Construction of a Predictive Model for Dynamic and Static Recrystallization Kinetics of Cast TC21 Titanium Alloy
Abstract
:1. Introduction
2. Experimental Materials and Procedure
2.1. Experimental Materials
2.2. Experimental Procedure
3. Results and Discussion
3.1. Creation of a Thermal Processing Diagram
3.2. Microstructure Evolution
3.3. Determination of Recrystallization Volume Fraction
3.4. Construction of Recrystallization Kinetic Equation
4. Conclusions
- (1)
- The thermal processing diagram of cast TC21 titanium alloy at a strain of 0.8 was constructed, and a more ideal processing window was obtained by combining the power dissipation diagram and plastic instability diagram—deformation temperature of 1373 K–1423 K and strain rate of 0.1 s−1.
- (2)
- The microstructure of cast TC21 titanium alloy was observed and analyzed with hot compression tests and heat treatment tests, and it was found that the deformation amount, deformation temperature and strain rate had different effects on the recrystallization of cast TC21. The increase in deformation volume and deformation temperature can provide more energy for DRX, which is beneficial to the nucleation and growth of recrystallized grains, while the increase in strain rate suppresses the nucleation rate of recrystallization to a certain extent.
- (3)
- The dynamic and static recrystallization volume fractions of cast TC21 titanium alloy after heat treatment were extracted, and the fitted dynamic and static recrystallization volume fractions were plotted. It is found that the dynamic and static recrystallization volume fraction increases with decreasing strain rate and increasing deformation temperature.
- (4)
- According to the existing recrystallization kinetic equations, combined with the experimental situation of casting TC21 titanium alloy, the dynamic and static recrystallization kinetic models of cast TC21 titanium alloy under different deformation temperatures were established:
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yuan, B.; Zheng, Y.; Wang, Y.; Chen, Q.; Gong, L.; Lv, M. Effect of temperature on hydrogen absorption characteristic and microstructural evolution of TC21 alloy. J. Alloys Compd. 2015, 648, 794–802. [Google Scholar] [CrossRef]
- Zhu, Y.; Zeng, W.; Sun, Y.; Feng, F.; Zhou, Y. Artificial neural network approach to predict the flow stress in the isothermal compression of as-cast TC21 titanium alloy. Comp. Mater. Sci. 2011, 50, 1785–1790. [Google Scholar] [CrossRef]
- Li, X.; Ouyang, D.; Zhang, K.; Wang, K.; Cui, K. Hot deformation characteristic of TC21 titanium alloy with lamellar microstructure. Mater. Today Commun. 2024, 39, 108709. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, G.; Zhang, S.; Xiu, S. Effect of crystal orientation on micro-stress distribution in a damage-tolerant titanium alloy TC21. J. Alloys Compd. 2022, 924, 166637. [Google Scholar] [CrossRef]
- Wang, B.; Zhao, H.; Shan, X.; Tang, Y.; Wang, B.; Tian, Y. Hot deformation behavior and dynamic recrystallization mechanism of Ti2ZrTa0.75 refractory complex concentrated alloy. Mater. Charact. 2023, 203, 113061. [Google Scholar] [CrossRef]
- Hu, Y.; Li, Y.; Zhang, S.; Lin, X.; Wang, Z.; Huang, W. Effect of solution temperature on static recrystallization and ductility of Inconel 625 superalloy fabricated by directed energy deposition. Mater. Sci. Eng. A 2020, 772, 138711. [Google Scholar] [CrossRef]
- Zhang, L.; Wu, X.; Yang, X.; Li, Y. Static recrystallization and precipitation behavior of forged and annealed Mg-8.7Gd-4.18Y-0.42Zr magnesium alloy. Mater. Today Commun. 2023, 34, 105106. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Z.; Wang, M. Gradient microstructure evolution under thermo-mechanical coupling effects for a nickel-based powder metallurgy superalloy—Dynamic recrystallization coexist with static recrystallization. J. Mater. Process. Technol. 2021, 294, 117142. [Google Scholar] [CrossRef]
- Cano-Castillo, G.; Victoria-Hernández, J.; Bohlen, J.; Letzig, D.; Kainer, K. Effect of Ca and Nd on the microstructural development during dynamic and static recrystallization of indirectly extruded Mg–Zn based alloys. Mater. Sci. Eng. A 2020, 793, 139527. [Google Scholar] [CrossRef]
- Cho, H.; Hammi, Y.; Bowman, A.; Karato, S.; Baumgardner, J.; Horstemeyer, M. A unified static and dynamic recrystallization Internal State Variable (ISV) constitutive model coupled with grain size evolution for metals and mineral aggregates. Int. J. Plasticity 2019, 112, 123–157. [Google Scholar] [CrossRef]
- Arthur, A.; Douglas, J. Validation of a model for static and dynamic recrystallization in metals. Int. J. Plast. 2012, 32–33, 17–35. [Google Scholar]
- Després, A.; Mithieux, J.; Sinclair, C. Modelling the relationship between deformed microstructures and static recrystallization textures: Application to ferritic stainless steels. Acta Mater. 2021, 219, 117226. [Google Scholar] [CrossRef]
- Luan, Q.; Lee, J.; Zheng, J.; Hopper, C.; Jiang, J. Combining microstructural characterization with crystal plasticity and phase-field modelling for the study of static recrystallization in pure aluminium. Comp. Mater. Sci. 2020, 173, 109419. [Google Scholar] [CrossRef]
- Prasad, Y.; Gegel, H.; Doraivelu, S.; Malas, J.; Morgan, J.; Lark, K.; Barker, D. Modeling of dynamic material behavior in hot deformation: Forging of Ti-6242. Metall. Trans. A 1984, 15, 1883–1892. [Google Scholar] [CrossRef]
- Kong, F.; Yang, Y.; Chen, H.; Liu, H.; Fan, C.; Xie, W.; Wei, G. Dynamic recrystallization and deformation constitutive analysis of Mg-Zn-Nd-Zr alloys during hot rolling. Heliyon 2022, 8, e09995. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Yao, Z.; Ning, Y.; Nan, Y. Effect of deformation temperature and strain rate on dynamic recrystallized grain size of a powder metallurgical nickel-based superalloy. J. Alloys Compd. 2017, 691, 554–563. [Google Scholar] [CrossRef]
- Lu, S.; Ouyang, D.; Cui, X.; Wang, K. Dynamic recrystallization behavior of burn resistant titanium alloy Ti–25V–15Cr–0.2Si. Trans. Nonferrous Met. Soc. 2016, 26, 1003–1010. [Google Scholar] [CrossRef]
- Zhu, Y.; Huang, Q.; Shi, X.; Shuai, M.; Zeng, W.; Zhao, Y.; Huang, Z.; Ma, L. Precipitation location of secondary phase and microstructural evolution during static recrystallization of as-cast Ti-25V-15Cr-0.3Si titanium alloy. Trans. Nonferrous Met. Soc. 2018, 28, 1521–1529. [Google Scholar] [CrossRef]
- Wan, P.; Kang, T.; Li, F.; Gao, P.; Zhang, L.; Zhao, Z. Dynamic recrystallization behavior and microstructure evolution of low-density high-strength Fe–Mn–Al–C steel. J. Mater. Res. Technol. 2021, 15, 1059–1068. [Google Scholar] [CrossRef]
- Zhang, W.; Yan, Z.; Wang, R.; Li, D.; Kang, Y.; Wu, Z.; Yang, X. Hot Deformation Behavior and Recrystallization Structure of Fe-1.3C-5Cr-0.4Mo-0.4V Ultra High Carbon Steel. J. Mech. Eng. 2020, 56, 116–123. [Google Scholar]
- Matruprasad, R.; Ravi, R.; Surjya, K.; Shiv, B. EBSD study of microstructure evolution during axisymmetric hot compression of 304LN stainless steel. Mater. Sci. Eng. A 2018, 711, 378–388. [Google Scholar]
- Fan, X.; Zhang, Y.; Zheng, H.; Zhang, Z.; Gao, P.; Zhan, M. Pre-processing related recrystallization behavior in β annealing of a near-β Ti-5Al-5Mo-5V-3Cr-1Zr titanium alloy. Mater. Charact. 2018, 137, 151–161. [Google Scholar] [CrossRef]
- Xu, J.; Zeng, W.; Zhang, X.; Zhou, D. Analysis of globularization modeling and mechanisms of alpha/beta titanium alloy. J. Alloys Compd. 2019, 788, 110–117. [Google Scholar] [CrossRef]
- Wang, H.; Qin, G.; Li, C.; Liang, G. Effect of deformation parameters and Al2Cu evolution on dynamic recrystallization of 2219-O Al alloy during hot compression. J. Mater. Res. Technol. 2023, 26, 4093–4106. [Google Scholar] [CrossRef]
- Che, B.; Lu, L.; Wu, Z.; Zhang, H.; Ma, M.; Luo, J.; Zhao, H. Dynamic recrystallization behavior and microstructure evolution of a new Mg-6Zn-1Gd-1Er alloy with and without pre-aging treatment. Mater. Charact. 2021, 184, 111506. [Google Scholar] [CrossRef]
Al | Sn | Zr | Mo | Cr | Nb | Si | Fe | C | N | O | H | Ti |
---|---|---|---|---|---|---|---|---|---|---|---|---|
6.23 | 2.06 | 2.14 | 2.85 | 1.57 | 1.94 | 0.77 | 0.028 | 0.007 | 0.007 | 0.11 | 0.001 | Bal. |
Temperature/K | |||||
---|---|---|---|---|---|
1273 | 1323 | 1373 | 1423 | 1473 | |
−2.303 | 0.31076 | 0.25944 | 0.29648 | 0.32165 | 0.25585 |
0 | 0.17395 | 0.16166 | 0.16064 | 0.16263 | 0.14396 |
2.303 | 0.03715 | 0.06388 | 0.02480 | 0.00361 | 0.03207 |
Experimental Measurement Values | Computed Values | |||||
---|---|---|---|---|---|---|
Temperature/K | Strain | Strain | ||||
0.36 | 0.6 | 0.9 | 0.36 | 0.6 | 0.9 | |
1273 | 20.3% | 37.5% | 47.3% | 21.4% | 34.1% | 47.5% |
1373 | 28.3% | 47.8% | 57.9% | 29.4% | 44.8% | 59.8% |
1473 | 35.4% | 54.2% | 66.6% | 37.4% | 52.5% | 68.1% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Chai, Y.; Qin, L.; Zhu, Y.; Niu, Y.; Fan, J.; Yue, Z. Construction of a Predictive Model for Dynamic and Static Recrystallization Kinetics of Cast TC21 Titanium Alloy. Crystals 2024, 14, 424. https://doi.org/10.3390/cryst14050424
Li Z, Chai Y, Qin L, Zhu Y, Niu Y, Fan J, Yue Z. Construction of a Predictive Model for Dynamic and Static Recrystallization Kinetics of Cast TC21 Titanium Alloy. Crystals. 2024; 14(5):424. https://doi.org/10.3390/cryst14050424
Chicago/Turabian StyleLi, Ziliang, Yunpeng Chai, Ling Qin, Yanchun Zhu, Yong Niu, Jiaxin Fan, and Zhenwei Yue. 2024. "Construction of a Predictive Model for Dynamic and Static Recrystallization Kinetics of Cast TC21 Titanium Alloy" Crystals 14, no. 5: 424. https://doi.org/10.3390/cryst14050424
APA StyleLi, Z., Chai, Y., Qin, L., Zhu, Y., Niu, Y., Fan, J., & Yue, Z. (2024). Construction of a Predictive Model for Dynamic and Static Recrystallization Kinetics of Cast TC21 Titanium Alloy. Crystals, 14(5), 424. https://doi.org/10.3390/cryst14050424