Machine Learning-Based Prediction of Stability in High-Entropy Nitride Ceramics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection and Integration
2.2. Machine Learning
2.2.1. Feature Space Construction
2.2.2. Sure Independence Screening (SIS)
2.2.3. Sparsifying Operator (SO)
2.2.4. Model Building and Validation
3. Results and Discussion
3.1. Performance of SISSO Model for Predictions of EFA
3.2. Applications of SISSO Model for New HEN Ceramics
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Formula | EFA (eV/atom)−1 |
---|---|
AlCrNbTiVN5 | 93 |
CrNbTiVZrN5 | 80 |
AlCrMoTiVN5 | 75 |
AlMoNbTiVN5 | 65 |
MoNbTiVZrN5 | 60 |
AlCrMoNbTiN5 | 58 |
AlCrMoTiZrN5 | 57 |
CrMoTiVZrN5 | 53 |
AlNbTiVZrN5 | 52 |
AlCrNbVZrN5 | 50 |
AlCrMoNbVN5 | 49 |
CrMoNbTiZrN5 | 48 |
AlMoNbVZrN5 | 45 |
CrMoNbTiVN5 | 44 |
AlCrTiVZrN5 | 44 |
AlMoNbTiZrN5 | 43 |
AlCrNbTiZrN5 | 42 |
CrMoNbVZrN5 | 41 |
AlCrMoNbZrN5 | 39 |
AlCrMoVZrN5 | 39 |
CrNbSiTiVN5 | 39 |
NbSiTiVZrN5 | 38 |
AlMoTiVZrN5 | 37 |
CrNbSiTiZrN5 | 36 |
CrMoSiTiVN5 | 35 |
CrMoNbSiVN5 | 35 |
MoNbSiTiVN5 | 34 |
CrSiTiVZrN5 | 34 |
CrNbSiVZrN5 | 29 |
MoSiTiVZrN5 | 29 |
CrMoNbSiTiN5 | 29 |
MoNbSiTiZrN5 | 28 |
MoNbSiVZrN5 | 28 |
CrMoSiTiZrN5 | 28 |
CrMoSiVZrN5 | 27 |
AlCrSiTiVN5 | 23 |
CrMoNbSiZrN5 | 22 |
AlSiTiVZrN5 | 21 |
AlCrSiTiZrN5 | 21 |
AlCrSiVZrN5 | 21 |
AlCrNbSiZrN5 | 21 |
AlNbSiTiZrN5 | 20 |
AlCrNbSiTiN5 | 20 |
AlNbSiVZrN5 | 20 |
AlNbSiTiVN5 | 19 |
AlCrMoSiVN5 | 19 |
AlCrMoSiTiN5 | 19 |
AlCrNbSiVN5 | 19 |
AlCrMoSiZrN5 | 18 |
AlMoSiVZrN5 | 18 |
AlCrMoNbSiN5 | 18 |
AlMoSiTiVN5 | 17 |
AlMoSiTiZrN5 | 17 |
AlMoNbSiVN5 | 17 |
AlMoNbSiZrN5 | 17 |
AlMoNbSiTiN5 | 17 |
Formula | EFA (eV/atom)−1 | Formula | EFA (eV/atom)−1 | Formula | EFA (eV/atom)−1 |
---|---|---|---|---|---|
AlSiTiVHfN5 | 26.22 | AlSiTiVTaN5 | 27.40 | AlSiTiVWN5 | 15.62 |
AlSiTiCrHfN5 | 25.95 | AlSiTiCrTaN5 | 28.58 | AlSiTiCrWN5 | 16.52 |
AlSiTiZrHfN5 | 27.83 | AlSiTiZrTaN5 | 23.81 | AlSiTiZrWN5 | 14.18 |
AlSiTiNbHfN5 | 25.13 | AlSiTiNbTaN5 | 30.73 | AlSiTiNbWN5 | 18.78 |
AlSiTiMoHfN5 | 18.08 | AlSiTiMoTaN5 | 22.35 | AlSiTiMoWN5 | 8.29 |
AlSiVCrHfN5 | 24.25 | AlSiVCrTaN5 | 26.67 | AlSiVCrWN5 | 14.30 |
AlSiVZrHfN5 | 26.76 | AlSiVZrTaN5 | 22.63 | AlSiVZrWN5 | 12.69 |
AlSiVNbHfN5 | 25.15 | AlSiVNbTaN5 | 26.52 | AlSiVNbWN5 | 14.53 |
AlSiVMoHfN5 | 17.74 | AlSiVMoTaN5 | 18.20 | AlSiVMoWN5 | 4.09 |
AlSiCrZrHfN5 | 26.42 | AlSiCrZrTaN5 | 22.27 | AlSiCrZrWN5 | 12.21 |
AlSiCrNbHfN5 | 24.83 | AlSiCrNbTaN5 | 27.35 | AlSiCrNbWN5 | 15.08 |
AlSiCrMoHfN5 | 17.33 | AlSiCrMoTaN5 | 18.78 | AlSiCrMoWN5 | 4.40 |
AlSiZrNbHfN5 | 26.93 | AlSiZrNbTaN5 | 22.86 | AlSiZrNbWN5 | 13.05 |
AlSiZrMoHfN5 | 20.46 | AlSiZrMoTaN5 | 16.01 | AlSiZrMoWN5 | 4.33 |
AlSiNbMoHfN5 | 17.22 | AlSiNbMoTaN5 | 20.77 | AlSiNbMoWN5 | 6.50 |
AlTiVCrHfN5 | 55.10 | AlTiVCrTaN5 | 78.96 | AlTiVCrWN5 | 69.82 |
AlTiVZrHfN5 | 57.45 | AlTiVZrTaN5 | 52.55 | AlTiVZrWN5 | 41.40 |
AlTiVNbHfN5 | 56.26 | AlTiVNbTaN5 | 76.47 | AlTiVNbWN5 | 60.90 |
AlTiVMoHfN5 | 47.89 | AlTiVMoTaN5 | 65.95 | AlTiVMoWN5 | 56.72 |
AlTiCrZrHfN5 | 57.00 | AlTiCrZrTaN5 | 52.06 | AlTiCrZrWN5 | 40.78 |
AlTiCrNbHfN5 | 55.78 | AlTiCrNbTaN5 | 93.52 | AlTiCrNbWN5 | 68.83 |
AlTiCrMoHfN5 | 47.30 | AlTiCrMoTaN5 | 66.19 | AlTiCrMoWN5 | 55.51 |
AlTiZrNbHfN5 | 57.84 | AlTiZrNbTaN5 | 53.00 | AlTiZrNbWN5 | 42.01 |
AlTiZrMoHfN5 | 50.62 | AlTiZrMoTaN5 | 45.30 | AlTiZrMoWN5 | 31.94 |
AlTiNbMoHfN5 | 48.16 | AlTiNbMoTaN5 | 66.36 | AlTiNbMoWN5 | 47.95 |
AlVCrZrHfN5 | 55.20 | AlVCrZrTaN5 | 50.16 | AlVCrZrWN5 | 38.53 |
AlVCrNbHfN5 | 53.76 | AlVCrNbTaN5 | 81.89 | AlVCrNbWN5 | 56.74 |
AlVCrMoHfN5 | 45.03 | AlVCrMoTaN5 | 61.98 | AlVCrMoWN5 | 53.25 |
AlVZrNbHfN5 | 56.28 | AlVZrNbTaN5 | 51.32 | AlVZrNbWN5 | 39.94 |
AlVZrMoHfN5 | 48.78 | AlVZrMoTaN5 | 43.33 | AlVZrMoWN5 | 29.58 |
AlVNbMoHfN5 | 46.44 | AlVNbMoTaN5 | 63.48 | AlVNbMoWN5 | 44.59 |
AlCrZrNbHfN5 | 55.80 | AlCrZrNbTaN5 | 50.80 | AlCrZrNbWN5 | 39.29 |
AlCrZrMoHfN5 | 48.21 | AlCrZrMoTaN5 | 42.73 | AlCrZrMoWN5 | 28.84 |
AlCrNbMoHfN5 | 45.80 | AlCrNbMoTaN5 | 53.49 | AlCrNbMoWN5 | 25.47 |
AlZrNbMoHfN5 | 49.37 | AlZrNbMoTaN5 | 43.99 | AlZrNbMoWN5 | 30.39 |
SiTiVCrHfN5 | 40.02 | SiTiVCrTaN5 | 43.11 | SiTiVCrWN5 | 29.01 |
SiTiVZrHfN5 | 42.79 | SiTiVZrTaN5 | 38.06 | SiTiVZrWN5 | 26.76 |
SiTiVNbHfN5 | 41.13 | SiTiVNbTaN5 | 43.64 | SiTiVNbWN5 | 29.97 |
SiTiVMoHfN5 | 32.70 | SiTiVMoTaN5 | 34.14 | SiTiVMoWN5 | 18.01 |
SiTiCrZrHfN5 | 42.36 | SiTiCrZrTaN5 | 37.59 | SiTiCrZrWN5 | 26.17 |
SiTiCrNbHfN5 | 40.68 | SiTiCrNbTaN5 | 43.87 | SiTiCrNbWN5 | 29.90 |
SiTiCrMoHfN5 | 32.14 | SiTiCrMoTaN5 | 34.12 | SiTiCrMoWN5 | 17.69 |
SiTiZrNbHfN5 | 43.13 | SiTiZrNbTaN5 | 38.47 | SiTiZrNbWN5 | 27.31 |
SiTiZrMoHfN5 | 35.78 | SiTiZrMoTaN5 | 30.68 | SiTiZrMoWN5 | 17.35 |
SiTiNbMoHfN5 | 32.77 | SiTiNbMoTaN5 | 35.98 | SiTiNbMoWN5 | 19.70 |
SiVCrZrHfN5 | 40.59 | SiVCrZrTaN5 | 35.73 | SiVCrZrWN5 | 23.99 |
SiVCrNbHfN5 | 38.71 | SiVCrNbTaN5 | 41.65 | SiVCrNbWN5 | 27.32 |
SiVCrMoHfN5 | 29.94 | SiVCrMoTaN5 | 31.65 | SiVCrMoWN5 | 14.85 |
SiVZrNbHfN5 | 41.64 | SiVZrNbTaN5 | 36.86 | SiVZrNbWN5 | 25.34 |
SiVZrMoHfN5 | 34.03 | SiVZrMoTaN5 | 28.81 | SiVZrMoWN5 | 15.12 |
SiVNbMoHfN5 | 31.29 | SiVNbMoTaN5 | 32.88 | SiVNbMoWN5 | 16.50 |
SiCrZrNbHfN5 | 41.18 | SiCrZrNbTaN5 | 36.36 | SiCrZrNbWN5 | 24.72 |
SiCrZrMoHfN5 | 33.49 | SiCrZrMoTaN5 | 28.23 | SiCrZrMoWN5 | 14.42 |
SiCrNbMoHfN5 | 30.69 | SiCrNbMoTaN5 | 32.51 | SiCrNbMoWN5 | 15.84 |
SiZrNbMoHfN5 | 34.57 | SiZrNbMoTaN5 | 29.41 | SiZrNbMoWN5 | 15.87 |
TiVCrZrHfN5 | 73.81 | TiVCrZrTaN5 | 68.14 | TiVCrZrWN5 | 55.16 |
TiVCrNbHfN5 | 72.37 | TiVCrNbTaN5 | 76.59 | TiVCrNbWN5 | 49.54 |
TiVCrMoHfN5 | 62.62 | TiVCrMoTaN5 | 78.62 | TiVCrMoWN5 | 71.32 |
TiVZrNbHfN5 | 75.07 | TiVZrNbTaN5 | 69.48 | TiVZrNbWN5 | 56.78 |
TiVZrMoHfN5 | 66.71 | TiVZrMoTaN5 | 60.56 | TiVZrMoWN5 | 45.16 |
TiVNbMoHfN5 | 64.26 | TiVNbMoTaN5 | 84.01 | TiVNbMoWN5 | 62.83 |
TiCrZrNbHfN5 | 74.49 | TiCrZrNbTaN5 | 68.86 | TiCrZrNbWN5 | 56.01 |
TiCrZrMoHfN5 | 66.03 | TiCrZrMoTaN5 | 59.84 | TiCrZrMoWN5 | 44.29 |
TiCrNbMoHfN5 | 63.48 | TiCrNbMoTaN5 | 46.97 | TiCrNbMoWN5 | 16.64 |
TiZrNbMoHfN5 | 67.48 | TiZrNbMoTaN5 | 61.41 | TiZrNbMoWN5 | 46.18 |
VCrZrNbHfN5 | 72.43 | VCrZrNbTaN5 | 66.69 | VCrZrNbWN5 | 53.44 |
VCrZrMoHfN5 | 63.69 | VCrZrMoTaN5 | 57.39 | VCrZrMoWN5 | 41.43 |
VCrNbMoHfN5 | 60.89 | VCrNbMoTaN5 | 34.62 | VCrNbMoWN5 | 3.77 |
VZrNbMoHfN5 | 65.18 | VZrNbMoTaN5 | 58.97 | VZrNbMoWN5 | 43.30 |
CrZrNbMoHfN5 | 64.47 | CrZrNbMoTaN5 | 58.21 | CrZrNbMoWN5 | 42.39 |
References
- Schweidler, S.; Botros, M.; Strauss, F.; Wang, Q.S.; Ma, Y.J.; Velasco, L.; Marques, G.C.; Sarkar, A.; Kübel, C.; Hahn, H.; et al. High-entropy materials for energy and electronic applications. Nat. Rev. Mater. 2024, 9, 266–281. [Google Scholar] [CrossRef]
- Deng, C.; Wang, T.; Wu, P.W.; Zhu, W.S.; Dai, S. High entropy materials for catalysis: A critical review of fundamental concepts and applications. Nano Energy 2024, 120, 109153. [Google Scholar] [CrossRef]
- Wang, Q.S.; Velasco, L.; Breitung, B.; Presser, V. High-Entropy Energy Materials in the Age of Big Data: A Critical Guide to Next-Generation Synthesis and Applications. Adv. Energy Mater. 2021, 11, 2102355. [Google Scholar] [CrossRef]
- Sun, Y.F.; Dai, S. High-entropy materials for catalysis: A new frontier. Sci. Adv. 2021, 7, eabg1600. [Google Scholar] [CrossRef] [PubMed]
- Zu, Y.F.; Wang, Z.; Tian, H.L.; Wu, F.; Fu, L.S.; Dai, J.X.; Sha, J.J. A Novel Preparation Method of (Ti,Zr,Nb,Mo,W)B-SiC Composite Ceramic Based on Reactive Sintering of Pre-Alloyed Metals. Crystals 2024, 14, 14. [Google Scholar] [CrossRef]
- Alleg, S.; Bekhouche, A.; Hachache, H.; Sunol, J.J. Effect of Aluminum Addition on the Microstructure, Magnetic, and Mechanical Properties of FeCrCoNiMn High-Entropy Alloy. Crystals 2023, 13, 1483. [Google Scholar] [CrossRef]
- Zhang, Y.; Zuo, T.T.; Tang, Z.; Gao, M.C.; Dahmen, K.A.; Liaw, P.K.; Lu, Z.P. Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 2014, 61, 1–93. [Google Scholar] [CrossRef]
- Anamu, U.S.; Ayodele, O.O.; Olorundaisi, E.; Babalola, B.J.; Odetola, P.I.; Ogunmefun, A.; Ukoba, K.; Jen, T.C.; Olubambi, P.A. Fundamental design strategies for advancing the development of high entropy alloys for thermo-mechanical application: A critical review. J. Mater. Res. Technol. 2023, 27, 4833–4860. [Google Scholar] [CrossRef]
- Liu, Y.F.; Ren, J.; Liu, J.; Cao, Y.; Liu, W.; Li, T.Y.; Zhu, Y.T.; Chen, W. Exceptional thermal stability of additively manufactured CoCrFeMnNi high-entropy alloy with cellular dislocation structures. Mater. Sci. Eng. A Struct. 2023, 885, 145650. [Google Scholar] [CrossRef]
- Yan, W.Q.; Zhao, Y.M.; Zhang, Y.F.; Li, Q.; Chen, S.N.; Yuan, H.; Zhang, Z.Q.; Chen, L.; Luo, J.; Pang, P.; et al. Corrosion-resistant and interfacial conductive AlTiVCrMo high-entropy alloy and (AlTiVCrMo)Nx high-entropy ceramics coatings for surface modification of bipolar plates in proton exchange membrane fuel cells. J. Power Sources 2022, 527, 231217. [Google Scholar] [CrossRef]
- Zhang, P.; Liu, X.J.; Cai, A.H.; Du, Q.; Yuan, X.Y.; Wang, H.; Wu, Y.; Jiang, S.H.; Lu, Z.P. High-entropy carbide-nitrides with enhanced toughness and sinterability. Sci. China Mater. 2021, 64, 2037–2044. [Google Scholar] [CrossRef]
- Moskovskikh, D.; Vorotilo, S.; Buinevich, V.; Sedegov, A.; Kuskov, K.; Khort, A.; Shuck, C.; Zhukovskyi, M.; Mukasyan, A. Extremely hard and tough high entropy nitride ceramics. Sci. Rep. 2020, 10, 19874. [Google Scholar] [CrossRef] [PubMed]
- Sarker, P.; Harrington, T.; Toher, C.; Oses, C.; Samiee, M.; Maria, J.P.; Brenner, D.W.; Vecchio, K.S.; Curtarolo, S. High-entropy high-hardness metal carbides discovered by entropy descriptors. Nat. Commun. 2018, 9, 4980. [Google Scholar] [CrossRef] [PubMed]
- Harrington, T.J.; Gild, J.; Sarker, P.; Toher, C.; Rost, C.M.; Dippo, O.F.; McElfresh, C.; Kaufmann, K.; Marin, E.; Borowski, L.; et al. Phase stability and mechanical properties of novel high entropy transition metal carbides. Acta Mater. 2019, 166, 271–280. [Google Scholar] [CrossRef]
- Divilov, S.; Eckert, H.; Hicks, D.; Oses, C.; Toher, C.; Friedrich, R.; Esters, M.; Mehl, M.J.; Zettel, A.C.; Lederer, Y.; et al. Disordered enthalpy–entropy descriptor for high-entropy ceramics discovery. Nature 2024, 625, 66–73. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Xu, B.A.; Xiong, Y.X.; Ma, S.H.; Wang, Z.; Wu, Z.G.; Zhao, S.J. Design high-entropy carbide ceramics from machine learning. Npj Comput. Mater. 2022, 8, 5. [Google Scholar] [CrossRef]
- Kaufmann, K.; Maryanovsky, D.; Mellor, W.M.; Zhu, C.Y.; Rosengarten, A.S.; Harrington, T.J.; Oses, C.; Toher, C.; Curtarolo, S.; Vecchio, K.S. Discovery of high-entropy ceramics via machine learning. Npj Comput. Mater. 2020, 6, 42. [Google Scholar] [CrossRef]
- Dong, H.Q.; Tao, X.M.; Paulasto-Kröckel, M. Calculation of Phase Diagrams and First-Principles Study of Germanium Impacts on Phosphorus Distribution in Czochralski Silicon. J. Electron. Mater. 2021, 50, 4272–4288. [Google Scholar] [CrossRef]
- Chen, Q.; Yang, C.; Xing, T.; Xi, J.; Zhang, W.; Yang, J.; Xi, L. Defect engineering and alloying strategies for tailoring thermoelectric behavior in GeTe and its alloys. J. Mater. 2024. [Google Scholar] [CrossRef]
- Emery, A.A.; Wolverton, C. High-throughput DFT calculations of formation energy, stability and oxygen vacancy formation energy of ABO3 perovskites. Sci. Data 2017, 4, 170153. [Google Scholar] [CrossRef]
- Wu, Y.L.; Wang, C.F.; Ju, M.G.; Jia, Q.Q.; Zhou, Q.H.; Lu, S.H.; Gao, X.Y.; Zhang, Y.; Wang, J.L. Universal machine learning aided synthesis approach of two-dimensional perovskites in a typical laboratory. Nat. Commun. 2024, 15, 138. [Google Scholar] [CrossRef] [PubMed]
- Jha, D.; Gupta, V.; Ward, L.; Yang, Z.J.; Wolverton, C.; Foster, I.; Liao, W.K.; Choudhary, A.; Agrawal, A. Enabling deeper learning on big data for materials informatics applications. Sci. Rep. 2021, 11, 4244. [Google Scholar] [CrossRef] [PubMed]
- Chong, S.S.; Ng, Y.S.; Wang, H.Q.; Zheng, J.C. Advances of machine learning in materials science: Ideas and techniques. Front. Phys. 2024, 19, 13501. [Google Scholar] [CrossRef]
- Pilania, G. Machine learning in materials science: From explainable predictions to autonomous design. Comput. Mater. Sci. 2021, 193, 110360. [Google Scholar] [CrossRef]
- Giles, S.A.; Sengupta, D.; Broderick, S.R.; Rajan, K. Machine-learning-based intelligent framework for discovering refractory high-entropy alloys with improved high-temperature yield strength. Npj Comput. Mater. 2022, 8, 235. [Google Scholar] [CrossRef]
- Peivaste, I.; Jossou, E.; Tiamiyu, A.A. Data-driven analysis and prediction of stable phases for high-entropy alloy design. Sci. Rep. 2023, 13, 22556. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.J. Application of machine learning in understanding the irradiation damage mechanism of high-entropy materials. J. Nucl. Mater. 2022, 559, 153462. [Google Scholar] [CrossRef]
- Schlenz, H.; Baumann, S.; Meulenberg, W.A.; Guillon, O. The Development of New Perovskite-Type Oxygen Transport Membranes Using Machine Learning. Crystals 2022, 12, 947. [Google Scholar] [CrossRef]
- Ouyang, R.H.; Curtarolo, S.; Ahmetcik, E.; Scheffler, M.; Ghiringhelli, L.M. SISSO: A compressed-sensing method for identifying the best low-dimensional descriptor in an immensity of offered candidates. Phys. Rev. Mater. 2018, 2, 083802. [Google Scholar] [CrossRef]
- Schmidt, M.; Lipson, H. Distilling Free-Form Natural Laws from Experimental Data. Science 2009, 324, 81–85. [Google Scholar] [CrossRef]
- Bartel, C.J.; Sutton, C.; Goldsmith, B.R.; Ouyang, R.H.; Musgrave, C.B.; Ghiringhelli, L.M.; Scheffler, M. New tolerance factor to predict the stability of perovskite oxides and halides. Sci. Adv. 2019, 5, eaav0693. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.Y.; Shao, L.H.; Liu, H.Z. Prediction of Single-Phase High-Entropy Nitrides from First-Principles Calculations. Phys. Status Solidi B 2021, 258, 2100140. [Google Scholar] [CrossRef]
- Liu, Y.F.; Cui, X.F.; Jin, G.; Wen, X.; Wang, S.; Zhang, Y.P. In-situ array TiN reinforced Al-Cr-Ti-Nb-Mo refractory high-entropy alloy coating on Ti-6Al-4V alloy by gas assisted laser nitriding. J. Alloys Compd. 2024, 981, 173743. [Google Scholar] [CrossRef]
- Lewin, E. Multi-component and high-entropy nitride coatings-A promising field in need of a novel approach. J. Appl. Phys. 2020, 127, 160901. [Google Scholar] [CrossRef]
- Xing, Q.W.; Xia, S.Q.; Yan, X.H.; Zhang, Y. Mechanical properties and thermal stability of (NbTiAlSiZr)N high-entropy ceramic films at high temperatures. J. Mater. Res. 2018, 33, 3347–3354. [Google Scholar] [CrossRef]
- Ward, L.; Agrawal, A.; Choudhary, A.; Wolverton, C. A general-purpose machine learning framework for predicting properties of inorganic materials. Npj Comput. Mater. 2016, 2, 16028. [Google Scholar] [CrossRef]
- Ward, L.; Dunn, A.; Faghaninia, A.; Zimmermann, N.E.R.; Bajaj, S.; Wang, Q.; Montoya, J.; Chen, J.M.; Bystrom, K.; Dylla, M.; et al. Matminer: An open source toolkit for materials data mining. Comput. Mater. Sci. 2018, 152, 60–69. [Google Scholar] [CrossRef]
- Wei, A.R.; Ye, H.; Guo, Z.L.; Xiong, J. SISSO-assisted prediction and design of mechanical properties of porous graphene with a uniform nanopore array. Nanoscale Adv. 2022, 4, 1455–1463. [Google Scholar] [CrossRef] [PubMed]
- Dippo, O.F.; Mesgarzadeh, N.; Harrington, T.J.; Schrader, G.D.; Vecchio, K.S. Bulk high-entropy nitrides and carbonitrides. Sci. Rep. 2020, 10, 21288. [Google Scholar] [CrossRef]
- Firstov, S.A.; Gorban’, V.F.; Danilenko, N.I.; Karpets, M.V.; Andreev, A.A.; Makarenko, E.S. Thermal Stability of Superhard Nitride Coatings from High-Entropy Multicomponent Ti-V-Zr-Nb-Hf Alloy. Powder Metall. Met. Ceram. 2014, 52, 560–566. [Google Scholar] [CrossRef]
- Hahn, R.; Kirnbauer, A.; Bartosik, M.; Kolozsvári, S.; Mayrhofer, P.H. Toughness of Si alloyed high-entropy nitride coatings. Mater. Lett. 2019, 251, 238–240. [Google Scholar] [CrossRef]
- Lai, C.H.; Tsai, M.H.; Lin, S.J.; Yeh, J.W. Influence of substrate temperature on structure and mechanical, properties of multi-element (AlCrTaTiZr)N coatings. Surf. Coat. Technol. 2007, 201, 6993–6998. [Google Scholar] [CrossRef]
- Sobol, O.V.; Andreev, A.A.; Gorban, V.F.; Postelnyk, H.O.; Stolbovoy, V.A.; Zvyagolsky, A.V.; Dolomanov, A.V.; Kraievska, Z.V. The Use of Negative Bias Potential for Structural Engineering of Vacuum-Arc Nitride Coatings Based on High-Entropy Alloys. Probl. At. Sci. Technol. 2019, 120, 127–135. [Google Scholar] [CrossRef]
- Johansson, K.; Riekehr, L.; Fritze, S.; Lewin, E. Multicomponent Hf-Nb-Ti-V-Zr nitride coatings by reactive magnetron sputter deposition. Surf. Coat. Technol. 2018, 349, 529–539. [Google Scholar] [CrossRef]
- Lai, C.H.; Lin, S.J.; Yeh, J.W.; Chang, S.Y. Preparation and characterization of AlCrTaTiZr multi-element nitride coatings. Surf. Coat. Technol. 2006, 201, 3275–3280. [Google Scholar] [CrossRef]
- Wang, J.; Shu, R.; Chai, J.L.; Rao, S.G.; le Febvrier, A.; Wu, H.C.; Zhu, Y.B.; Yao, C.F.; Luo, L.H.; Li, W.P.; et al. Xe-ion-irradiation-induced structural transitions and elemental diffusion in high-entropy alloy and nitride thin-film multilayers. Mater. Des. 2022, 219, 110749. [Google Scholar] [CrossRef]
Model | Tuning Parameters |
---|---|
KNN | n_neighbors = 3 |
SVR | Kernel = ‘rbf’, Gamma = 0.001, C = 100 |
RF | Random_state = 1050, Max_depth = 6, N_estimators = 100 |
SISSO | ops = ‘(+)(−)(*)(/)(exp)(exp-)’, nf_sis = 20 |
Feature Descriptors | Descriptions |
---|---|
MADNV | Average deviation of number of filled p orbitals |
MMGSV | Maximum DFT-computed volume of elemental solid |
APVE | Fraction-weighted average of the total valence electrons in the p orbital |
AIC | The mean ionic character for the composition |
ADVE | Fraction-weighted average of the total valence electrons in the d orbital |
MMN | Mode atomic number |
MRGSV | Range DFT-computed volume of elemental solid |
Formula | EFA (eV/atom)−1 | Formula | EFA (eV/atom)−1 |
---|---|---|---|
TiVCrZrHfN5 | 73.81 | AlTiCrMoTaN5 | 66.19 |
TiVCrNbHfN5 | 72.37 | AlTiNbMoTaN5 | 66.36 |
TiVCrMoHfN5 | 62.62 | AlVCrNbTaN5 | 81.89 |
TiVZrNbHfN5 | 75.07 | AlVCrMoTaN5 | 61.98 |
TiVZrMoHfN5 | 66.71 | AlVNbMoTaN5 | 63.48 |
TiVNbMoHfN5 | 64.26 | TiVCrZrTaN5 | 68.14 |
TiCrZrNbHfN5 | 74.49 | TiVCrNbTaN5 | 76.59 |
TiCrZrMoHfN5 | 66.03 | TiVCrMoTaN5 | 78.62 |
TiCrNbMoHfN5 | 63.48 | TiVZrNbTaN5 | 69.48 |
TiZrNbMoHfN5 | 67.48 | TiVZrMoTaN5 | 60.56 |
VCrZrNbHfN5 | 72.43 | TiVNbMoTaN5 | 84.01 |
VCrZrMoHfN5 | 63.69 | TiCrZrNbTaN5 | 68.86 |
VCrNbMoHfN5 | 60.89 | TiZrNbMoTaN5 | 61.41 |
VZrNbMoHfN5 | 65.18 | VCrZrNbTaN5 | 66.69 |
CrZrNbMoHfN5 | 64.47 | AlTiVCrWN5 | 69.82 |
AlTiVCrTaN5 | 78.96 | AlTiVNbWN5 | 60.90 |
AlTiVNbTaN5 | 76.47 | AlTiCrNbWN5 | 68.83 |
AlTiVMoTaN5 | 65.95 | TiVCrMoWN5 | 71.32 |
AlTiCrNbTaN5 | 93.52 | TiVNbMoWN5 | 62.83 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, T.; Wang, R.; Liu, D. Machine Learning-Based Prediction of Stability in High-Entropy Nitride Ceramics. Crystals 2024, 14, 429. https://doi.org/10.3390/cryst14050429
Lin T, Wang R, Liu D. Machine Learning-Based Prediction of Stability in High-Entropy Nitride Ceramics. Crystals. 2024; 14(5):429. https://doi.org/10.3390/cryst14050429
Chicago/Turabian StyleLin, Tianyu, Ruolan Wang, and Dazhi Liu. 2024. "Machine Learning-Based Prediction of Stability in High-Entropy Nitride Ceramics" Crystals 14, no. 5: 429. https://doi.org/10.3390/cryst14050429
APA StyleLin, T., Wang, R., & Liu, D. (2024). Machine Learning-Based Prediction of Stability in High-Entropy Nitride Ceramics. Crystals, 14(5), 429. https://doi.org/10.3390/cryst14050429