mg-Doped GaN Treated with Low-Energy Electron Beam Irradiation (LEEBI). Jpn. J. Appl. Phys. 1989, 28, L2112–L2114. [Google Scholar] [CrossRef]
- Nakamura, S.; Mukai, T.; Senoh, M.; Iwasa, N. Thermal Annealing Effects on P-Type Mg-Doped GaN Films. Jpn. J. Appl. Phys. 1992, 31, L139–L142. [Google Scholar] [CrossRef]
- Nakamura, S.; Mukai, T.; Senoh, M. Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes. Appl. Phys. Lett. 1994, 64, 1687–1689. [Google Scholar] [CrossRef]
- Wang, J.; Xie, N.; Xu, F.; Zhang, L.; Lang, J.; Kang, X.; Qin, Z.; Yang, X.; Tang, N.; Wang, X.; et al. Group-III nitride heteroepitaxial films approaching bulk-class quality. Nat. Mater. 2023, 22, 853–859. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Yang, X.; Liu, D.; Cai, Z.; Wei, L.; Xie, N.; Xu, F.; Tang, N.; Wang, X.; Ge, W.; et al. High quality AlN film grown on a nano-concave-circle patterned Si substrate with an AlN seed layer. Appl. Phys. Lett. 2020, 117, 022103. [Google Scholar] [CrossRef]
- Wang, J.; Xu, F.; Liu, B.; Lang, J.; Zhang, N.; Kang, X.; Qin, Z.; Yang, X.; Wang, X.; Ge, W.; et al. Control of dislocations in heteroepitaxial AlN films by extrinsic supersaturated vacancies introduced through thermal desorption of heteroatoms. Appl. Phys. Lett. 2021, 118, 162103. [Google Scholar] [CrossRef]
- Wu, S.; Yang, X.; Zhang, H.; Shi, L.; Zhang, Q.; Shang, Q.; Qi, Z.; Xu, Y.; Zhang, J.; Tang, N.; et al. Unambiguous Identification of Carbon Location on the N Site in Semi-insulating GaN. Phys. Rev. Lett. 2018, 121, 145505. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yan, S.; Hu, X.; Song, Y.; Deng, Z.; Du, C.; Wang, W.; Ma, Z.; Wang, L.; Jia, H.; et al. Characterization of edge dislocation density through X-ray diffraction rocking curves. J. Cryst. Growth 2020, 551, 125893. [Google Scholar] [CrossRef]
- Li, Y.; Die, J.; Yan, S.; Deng, Z.; Ma, Z.; Wang, L.; Jia, H.; Wang, W.; Jiang, Y.; Chen, H. Characterization of periodicity fluctuations in InGaN/GaN MQWs by the kinematical simulation of X-ray diffraction. Appl. Phys. Express 2019, 12, 045502. [Google Scholar] [CrossRef]
- Zhu, Y.; Lu, T.; Zhou, X.; Zhao, G.; Dong, H.; Jia, Z.; Liu, X.; Xu, B. Origin of huge photoluminescence efficiency improvement in InGaN/GaN multiple quantum wells with low-temperature GaN cap layer grown in N2/H2 mixture gas. Appl. Phys. Express 2017, 10, 061004. [Google Scholar] [CrossRef]
- Li, Y.; Deng, Z.; Ma, Z.; Wang, L.; Jia, H.; Wang, W.; Jiang, Y.; Chen, H. Visualizing carrier transitions between localization states in a InGaN yellow–green light-emitting-diode structure. J. Appl. Phys. 2019, 126, 095705. [Google Scholar] [CrossRef]
- Li, Y.; Li, Y.; Zhang, J.; Wang, Y.; Li, T.; Jiang, Y.; Jia, H.; Wang, W.; Yang, R.; Chen, H. Direct Observation of Carrier Transportation between Localized States in InGaN Quantum Wells. Crystals 2022, 12, 1837. [Google Scholar] [CrossRef]
- Ma, J.; Ji, X.; Wang, G.; Wei, X.; Lu, H.; Yi, X.; Duan, R.; Wang, J.; Zeng, Y.; Li, J.; et al. Anomalous temperature dependence of photoluminescence in self-assembled InGaN quantum dots. Appl. Phys. Lett. 2012, 101, 131101. [Google Scholar] [CrossRef]
- Lu, T.; Ma, Z.; Du, C.; Fang, Y.; Wu, H.; Jiang, Y.; Wang, L.; Dai, L.; Jia, H.; Liu, W.; et al. Temperature-dependent photoluminescence in light-emitting diodes. Sci. Rep. 2014, 4, 6131. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Zhao, D.G.; Jiang, D.S.; Chen, P.; Liu, Z.S.; Zhu, J.J.; Shi, M.; Zhao, D.M.; Li, X.; Liu, J.P.; et al. Localization effect in green light emitting InGaN/GaN multiple quantum wells with varying well thickness. J. Alloys Compd. 2015, 625, 266–270. [Google Scholar] [CrossRef]
- Weng, G.-E.; Zhao, W.-R.; Chen, S.-Q.; Akiyama, H.; Li, Z.-C.; Liu, J.-P.; Zhang, B.-P. Strong localization effect and carrier relaxation dynamics in self-assembled InGaN quantum dots emitting in the green. Nanoscale Res. Lett. 2015, 10, 31. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Zhao, D.G.; Jiang, D.S.; Chen, P.; Zhu, J.J.; Liu, Z.S.; Le, L.C.; Li, X.J.; He, X.G.; Liu, J.P.; et al. Optical and structural characteristics of high indium content InGaN/GaN multi-quantum wells with varying GaN cap layer thickness. J. Appl. Phys. 2015, 117. [Google Scholar] [CrossRef]
- Li, Y.; Jin, Z.; Han, Y.; Zhao, C.; Huang, J.; Tang, C.W.; Wang, J.; Lau, K.M. Surface morphology and optical properties of InGaN quantum dots with varying growth interruption time. Mater. Res. Express 2019, 7, 015903. [Google Scholar] [CrossRef]
- Li, Y.; Yang, R.; Jiang, Y.; Jia, H.; Wang, W.; Chen, H. In Situ AlGaN Interlayer for Reducing the Reverse Leakage Current of InGaN Light-Emitting Diodes. IEEE Electron. Device Lett. 2023, 44, 777–780. [Google Scholar] [CrossRef]
- Jiang, Y.; Li, Y.; Li, Y.; Deng, Z.; Lu, T.; Ma, Z.; Zuo, P.; Dai, L.; Wang, L.; Jia, H.; et al. Realization of high-luminous-efficiency InGaN light-emitting diodes in the “green gap” range. Sci. Rep. 2015, 5, 10883. [Google Scholar] [CrossRef]
- Bi, Z.; Lenrick, F.; Colvin, J.; Gustafsson, A.; Hultin, O.; Nowzari, A.; Lu, T.; Wallenberg, R.; Timm, R.; Mikkelsen, A.; et al. InGaN Platelets: Synthesis and Applications toward Green and Red Light-Emitting Diodes. Nano Lett. 2019, 19, 2832–2839. [Google Scholar] [CrossRef]
- Iida, D.; Zhuang, Z.; Kirilenko, P.; Velazquez-Rizo, M.; Najmi, M.A.; Ohkawa, K. 633-nm InGaN-based red LEDs grown on thick underlying GaN layers with reduced in-plane residual stress. Appl. Phys. Lett. 2020, 116, 162101. [Google Scholar] [CrossRef]
- Kneissl, M.; Seong, T.-Y.; Han, J.; Amano, H. The emergence and prospects of deep-ultraviolet light-emitting diode technologies. Nat. Photonics 2019, 13, 233–244. [Google Scholar] [CrossRef]
- Lee, D.-g.; Choi, Y.; Jung, S.; Kim, Y.; Park, S.; Choi, P.; Yoon, S. High-efficiency InGaN red light-emitting diodes with external quantum efficiency of 10.5% using extended quantum well structure with AlGaN interlayers. Appl. Phys. Lett. 2024, 124, 121109. [Google Scholar] [CrossRef]
- Liu, C.; Ooi, Y.K.; Islam, S.M.; Xing, H.G.; Jena, D.; Zhang, J. 234 nm and 246 nm AlN-Delta-GaN quantum well deep ultraviolet light-emitting diodes. Appl. Phys. Lett. 2018, 112, 011101. [Google Scholar] [CrossRef]
- Xing, K.; Hu, J.; Pan, Z.; Xia, Z.; Jin, Z.; Wang, L.; Jiang, X.; Wang, H.; Zeng, H.; Wang, X. Demonstration of 651 nm InGaN-based red light-emitting diode with an external quantum efficiency over 6% by InGaN/AlN strain release interlayer. Opt. Express 2024, 32, 11377. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, J.; Gao, J.; Wang, X.; Zheng, C.; Zhang, M.; Wu, X.; Xu, L.; Ding, J.; Quan, Z.; et al. Efficient emission of InGaN-based light-emitting diodes: Toward orange and red. Photonics Res. 2020, 8, 1671. [Google Scholar] [CrossRef]
- Narukawa, Y.; Ichikawa, M.; Sanga, D.; Sano, M.; Mukai, T. White light emitting diodes with super-high luminous efficacy. J. Phys. D-Appl. Phys. 2010, 43, 354002. [Google Scholar] [CrossRef]
- Lv, Q.; Liu, J.; Mo, C.; Zhang, J.; Wu, X.; Wu, Q.; Jiang, F. Realization of Highly Efficient InGaN Green LEDs with Sandwich-like Multiple Quantum Well Structure: Role of Enhanced Interwell Carrier Transport. ACS Photonics 2018, 6, 130–138. [Google Scholar] [CrossRef]
- Chen, Z.; Yan, S.; Danesh, C. MicroLED technologies and applications: Characteristics, fabrication, progress, and challenges. J. Phys. D-Appl. Phys. 2021, 54, 123001. [Google Scholar] [CrossRef]
- Jiang, F.; Zhang, J.; Xu, L.; Ding, J.; Wang, G.; Wu, X.; Wang, X.; Mo, C.; Quan, Z.; Guo, X.; et al. Efficient InGaN-based yellow-light-emitting diodes. Photonics Res. 2019, 7, 144. [Google Scholar] [CrossRef]
- Zhou, X.; Lu, T.; Zhu, Y.; Zhao, G.; Dong, H.; Jia, Z.; Yang, Y.; Chen, Y.; Xu, B. Surface Morphology Evolution Mechanisms of InGaN/GaN Multiple Quantum Wells with Mixture N2/H2-Grown GaN Barrier. Nanoscale Res. Lett. 2017, 12, 354. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.-f.; Cao, S.; Mo, C.-l.; Zhang, J.-l.; Wang, X.-l.; Quan, Z.-j.; Zheng, C.-d.; Wu, X.-m.; Pan, S.; Wang, G.-X.; et al. Effects of Hydrogen Treatment in Barrier on the Electroluminescence of Green InGaN/GaN Single-Quantum-Well Light-Emitting Diodes with V-Shaped Pits Grown on Si Substrates. Chin. Phys. Lett. 2018, 35, 098501. [Google Scholar] [CrossRef]
- Li, Y.; Yan, S.; Hu, X.; Song, Y.; Deng, Z.; Du, C.; Wang, W.; Ma, Z.; Wang, L.; Jia, H.; et al. Effect of H2 treatment in barrier on interface, optical and electrical properties of InGaN light emitting diodes. Superlattices Microstruct. 2020, 145, 106606. [Google Scholar] [CrossRef]
- Li, Y.; Yan, S.; Die, J.; Hu, X.; Song, Y.; Deng, Z.; Du, C.; Wang, W.; Ma, Z.; Wang, L.; et al. The influence of excessive H2 during barrier growth on InGaN light-emitting diodes. Mater. Res. Express 2020, 7, 105907. [Google Scholar] [CrossRef]
- Li, Y.; Liu, C.; Zhang, Y.; Jiang, Y.; Hu, X.; Song, Y.; Su, Z.; Jia, H.; Wang, W.; Chen, H. Realizing Single Chip White Light InGaN LED via Dual-Wavelength Multiple Quantum Wells. Materials 2022, 15, 3998. [Google Scholar] [CrossRef] [PubMed]
- Behrman, K.; Kymissis, I. Micro light-emitting diodes. Nat. Electron. 2022, 5, 564–573. [Google Scholar] [CrossRef]
- Sheen, M.; Ko, Y.; Kim, D.-u.; Kim, J.; Byun, J.-h.; Choi, Y.; Ha, J.; Yeon, K.Y.; Kim, D.; Jung, J.; et al. Highly efficient blue InGaN nanoscale light-emitting diodes. Nature 2022, 608, 56–61. [Google Scholar] [CrossRef]
- Wang, L.; Ma, J.; Su, P.; Huang, J. High-Resolution Pixel LED Headlamps: Functional Requirement Analysis and Research Progress. Appl. Sci. 2021, 11, 3368. [Google Scholar] [CrossRef]
- Xiong, J.; Hsiang, E.-L.; He, Z.; Zhan, T.; Wu, S.-T. Augmented reality and virtual reality displays: Emerging technologies and future perspectives. Light-Sci. Appl. 2021, 10, 216. [Google Scholar] [CrossRef]
- Yu, L.; Wang, L.; Yang, P.; Hao, Z.; Yu, J.; Luo, Y.; Sun, C.; Xiong, B.; Han, Y.; Wang, J.; et al. Metal organic vapor phase epitaxy of high-indium-composition InGaN quantum dots towards red micro-LEDs. Opt. Mater. Express 2022, 12, 3225. [Google Scholar] [CrossRef]
- Zhuang, Z.; Iida, D.; Ohkawa, K. Ultrasmall and ultradense InGaN-based RGB monochromatic micro-light-emitting diode arrays by pixilation of conductive p-GaN. Photonics Res. 2021, 9, 2429. [Google Scholar] [CrossRef]
- Chen, Z.; Sheng, B.; Liu, F.; Liu, S.; Li, D.; Yuan, Z.; Wang, T.; Rong, X.; Huang, J.; Qiu, J.; et al. High-Efficiency InGaN Red Mini-LEDs on Sapphire Toward Full-Color Nitride Displays: Effect of Strain Modulation. Adv. Funct. Mater. 2023, 33, 2300042. [Google Scholar] [CrossRef]
- Li, P.; Li, H.; Yao, Y.; Lim, N.; Wong, M.; Iza, M.; Gordon, M.J.; Speck, J.S.; Nakamura, S.; DenBaars, S.P. Significant Quantum Efficiency Enhancement of InGaN Red Micro-Light-Emitting Diodes with a Peak External Quantum Efficiency of up to 6%. ACS Photonics 2023, 10, 1899–1905. [Google Scholar] [CrossRef]
- Sun, Y.; Zhou, K.; Sun, Q.; Liu, J.; Feng, M.; Li, Z.; Zhou, Y.; Zhang, L.; Li, D.; Zhang, S.; et al. Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si. Nat. Photonics 2016, 10, 595–599. [Google Scholar] [CrossRef]
- Yang, T.; Chen, Y.-H.; Wang, Y.-C.; Ou, W.; Ying, L.-Y.; Mei, Y.; Tian, A.-Q.; Liu, J.-P.; Guo, H.-C.; Zhang, B.-P. Green Vertical-Cavity Surface-Emitting Lasers Based on InGaN Quantum Dots and Short Cavity. Nano-Micro Lett. 2023, 15, 223. [Google Scholar] [CrossRef] [PubMed]
- Raun, A.; Hu, E. Ultralow Thresh. Blue Quantum Dot Lasers: What’s True Recipe Success? Nanophotonics 2020, 10, 23–29. [Google Scholar] [CrossRef]
- Wang, D.; Zhu, T.; Oliver, R.A.; Hu, E.L. Ultra-low-threshold InGaN/GaN quantum dot micro-ring lasers. Opt. Lett. 2018, 43, 799–802. [Google Scholar] [CrossRef] [PubMed]
- Feng, M.; Zhao, H.; Zhou, R.; Tang, Y.; Liu, J.; Sun, X.; Sun, Q.; Yang, H. Continuous-Wave Current Injected InGaN/GaN Microdisk Laser on Si(100). ACS Photonics 2022, 10, 2208–2215. [Google Scholar] [CrossRef]
- Zi, H.; Fu, W.Y.; Cheung, Y.F.; Damilano, B.; Frayssinet, E.; Alloing, B.; Duboz, J.-Y.; Boucaud, P.; Semond, F.; Choi, H.W. Comparison of lasing characteristics of GaN microdisks with different structures. J. Phys. D-Appl. Phys. 2022, 55, 355107. [Google Scholar] [CrossRef]
- Tajiri, T.; Sosumi, S.; Shimoyoshi, K.; Uchida, K. Fabrication and optical characterization of GaN micro-disk cavities undercut by laser-assisted photo-electrochemical etching. Jpn. J. Appl. Phys. 2023, 62, SC1069. [Google Scholar] [CrossRef]
- Zhao, L.; Chen, J.; Liu, C.; Lin, S.; Ge, X.; Li, X.; Hu, T.; Ding, S.; Wang, K. Low-threshold InGaN-based whispering gallery mode laser with lateral nanoporous distributed Bragg reflector. Opt. Laser Technol. 2023, 164, 109480. [Google Scholar] [CrossRef]
- Chen, K.J.; Häberlen, O.; Lidow, A.; Tsai, C.l.; Ueda, T.; Uemoto, Y.; Wu, Y. GaN-on-Si Power Technology: Devices and Applications. IEEE Trans. Electron. Devices 2017, 64, 779–795. [Google Scholar] [CrossRef]
- Cai, Y.; Zhou, Y.; Chen, K.J.; Lau, K.M. High-performance enhancement-mode AlGaN/GaN HEMTs using fluoride-based plasma treatment. IEEE Electron. Device Lett. 2005, 26, 435–437. [Google Scholar] [CrossRef]
- Cui, J.; Wei, J.; Wang, M.; Wu, Y.; Yang, J.; Li, T.; Yu, J.; Yang, H.; Yang, X.; Wang, J.; et al. 6500-V E-mode Active-Passivation p-GaN Gate HEMT with Ultralow Dynamic RON. In Proceedings of the 2023 International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 9–13 December 2023; pp. 1–4. [Google Scholar] [CrossRef]
- Zheng, Z.; Song, W.; Zhang, L.; Yang, S.; Wei, J.; Chen, K.J. High ION and ION/IOFF Ratio Enhancement-Mode Buried p-Channel GaN MOSFETs on p-GaN Gate Power HEMT Platform. IEEE Electron. Device Lett. 2020, 41, 26–29. [Google Scholar] [CrossRef]
- Zheng, Z.; Zhang, L.; Song, W.; Feng, S.; Xu, H.; Sun, J.; Yang, S.; Chen, T.; Wei, J.; Chen, K.J. Gallium nitride-based complementary logic integrated circuits. Nat. Electron. 2021, 4, 595–603. [Google Scholar] [CrossRef]
- Chen, J.; Liu, Z.; Wang, H.; He, Y.; Zhu, X.; Ning, J.; Zhang, J.; Hao, Y. A GaN Complementary FET Inverter With Excellent Noise Margins Monolithically Integrated With Power Gate-Injection HEMTs. IEEE Trans. Electron. Devices 2022, 69, 51–56. [Google Scholar] [CrossRef]
- Xie, Q.; Yuan, M.; Niroula, J.; Sikder, B.; Greer, J.A.; Rajput, N.S.; Chowdhury, N.; Palacios, T. Highly Scaled GaN Complementary Technology on a Silicon Substrate. IEEE Trans. Electron. Devices 2023, 70, 2121–2128. [Google Scholar] [CrossRef]
- Keller, S.; Li, H.; Laurent, M.; Hu, Y.; Pfaff, N.; Lu, J.; Brown, D.F.; Fichtenbaum, N.A.; Speck, J.S.; DenBaars, S.P.; et al. Recent progress in metal-organic chemical vapor deposition of (000) N-polar group-III nitrides. Semicond. Sci. Technol. 2014, 29, 113001. [Google Scholar] [CrossRef]
- Li, Y.; Jiang, Y.; Jia, H.; Wang, W.; Yang, R.; Chen, H. Superior Optoelectronic Performance of N-Polar GaN LED to Ga-Polar Counterpart in the “Green Gap” Range. IEEE Access 2022, 10, 95565–95570. [Google Scholar] [CrossRef]
- Li, C.; Zhang, K.; Qiaoyu, Z.; Yin, X.; Ge, X.; Wang, J.; Wang, Q.; He, C.; Zhao, W.; Chen, Z. High quality N-polar GaN films grown with varied V/III ratios by metal–organic vapor phase epitaxy. RSC Adv. 2020, 10, 43187–43192. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Hu, X.; Song, Y.; Su, Z.; Wang, W.; Jia, H.; Wang, W.; Jiang, Y.; Chen, H. Epitaxy N-polar GaN on vicinal Sapphire substrate by MOCVD. Vacuum 2021, 189, 110173. [Google Scholar] [CrossRef]
- Li, Y.; Hu, X.; Song, Y.; Su, Z.; Wang, W.; Jia, H.; Wang, W.; Jiang, Y.; Chen, H. The role of AlN thickness in MOCVD growth of N-polar GaN. J. Alloys Compd. 2021, 884, 161134. [Google Scholar] [CrossRef]
- Li, Y.; Hu, X.; Song, Y.; Su, Z.; Jia, H.; Wang, W.; Jiang, Y.; Chen, H. The influence of temperature of nitridation and AlN buffer layer on N-polar GaN. Mater. Sci. Semicond. Process. 2022, 141, 106423. [Google Scholar] [CrossRef]
- Yamada, S.; Shirai, M.; Kobayashi, H.; Arai, M.; Kachi, T.; Suda, J. Realization of low specific-contact-resistance on N-polar GaN surfaces using heavily-Ge-doped n-type GaN films deposited by low-temperature reactive sputtering technique. Appl. Phys. Express 2024, 17, 036501. [Google Scholar] [CrossRef]
- Romanczyk, B.; Wienecke, S.; Guidry, M.; Li, H.; Ahmadi, E.; Zheng, X.; Keller, S.; Mishra, U.K. Demonstration of Constant 8 W/mm Power Density at 10, 30, and 94 GHz in State-of-the-Art Millimeter-Wave N-Polar GaN MISHEMTs. IEEE Trans. Electron. Devices 2018, 65, 45–50. [Google Scholar] [CrossRef]
- Koksaldi, O.S.; Haller, J.; Li, H.; Romanczyk, B.; Guidry, M.; Wienecke, S.; Keller, S.; Mishra, U.K. N-Polar GaN HEMTs Exhibiting Record Breakdown Voltage Over 2000 V and Low Dynamic On-Resistance. IEEE Electron Device Lett. 2018, 39, 1014–1017. [Google Scholar] [CrossRef]
- Hamwey, R.; Hatui, N.; Akso, E.; Wu, F.; Clymore, C.; Keller, S.; Speck, J.S.; Mishra, U.K. First Demonstration of an N-Polar InAlGaN/GaN HEMT. IEEE Electron Device Lett. 2024, 45, 328–331. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y. III-Nitride Materials: Properties, Growth, and Applications. Crystals 2024, 14, 390. https://doi.org/10.3390/cryst14050390
Li Y. III-Nitride Materials: Properties, Growth, and Applications. Crystals. 2024; 14(5):390. https://doi.org/10.3390/cryst14050390
Chicago/Turabian StyleLi, Yangfeng. 2024. "III-Nitride Materials: Properties, Growth, and Applications" Crystals 14, no. 5: 390. https://doi.org/10.3390/cryst14050390
APA StyleLi, Y. (2024). III-Nitride Materials: Properties, Growth, and Applications. Crystals, 14(5), 390. https://doi.org/10.3390/cryst14050390