Low Temperature Raman Spectroscopy of Tetrahydrofuran: Phonon Spectra Compared to Matrix Isolation Spectra in Air
Abstract
:1. Introduction
2. Experimental
3. Computational Details
4. Results and Discussion
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Grdadolnik, J.; Mohacek-Grosev, V.; Baldwin, R.L.; Avbelj, F. Populations of the three major backbone conformations in 19 amino acid dipeptides. Proc. Natl. Acad. Sci. USA 2011, 108, 1794–1798. [Google Scholar] [CrossRef] [PubMed]
- Angyal, S.J. The Composition of Reducing Sugars in Solution. Adv. Carboh. Chem. Biochem. 1984, 42, 15–68. [Google Scholar] [CrossRef]
- Arukawa, Y.; Komatsu, K.; Feng, J.; Zhu, C.; Tsuji, H. Distinct twist-bend nematic phase behaviors associated with the esther-linked liquid crystal dimers. Mater. Adv. 2021, 2, 261–272. [Google Scholar] [CrossRef]
- Man Park, S.; Ho Kwon, S. Deciphering the conformational preference and ionization dynamics of tetrahydrofuran: Insights from advanced spectroscopic techniques. J. Chem. Phys. 2024, 160, 114308. [Google Scholar] [CrossRef] [PubMed]
- Boese, A.D.; Boese, R. Tetrahydrothiophene and Tetrahydrofuran, Computational and X-ray Studies in the Crystalline Ph/ase. Cryst. Growth Des. 2015, 15, 1073–1081. [Google Scholar] [CrossRef]
- Bowron, D.T.; Finney, J.L.; Soper, A.K. The structure of liquid tetrahydrofuran. J. Am. Chem. Soc. 2006, 128, 5119–5126. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Lee, J.-W.; Kim, D.Y.; Park, J.; Seo, Y.-T.; Zeng, H.; Moudrakovski, I.L.; Ratcliffe, C.I.; Ripmeester, J.A. Tuning clathrate hydrates for hydrogen storage. Nature 2005, 434, 743–746. [Google Scholar] [CrossRef] [PubMed]
- Ford, T.A. The evolution of the structural, vibrational and electronic properties of the cyclic ethers—On ring size. An ab initio study. J. Mol. Struct. 2014, 1073, 125–133. [Google Scholar] [CrossRef]
- Yang, T.; Su, G.; Ning, C.; Deng, J.; Wang, F.; Zhang, S.; Ren, X.; Huang, Y. New Diagnostic of the Most Populated Conformer of Tetrahydrofuran in the Gas Phase. J. Phys. Chem A 2007, 111, 4927–4933. [Google Scholar] [CrossRef]
- Rayon, V.M.; Sordo, J.A. Pseudorotation motion in tetrahydrofuran: An ab initio study. J. Chem. Phys. 2005, 122, 204303. [Google Scholar] [CrossRef]
- Cremer, D.; Pople, J. Molecular orbital theory of the electronic structure of organic compounds. XXIII. Pseudorotation in saturated five-membered ring compounds. J. Amer. Chem. Soc. 1975, 97, 1358–1367. [Google Scholar] [CrossRef]
- Sont, W.N.; Wieser, H. The radial transtion in tetrahydrofuran. J. Raman Spectrosc. 1981, 11, 334–338. [Google Scholar] [CrossRef]
- Greenhouse, J.A.; Strauss, H.L. Spectroscopic Evidence for Pseudorotation. II. The Far-Infrared Spectra of Tetrahydrofuran and 1,3-Dioxolane. J. Chem. Phys. 1969, 50, 124–134. [Google Scholar] [CrossRef]
- Engerholm, G.G.; Luntz, A.C.; Gwinn, W.D.; Harris, D.O. Ring Puckering in Five-Membered Rings. II. The Microwave Spectrum, Dipole Moment, and Barrier to Pseudorotation in Tetrahydrofuran. J. Chem. Phys. 1969, 50, 2446–2457. [Google Scholar] [CrossRef]
- Mamleev, A.H.; Gunderova, L.N.; Galeev, R.V. Microwave Spectrum and Hindered Pseudorotation of Tetrahydrofuran. J. Struct. Chem. 2001, 42, 365–370. [Google Scholar] [CrossRef]
- Melnik, D.G.; Gopalakrishnan, S.; Miller, T.A.; de Lucia, F.C. The absorption spectroscopy of the lowest pseudorotational states of tetrahydrofuran. J. Chem. Phys. 2003, 118, 3589–3599. [Google Scholar] [CrossRef]
- Luger, P.; Buschmann, J. Twist conformation of Tetrahydrofuran in the Crystal. Angew. Chem. Int. Ed. Engl. 1983, 22, 410. [Google Scholar] [CrossRef]
- David, W.I.F.; Ibberson, R.M. A reinvestigation of the structure of tetrahydrofuran by high-resolution neutron powder diffraction. Acta Cryst. C 1992, 48, 301–303. [Google Scholar] [CrossRef]
- Aleksanyan, V.T.; Antipov, B.G. On the intramolecular dynamics of five-membered ring compounds in solid state. In Raman Spectroscopy Linear and Nonlinear; Lascombe, J., Huong, P., Eds.; John Wiley & Sons: New York, NY, USA, 1982; pp. 605–606. [Google Scholar]
- Cadioli, B.; Gallinella, E.; Coulombeau, C.; Jobic, H.; Berthier, G. Geometric Structure and Vibrational Spectrum of Tetrahydrofuran. J. Phys. Chem. 1993, 97, 7844–7856. [Google Scholar] [CrossRef]
- Gallinella, E.; Cadioli, B.; Flament, J.P.; Berthier, G. A scaled force field for tetrahydrofuran and its isotopomers from quantum mechanical calculations and infrared and Raman spectra. J. Mol. Struct. 1994, 315, 137–148. [Google Scholar] [CrossRef]
- Stocka, J.; Čeponkus, J.; Šablinskas, V.; Rodziewicz, P. Conformational diversity of the THF molecule in N2 matrix by means of FTIR matrix isolation experiment and Car-Parrinello molecular dynamics simulations. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, 238, 118425. [Google Scholar] [CrossRef] [PubMed]
- Mohaček-Grošev, V.; Furić, K.; Vujnović, V. Raman study of water deposited in solid argon matrix. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2022, 269, 120770. [Google Scholar] [CrossRef]
- Furić, K.; Volovšek, V. Water ice at low temperatures and pressures: New Raman results. J. Mol. Struct. 2010, 976, 174–180. [Google Scholar] [CrossRef]
- Available online: https://webbook.nist.gov/cgi/cbook.cgi?ID=C109999&Mask=4&Type=ANTOINE&Plot=on (accessed on 19 April 2024).
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. (Eds.) Gaussian 09, Revision A.02; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Berenblut, B.J.; Dawson, P.; Wilkinson, G.R. The Raman spectrum of gypsum. Spectrochim. Acta 1971, 27A, 1849–1863. [Google Scholar] [CrossRef]
- Macrae, C.F.; Bruno, I.J.; Chisholm, J.A.; Edgington, P.R.; McCabe, P.; Pidcock, E.; Rodriguez-Monge, L.; Taylor, R.; van de Streek, J.; Wood, P.A. Mercury CSD 2.0—New Features for the Visualization and Investigation of Crystal Structures. J. Appl. Cryst. 2008, 41, 466–470. [Google Scholar] [CrossRef]
- Cavagnat, D.; Lascombe, J.; Lassegues, J.C.; Horsewill, A.J.; Heidemann, A.; Suck, J.B. Neutron and Raman scattering studies of the methyl dynamics in solid toluene and nitromethane. J. De Phys. 1984, 45, 97–105. [Google Scholar] [CrossRef]
- Stein, A.; Lehmann, C.W.; Luger, P. Crystal Structure of Cyclobutane at 117 K. J. Am. Chem. Soc. 1992, 114, 7684–7687. [Google Scholar] [CrossRef]
- Durig, J.R.; Sullivan, J.F.; Durig, D.T. Low-frequency vibrational spectra of molecular crystals. XXII: Cyclobutane-d0 and cyclobutane-d8. Mol. Cryst. Liq. Cryst. 1979, 54, 51–58. [Google Scholar] [CrossRef]
- Sherwood, J.N. (Ed.) The Plastically Crystalline State, Orientationally-Disordered Crystals; John Wiley & Sons: Hoboken, NJ, USA, 1979. [Google Scholar]
- Angell, C.A.; Busse, L.E.; Cooper, E.I.; Kadiyale, R.K.; Dworkin, A.; Ghelfenstein, M.; Szwarc, H.; Vassal, A. Glasses and glassy crystals from molecular and molecular ionic systems. J. Chim. Phys. Paris 1985, 82, 267–274. [Google Scholar] [CrossRef]
- NIH National Library of Medicine. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Tetrahydrofuran (accessed on 1 May 2024).
- Lebedev, B.V.; Rabinovich, I.B.; Milov, I.V.; Lityagor, V.Y. Thermodynamic properties of tetrahydrofuran from 8 K to 322 K. J. Chem. Thermodyn. 1978, 10, 321–329. [Google Scholar] [CrossRef]
- Rong-Ri, T.; Xin, S.; Lin, H.; Feng-Shon, Z. Liquid glass transition of tetrahydrofuran and 2-methyltetrahydrofuran. Chin. Phys. B 2012, 21, 086402. [Google Scholar] [CrossRef]
- Mohaček Grošev, V.; Stelzer, F.; Jocham, D. Internal rotation dynamics of nitromethane at low temperatures. J. Mol. Struct. 1999, 476, 181–189. [Google Scholar] [CrossRef]
- Cavagnat, D.; Brom, H.; Nugteren, P.R. Methyl internal rotation in partially deuterated molecular solids: The NO2CHD2 and NO2CH2D systems. J. Chem. Phys. 1987, 87, 801–808. [Google Scholar] [CrossRef]
Observed Bands in Raman Spectra of Tetrahydrofuran | ||||
---|---|---|---|---|
Matrix Isolated 10 K | Assignment C2 Conformer | Crystal 10 K C2 Conformer | Liquid 295 K | Assignment from [20] |
3019 w | ||||
3003 mw, sh | ||||
2992 s | 2988 s, sh, br | 2 ν5 | ||
2984 s, br | ν1 | 2983 m | ||
2972 mw, sh | ||||
2964 s, br | ν1 | |||
2947 s, br | ν2 | 2951 ms | ||
2943 m | 2943 s, br | ν2 | ||
2935 ms, br | ν3 | 2935 m, sh | ||
2924 ms, sh | ||||
2915 s, br | ν3 | |||
2881 s, br | ν4 | 2880 m | 2878 s | ν4 |
2860 vvs | 2864 s, sh | |||
2729 w | ν22 + ν26 | 2732 m | 2721 mw | ν22 + ν26 |
2676 w | ν5 + ν10 | 2676 w | 2661 w | ν5 + ν10 |
2328 vs. N2 | ||||
1553 s, O2 | ||||
1506 mw | ν15 + ν16 | 1511 m | ||
1492 m | ν5 | 1496 m | ||
1487 m, sh | ν22 | 1487 w | 1489 m, br | ν5 |
1474 ms | 1475 m, br, sh | ν22 | ||
1466 m | ν6 | 1466 ms | ||
1452 m | ν23 | 1453 vw | 1451 m, br | ν23 |
1371 w | ν7 | 1375 mw | 1367 w | ν7 |
1343 w | ν24 | 1344 m | 1337 w | ν24 |
1317 vw | ν8 | 1315 w | ||
1296 w | ν25 | 1304 w | ||
1287 w, sh | ν25 second site | 1288 mw, vbr, sh | ν25 | |
1246 m | ν26 | 1254 ms | 1253 m, vbr, sh | ν26 |
1239 m, sh | ν9 | 1244 ms | ||
1214 vw | ν9 second site | 1227 m | ν9 | |
1190 m | ||||
1181 w | 1179 w, br | ν10 | ||
1176 w | ν10 | 1173 w | ||
1147 w | ν11 | 1145 m | 1140 w, sh | ν11 |
1066 w | ν28 | 1058 m | 1072 mw | ν28 |
1030 m | ν12 | 1040 s | 1030 m, br | ν12 |
961 w | ν29 | 961 mw | 949 w, sh | ν29 |
925 s | ν13 | 929 vs | ||
920 w | ||||
906 m | ν30 | 910 w | 914 vs | ν13 |
894 m | ν14 | 883 vs | 902 s, sh | ν30 |
872 w | ν31 | 878 m, sh | ||
868 m | ||||
848 m | 844 w, sh | ν15 | ||
838 w | ν15 | 841 m | ||
662 w | ν16 | 667 m | 654 w, br | ν16 |
577 w | ν32 | 586 m | 598 w, br | ν32 |
299 mw, br | ν17 radial mode | |||
283 vw, br | ν17 | 284 w | ν17 radial mode | |
245 mw, asym, br | ν33 quasi pseudorotational mode | |||
136 mw | lattice mode | |||
125 m | lattice mode | |||
108 m | lattice mode | |||
94 w | lattice mode | |||
80 mw | lattice mode | |||
69 mw | lattice mode | |||
24 w | lattice mode |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohaček-Grošev, V. Low Temperature Raman Spectroscopy of Tetrahydrofuran: Phonon Spectra Compared to Matrix Isolation Spectra in Air. Crystals 2024, 14, 468. https://doi.org/10.3390/cryst14050468
Mohaček-Grošev V. Low Temperature Raman Spectroscopy of Tetrahydrofuran: Phonon Spectra Compared to Matrix Isolation Spectra in Air. Crystals. 2024; 14(5):468. https://doi.org/10.3390/cryst14050468
Chicago/Turabian StyleMohaček-Grošev, Vlasta. 2024. "Low Temperature Raman Spectroscopy of Tetrahydrofuran: Phonon Spectra Compared to Matrix Isolation Spectra in Air" Crystals 14, no. 5: 468. https://doi.org/10.3390/cryst14050468
APA StyleMohaček-Grošev, V. (2024). Low Temperature Raman Spectroscopy of Tetrahydrofuran: Phonon Spectra Compared to Matrix Isolation Spectra in Air. Crystals, 14(5), 468. https://doi.org/10.3390/cryst14050468