Heat Treatment of Calcite to Enhance Its Removal of Color Dye Alizarin Red S
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Batch Sorption Studies for ARS Removal
2.3. Instrumental Analyses
3. Results
3.1. Isotherms of ARS Removal
3.2. Kinetics of ARS removal
3.3. Effect of Equilibrium Solution pH, Ionic Strength, and Temperature on ARS Removal
3.4. XRD Analyses
3.5. FTIR Analyses
3.6. SEM Observation and ETF Scans
3.7. TGA Analyses
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abuessawy, A.A.; Fouda, A.F.; Adel, A.H.; Hawata, M.A.H.; Hamad, N.A.H. New modified heterocyclic-magnetite chitosan nanocomposite for efficient alizarin red dye removal: Adsorption analysis and antibacterial activity. J. Polymer. Environ. 2024, 32, 826–841. [Google Scholar] [CrossRef]
- Katheresan, V.; Kansedo, J.; Lau, S.Y. Efficiency of various recent wastewater dye removal methods: A review. J. Environ. Chem. Engineer. 2018, 6, 4676–4697. [Google Scholar] [CrossRef]
- Ngulube, T.; Gumbo, J.R.; Masindi, V.; Maity, A. An update on synthetic dyes adsorption onto clay based minerals: A state-of-art review. J. Environ. Manag. 2017, 191, 35–57. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Baker, J.; Carlson, K.; Li, Z. Mechanisms of selected anionic dye removal by clinoptilolite. Crystals 2022, 12, 727. [Google Scholar] [CrossRef]
- Shi, Y.; Baker, J.; Feng, C.; Wang, X.; Li, Z. Removal of toluidine blue from water using 1: 1 layered clay minerals. Adv. Powder Technol. 2022, 33, 103608. [Google Scholar] [CrossRef]
- Largo, F.; Haounati, R.; Akhouairi, S.; Ouachtak, H.; El Haouti, R.; El Guerdaoui, A.; Hafid, N.; Santos, D.M.; Akbal, F.; Kuleyin, A.; et al. Adsorptive removal of both cationic and anionic dyes by using sepiolite clay mineral as adsorbent: Experimental and molecular dynamic simulation studies. J. Molec. Liq. 2020, 318, 114247. [Google Scholar] [CrossRef]
- Rao, W.; Piliouras, P.; Wang, W.; Guido, A.; Kugler, K.; Sieren, B.; Wang, L.; Lv, G.; Li, Z. Zwitterionic dye rhodamine B (RhB) uptake on different types of clay minerals. Appl. Clay Sci. 2020, 197, 105790. [Google Scholar] [CrossRef]
- Rodrigues, I.A.; Villalba, J.C.; Santos, M.J.; Melquiades, F.L.; Anaissi, F.J. Smectitic clays enriched with ferric ions for the rapid removal of anionic dyes in aqueous media. Clay Miner. 2020, 55, 12–23. [Google Scholar] [CrossRef]
- Lemlikchi, W.; Sharrock, P.; Fiallo, M.; Nzihou, A.; Mecherri, M.O. Hydroxyapatite and Alizarin sulfonate ARS modeling interactions for textile dyes removal from wastewaters. Procedia Engineer. 2014, 83, 378–385. [Google Scholar] [CrossRef]
- Friedman, G.M. Identification of carbonate minerals by staining methods. J. Sediment. Res. 1959, 29, 87–97. [Google Scholar]
- Dickson, J.A.D. Carbonate identification and genesis as revealed by staining. J. Sediment. Res. 1966, 36, 491–505. [Google Scholar]
- Fu, E.; Somasundaran, P. Alizarin Red S as a flotation modifying agent in calcite-apatite systems. Int. J. Miner. Process. 1986, 18, 287–296. [Google Scholar] [CrossRef]
- King, H.G.C.; Pruden, G. The purification of commercial Alizarin Red S for the determination of aluminium in silicate minerals. Analyst 1968, 93, 601–605. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Y.; Zhu, X.; Wang, X.; Zhang, Q.; Lu, Y.; Wang, X.; Yang, X. Method for Determination of Aluminum Ion Content by Alizarin Red S Complexation Spectrophotometry; 2014. Available online: https://patents.google.com/patent/CN103994980A/en (accessed on 28 April 2024).
- Parker, C.A.; Goddard, A.P. The reaction of aluminium ions with alizarin-3-sulphonate with particular reference to the effect of addition of calcium ions. Anal. Chim. Acta 1950, 4, 517–535. [Google Scholar] [CrossRef]
- Puchtler, H.; Meloan, S.N.; Terry, M.S. On the history and mechanism of alizarin and alizarin red S stains for calcium. J. Histochem. Cytochem. 1969, 17, 110–124. [Google Scholar] [CrossRef]
- CGregory, A.; Gunn, W.G.; Peister, A.; Prockop, D.J. An Alizarin red-based assay of mineralization by adherent cells in culture: Comparison with cetylpyridinium chloride extraction. Anal. Biochem. 2004, 329, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Forsling, W. Potentiometric and spectrophotometric study of calcium and alizarin S complexation. Acta Chem. Scand. 1992, 46, 418–422. [Google Scholar] [CrossRef]
- Wu, L.; Forsling, W. Holmgren, Surface complexation of calcium minerals in aqueous solution. 4. The Complexation of Alizarin Red S at Fluorite–Water Interfaces. J. Colloid Interface Sci. 2020, 224, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Rehman, R.; Mahmud, T.; Anwar, J.; Salman, M.; Shafique, U.; Zaman, W.U.; Ali, F. Removal of alizarin red s (dye) from aqueous media by using alumina as an adsorbent. J. Chem. Soc. Pak 2011, 33, 228–232. [Google Scholar]
- Ghaedi, M.; Najibi, A.; Hossainian, H.; Shokrollahi, A.; Soylak, M. Kinetic and equilibrium study of Alizarin Red S removal by activated carbon. Toxicol. Environ. Chem. 2012, 94, 40–48. [Google Scholar] [CrossRef]
- Narayan, R.T.; Ashwini, A.; Veeranna, K.D. Removal of alizarin red dye using calcium hydroxide as a low-cost adsorbent. J. Appl. Chem. Res. 2016, 10, 35–47. [Google Scholar]
- Nayl, A.A.; Abd-Elhamid, A.I.; Ahmed, I.M.; Bräse, S. Preparation and characterization of magnetite talc (Fe3O4@ Talc) nanocomposite as an effective adsorbent for Cr (VI) and alizarin red S dye. Materials 2022, 15, 3401. [Google Scholar] [CrossRef] [PubMed]
- EEl-Menofy, A.; Ali, O.I.; Kandil, A.H.T. Removal of alizarin red s from aqueous solution using sodium bentonite. Arab. Univ. J. Agric. Sci. 2018, 26, 1967–1974. [Google Scholar] [CrossRef]
- Al-Salihi, K.J.; Alfatlawi, W.R. Synthesis and characterization of low-cost adsorbent and used for Alizarin yellow GG and alizarin Red S dyes removal from aqueous solutions. In IOP Conference Series: Materials Science and Engineering, Volume 1094, 1st International Conference on Sustainable Engineering and Technology (INTCSET 2020), Baghdad, Iraq, 15–16 December 2020; IOP Publishing: Bristol, UK, 2021. [Google Scholar]
- Fu, F.; Gao, Z.; Gao, L.; Li, D. Effective adsorption of anionic dye, alizarin red S, from aqueous solutions on activated clay modified by iron oxide. Industr. Engineer. Chem. Res. 2011, 50, 9712–9717. [Google Scholar] [CrossRef]
- Ohale, P.E.; Chukwudi, K.; Ndive, J.N.; Michael, M.E.; Abonyi, M.N.; Chukwu, M.M.; Obi, C.C.; Onu, C.E.; Igwegbe, C.A.; Azie, C.O. Optimization of Fe2O3@ BC-KC composite preparation for adsorption of Alizarin red S dye: Characterization, kinetics, equilibrium, and thermodynamic studies. Results Surf. Interfaces 2023, 13, 100157. [Google Scholar] [CrossRef]
- Shirazi, E.K.; Metzger, J.W.; Fischer, K.; Hassani, A.H. Simultaneous removal of a cationic and an anionic textile dye from water by a mixed sorbent of vermicompost and Persian charred dolomite. Chemosphere 2019, 234, 618–629. [Google Scholar] [CrossRef] [PubMed]
- Zahuri, A.A.; Patah, M.F.A.; Kamarulzaman, Y.; Hashim, N.H.; Thirumoorthi, T.; Mohtar, W.H.M.W.; Hanafiah, Z.M.; Amir, Z.; Wan-Mohtar, W.A.A.Q.I. Decolourisation of real industrial and synthetic textile dye wastewater using activated dolomite. Water 2023, 15, 1172. [Google Scholar] [CrossRef]
- Adeogun, A.I.; Babu, R.B. One-step synthesized calcium phosphate-based material for the removal of alizarin S dye from aqueous solutions: Isothermal, kinetics, and thermodynamics studies. Appl. Nanosci. 2021, 11, 1–13. [Google Scholar] [CrossRef]
- Talhi, A.; Merabet, S.; Bouhouf, L.; Boukhalfa, C. Removal of Acid black 210 by adsorption on calcite. Desal. Water Treat. 2020, 205, 407–411. [Google Scholar] [CrossRef]
- Brinza, L.; Maftei, A.E.; Tascu, S.; Brinza, F.; Neamtu, M. Advanced removal of Reactive Yellow 84 azo dye using functionalised amorphous calcium carbonates as adsorbent. Sci. Rep. 2022, 12, 3112. [Google Scholar] [CrossRef]
- Available online: https://www.chemicalbook.com/ChemicalProductProperty_EN_CB0711917.htm (accessed on 7 April 2024).
- Available online: https://www.scbt.com/p/alizarin-red-s-130-22-3 (accessed on 7 April 2024).
- Al-Ghouti, M.A.; Da, D.A. Guidelines for the use and interpretation of adsorption isotherm models: A review. J. Hazard. Mater. 2020, 393, 122383. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Maimaitiniyazi, R.; Wang, Y. Some consideration triggered by misquotation of Temkin model and the derivation of its correct form. Arab. J. Chem. 2022, 15, 104267. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, H.; Wu, W.; Pang, W.; Yan, G. Efficient removal of Alizarin Red S from aqueous solution by polyethyleneimine functionalized magnetic carbon nanotubes. Bioresour. Technol. 2019, 293, 122100. [Google Scholar] [CrossRef] [PubMed]
- Gautam, R.K.; Banerjee, S.; Gautam, P.K.; Rawat, V.; Kumar, A.; Singh, S.K.; Chattopadhyaya, M.C. Biosorption of an Acidic Dye, Alizarin Red S, Onto biosorbent of mustard husk: Kinetic, equilibrium modeling and spectroscopic analysis. Asian J. Res. Chem. 2014, 7, 417–425. [Google Scholar]
- Zhuang, G.; Rodrigues, F.; Zhang, Z.; Fonseca, M.G.; Walter, P.; Jaber, M. Dressing protective clothing: Stabilizing alizarin/halloysite hybrid pigment and beyond. Dye. Pigment. 2019, 166, 32–41. [Google Scholar] [CrossRef]
- Kumar, S.; Sharma, V.; Pradhan, J.K.; Sharma, S.K.; Singh, P.; Sharma, J.K. Structural, Optical and Antibacterial Response of CaO Nanoparticles Synthesized via Direct Precipitation Technique. Nano Biomed. Eng. 2021, 13, 172–178. [Google Scholar] [CrossRef]
- Ramli, M.; Rossani, R.B.; Nadia, Y.; Darmawan, T.B.; Febriani, S.; Ismail, Y.S. May. Nanoparticle fabrication of calcium oxide (CaO) mediated by the extract of red dragon fruit peels (Hylocereus polyrhizus) and its application as inorganic–anti-microorganism materials. IOP Conf. Ser. Mater. Sci. Engineer. 2019, 509, 012090. [Google Scholar] [CrossRef]
- Aghaee, M.; Manteghi, F. Antibacterial Activity of Ag2O/SrO/CaO Nanocomposite. Chem. Proceed. 2022, 12, 77. [Google Scholar]
- Jadhav, V.; Bhagare, A.; Wahab, S.; Lokhande, D.; Vaidya, C.; Dhayagude, A.; Khalid, M.; Aher, J.; Mezni, A.; Dutta, M. Green synthesized calcium oxide nanoparticles (CaO NPs) using leaves aqueous extract of moringa oleifera and evaluation of their antibacterial activities. J. Nanomater. 2022, 2022, 9047507. [Google Scholar] [CrossRef]
- Blanton, T.N.; Barnes, C.L. Quantitative analysis of calcium oxide desiccant conversion to calcium hydroxide using X-ray diffraction. Adv. X-ray Anal. 2005, 28, 45–51. [Google Scholar] [CrossRef]
- El-Nahass, M.M.; Zeyada, H.M.; El-Ghamaz, N.A. Structural investigation, thermal analysis and AC conduction mechanism of thermally evaporated alizarin red S thin films. Optik 2018, 170, 304–313. [Google Scholar] [CrossRef]
- Chin, Y.P.; Raof, S.F.A.; Sinniah, S.; Lee, V.S.; Mohamad, S.; Manan, N.S.A. Inclusion complex of Alizarin Red S with β-cyclodextrin: Synthesis, spectral, electrochemical and computational studies. J. Molec. Struct. 2015, 1083, 236–244. [Google Scholar] [CrossRef]
- Gupta, U.; Singh, V.K.; Kumar, V.; Khajuria, Y. Experimental and theoretical spectroscopic studies of calcium carbonate (CaCO3). Mater. Focus 2015, 4, 164–169. [Google Scholar]
- Villagrán-Zaccardi, Y.A.; Egüez-Alava, H.; De Buysser, K.; Gruyaert, E.; De Belie, N. Calibrated quantitative thermogravimetric analysis for the determination of portlandite and calcite content in hydrated cementitious systems. Mater. Struct. 2017, 50, 680. [Google Scholar] [CrossRef]
- Giammaria, G.; Lefferts, L. Catalytic effect of water on calcium carbonate decomposition. J. CO2 Util. 2019, 33, 341–356. [Google Scholar] [CrossRef]
- Shahraki, B.K.; Mehrabi, B.; Gholizadeh, K.; Mohammadinasab, M. Thermal behavior of calcite as an expansive agent. J. Min. Metall. Sect. B–Metall. 2011, 47, 89–97. [Google Scholar] [CrossRef]
- Schreiber, M.; Eckardt, M.; Klassen, S.; Adam, H.; Nalbach, M.; Greifenstein, L.; Kling, F.; Kittelmann, M.; Bechstein, R.; Kühnle, A. How deprotonation changes molecular self-assembly–an AFM study in liquid environment. Soft Matter. 2013, 9, 7145–7149. [Google Scholar] [CrossRef]
- Turcanu, A.; Bechtold, T. pH Dependent redox behaviour of Alizarin Red S (1,2-dihydroxy-9,10-anthraquinone-3-sulfonate)–Cyclic voltammetry in presence of dispersed vat dye. Dye. Pigment. 2011, 91, 324–331. [Google Scholar] [CrossRef]
- Li, Z.; Bowman, A.; Rayniak, A.; Xu, S. Anionic dye alizarin red S removal using heat-treated dolomite. Crystals 2024, 14, 187. [Google Scholar] [CrossRef]
- Ramesh, T.N.; Kumari, T.M.; Kirana, D.V.; Ashwini, A.; Prathiba, J.M. Kinetics, thermodynamics and adsorption isotherm of alizarin red dye using calcium oxide. In Proceedings of the National Conference on “Challenges and Opportunities for Chemical Sciences in 21st Century; The National Academies Press: Washington, DC, USA, 2013; pp. 100–108. [Google Scholar]
Sorption Parameters | ARS Sorption on Cal | ARS Sorption on HCal |
---|---|---|
Sm (mmol/kg) | 167 | 251 |
KL (L/mmol) | 0.36 | 72 |
r2 for Langmuir isotherm fitting | 0.46 | 0.92 |
KF (L/kg) | 45 | 420 |
1/n | 0.9 | 0.3 |
r2 for Freundlich isotherm fitting | 0.99 | 0.91 |
BT (kJ/mol) | 278 | 60 |
KT (L/mmol) | 3.5 | 7.1 |
r2 for Temkin isotherm fitting | 0.84 | 0.87 |
qe (mmol/kg) | 17 | 238 |
kqe2 (mmol/kg-h) | 213 | 20,000 |
k (kg/mmol-h) | 0.7 | 0.35 |
r2 for pseudo-second-order fitting | 0.9999 | 0.9999 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Bowman, A.; Rayniak, A.; Strommen, J.; Allen, L.; Xu, S. Heat Treatment of Calcite to Enhance Its Removal of Color Dye Alizarin Red S. Crystals 2024, 14, 450. https://doi.org/10.3390/cryst14050450
Li Z, Bowman A, Rayniak A, Strommen J, Allen L, Xu S. Heat Treatment of Calcite to Enhance Its Removal of Color Dye Alizarin Red S. Crystals. 2024; 14(5):450. https://doi.org/10.3390/cryst14050450
Chicago/Turabian StyleLi, Zhaohui, Anna Bowman, Angie Rayniak, Jadyn Strommen, Lori Allen, and Shangping Xu. 2024. "Heat Treatment of Calcite to Enhance Its Removal of Color Dye Alizarin Red S" Crystals 14, no. 5: 450. https://doi.org/10.3390/cryst14050450
APA StyleLi, Z., Bowman, A., Rayniak, A., Strommen, J., Allen, L., & Xu, S. (2024). Heat Treatment of Calcite to Enhance Its Removal of Color Dye Alizarin Red S. Crystals, 14(5), 450. https://doi.org/10.3390/cryst14050450