Chiral 4f and 3d-4f Complexes from Enantiopure Salen-Type Schiff Base Ligands
Abstract
:1. Introduction
2. Homometallic 4f Complexes
3. Heterometallic 3d-4f Complexes
Complex | 3d/4f Ions | Space Group | Coordination Number | CD, λmax (nm) | χMT (r.t.) (cm3Kmol−1) | Ueff (K) | t0 (s) | Ref. |
---|---|---|---|---|---|---|---|---|
22R | Ni/Ce | P1 | 11 | −280, −400 +558 a | 0.86 | - | - | [41] |
23R | Ni/Nd | P1 | 11 | −280, −400 +558 a | 2.36 | - | - | [41] |
24R | Ni/Nd | P1 | 10 | - | - | - | - | [42] |
25R | Ni/Sm | P1 | 10 | −280, −400 +558 a | 0.18 | - | - | [41] |
26R | Ni/Eu | P1 | 10 | −280, −400 +558 a | 1.05 | - | - | [41] |
27R | Ni/Gd | P1 | 10 | −280, −400 +558 a | 8.12 | - | - | [41] |
28R | Ni/Tb | P1 | 10 | −280, −400 +558 a | 12.26 | 29.12 b | 3.21 × 10−9 | [41] |
29R | Ni/Dy | P1 | 10 | −280, −400 +558 a | 14.87 | 18.40 b | 7.39 × 10−6 | [41] |
30R | Ni/Yb | P1 | 10 | −280, −400 +558 a | 1.46 | - | - | [41] |
31R | Ni/Lu | P1 | 10 | - | - | - | - | [40] |
54R | Ni/Ce | C2 | 10 | - | - | 8.5 c | 7.7 × 10−5 | [50] |
55R | Ni/Nd | C2 | 10 | - | - | 9.2 b | 1.9 × 10−5 | [50] |
56R/56S | Ni/Eu | C2 | 10 | −325, +290, +370, +410 a | - | - | - | [50] |
57R | Ni/Dy | C2 | 10 | - | - | 9.3 b | 2.1 × 10−5 | [50] |
58R | Ni/Er | C2 | 10 | - | - | 18.4 b | 1.7 × 10−6 | [50] |
59S | Ni/Yb | C2 | 10 | - | - | 18.1 b | 2.1 × 10−6 | [50] |
45R | Mn/Pr | C2 | 8 | - | - | - | - | [48] |
46R | Mn/Nd | C2 | 8 | - | - | - | - | [48] |
47R | Mn/Sm | C2 | 8 | - | - | - | - | [48] |
48R | Mn/Gd | C2 | 8 | - | - | - | - | [48] |
Complex | 3d/4f Ions | Space Group | Coordination Number | CD, λmax (nm) | χMT (r.t.) (cm3Kmol−1) | Ueff (K) | t0 (s) | Ref. |
---|---|---|---|---|---|---|---|---|
11R | Cu/Ce | P1 | 11 | −290, −380, +600 a | 1.05 | - | - | [39] |
12R | Cu/Nd | P1 | 11 | −290, −380, +600 a | 1.52 | - | - | [39] |
13R | Cu/Sm | P21 | 10 | −290, −380, +600 a | 0.64 | - | - | [39] |
14R | Cu/Eu | P1 | 10 | −290, −380, +600 a | 1.54 | - | - | [39] |
15R/15R′ | Cu/Gd | P1, P21 | 10 | −290, −380, +600 a,b | 8.67, 8.22 | - | - | [39] |
16R/16R′ | Cu/Tb | P1, P21 | 10 | −290, −380, +600 a,b | 12.35, 13.10 | 30.02, 26.16 c | 9.81 × 10−9, 2.81 × 10−9 | [39] |
17R/17R′ | Cu/Dy | P1, P21 | 10 | −290, −380, +600 a,b | 14.76, 14.45 | 5.96, 15.72 c | 3.66 × 10−6, 1.70 × 10−7 | [39] |
18R | Cu/Ho | P21 | 9, 10 | −300, −375, +600 | 14.05 | 8.46 d | 3.03 × 10−7 | [39] |
19R | Cu/Er | P21 | 9, 10 | 300, −375, +600 | 10.36 | - | - | [39] |
20R | Cu/Yb | P21 | 9, 10 | 300, −375, +600 | 2.59 | - | - | [39] |
33R/33S | Cu/Tb | P1 | 8 | - | 25.15 | 27.60 c | 2.03 × 10−5 | [43] |
40R/40S | Cu, Fe/Gd | P21 | 9 | −380, −530, +470, +610 a | 9.11 | - | - | [45] |
41R/41S | Cu, Fe/Tb | P21 | 9 | −380, −530, +470, +610 a | 14.13 | - | - | [45] |
42R/42S | Cu, Fe/Dy | P21 | 9 | −380, −530, +470, +610 a | 17.69 | - | - | [45] |
43R | Cu/Eu | P21 | 10 | - | - | - | - | [46] |
44R/44S | Cu/Gd | P212121 | 10 | −237, −285, −390, +219, +261, +334 a | 8.38 | - | - | [47] |
70R | Cu/Gd | P212121 | 10 | - | 8.20 | - | - | [55] |
72S | Cu/Gd | P3221 | 8 | - | 8.14 | - | - | [56] |
79 | Cu, Mo/Gd | - | - | - | 9.11 | - | - | [58] |
80 | Cu, Mo/Tb | - | - | - | 13.50 | - | - | [58] |
81 | Cu, Mo/Dy | P21 | 9 | - | - | - | - | [58] |
82 | Cu, W/La | P21 | 9 | - | 0.70 | - | - | [58] |
83 | Cu, W/Gd | P21 | 9 | - | 8.90 | - | - | [58] |
84 | Cu, W/Tb | P21 | 9 | - | 13.20 | - | - | [58] |
85 | Cu, W/Dy | P21 | 9 | - | - | - | - | [58] |
86 | Cu, Mo/La | C22221 | 10 | - | 0.76 | - | - | [58] |
87 | Cu, Mo/Pr | - | - | - | - | - | - | [58] |
Complex | 3d/4f Ions | Space Group | Coordination Number | CD, λmax (nm) | χMT (r.t.) (cm3Kmol−1) | Ueff (K) | t0 (s) | Ref. |
---|---|---|---|---|---|---|---|---|
32R | Zn/Lu | P1 | 9 | - | - | - | - | [40] |
34R | Zn/Dy | P1 | 9 | −305, −372 | 14.19 | 212.1 b | 7.0 × 10−10 | [44] |
35R | Zn/Dy | P1 | 9 | −310, −386 | 14.21 | 203.5 c | 1.0 × 10−10 | [44] |
36R | Zn/Dy | P1 | 9 | −290, −409 | 14.18 | 207.3 c | 1.5 × 10−5 | [44] |
37S | Zn/Dy | P1 | 9 | +305, +372 | 28.36 | 194.5 b | 3.1 × 10−9 | [44] |
38S | Zn/Dy | P1 | 9 | +310, +386 | 28.33 | 70.1/231.6 c | 8.0 × 10−7/5.4 × 10−10 | [44] |
39S | Zn/Dy | P1 | 9 | +290, +409 | 28.40 | 218.1 c | 3.5 × 10−11 | [44] |
49R/49S | Zn/Y | P21 | 6 | - | - | - | - | [49] |
50R/50S | Zn/Lu | P21 | 6 | - | - | - | - | [49] |
51R/51S | Zn/Dy | P21 | 6 | - | - | - | - | [49] |
52R/52S | Zn/Sm | P21 | 6 | - | - | - | - | [49] |
53R/53S | Zn/La | P21 | 6 | - | - | - | - | [49] |
60R | Zn/Ce | P21 | 10 | - | - | 4.7 d | 2.5 × 10−5 | [50] |
61R | Zn/Nd | P21 | 10 | - | - | 15.9 e | 3.7 × 10−6 | [50] |
62R/62S | Zn/Eu | P21 | 10 | −235, −300, +218, +265, +342, +395 a | - | - | - | [50] |
63S | Zn/Dy | P21 | 10 | - | - | 17.7 e | 8.3 × 10−7 | [50] |
64S | Zn/Er | P21 | 10 | - | - | - | - | [50] |
65S | Zn/Yb | P21 | 10 | - | - | - | - | [50] |
66R/66S | Zn/Dy | P21 | 10 | −301, −360, +406 a | 14.49 | 11.9/46.1 f | 4.23 × 10−5/8.85 × 10−8 | [51] |
67S | Zn/Nd | P21 | 9 | - | - | - | [52] | |
68R/68S | Zn/Dy | P21 | 9 | −262, −303, +382 a | 13.44 | 19.40/51.82 g 20.48/51.72 h | 1.23 × 10−8/3.75 × 10−9 8.97 × 10−9/3.55 × 10−9 | [53] |
69R/69S | Zn/Tb | P21 | 9 | −261, −303, +386 a | - | - | - | [54] |
71S | Zn/Nd | C2 | 9 | - | - | - | - | [52] |
73R | Zn/Er | P212121 | 9 | - | - | 8.1 i | 5.3 × 10−7 | [57] |
Complex | Pr (μCcm−2) | Ec (kVcm−1) | UV-Vis (nm) | Fluorescence (nm) | MCD gmax (T−1) | CPL gPL | SHG, χR(2) (pmV−1) | THG, χR(3) (pm2V−2) | Ref. |
---|---|---|---|---|---|---|---|---|---|
6R | 4.51 | 28.11 | - | - | - | - | - | - | [35] |
7S | 7.98 | 22.12 | - | - | - | - | - | - | [36] |
32R | - | - | - | 460 | - | - | - | - | [40] |
34R | - | - | - | - | - | - | 0.04 | 581 | [44] |
35R | - | - | - | - | - | - | 0.01 | 821 | [44] |
36R | - | - | - | - | - | - | 0.07 | 848 | [44] |
37S | - | - | - | - | - | - | 0.39 | 485 | [44] |
38S | - | - | - | - | - | - | 0.02 | 703 | [44] |
39S | - | - | - | - | - | - | 0.40 | 718 | [44] |
66R/66S | - | - | 279, 372 | 490 | 6.7 × 10−2 | ±2.5 × 10−3 | - | - | [51] |
68R | 9.1 | 17.0 | - | - | - | - | - | - | [53] |
70R | - | - | 310 | - | - | - | - | - | [55] |
4. Chiral Materials from Racemic Salen-Type Schiff Base Ligands
5. Concluding Comments
Funding
Data Availability Statement
Conflicts of Interest
References
- Bruce, D.W.; O’Hare, D.; Walton, R.I. (Eds.) Molecular Materials; Wiley: Hoboken, NJ, USA, 2011. [Google Scholar]
- Coronado, E. Molecular magnetism: From chemical design to spin control in molecules, materials and devices. Nat. Rev. Mater. 2020, 5, 87–194. [Google Scholar] [CrossRef]
- Atzori, M.; Artizzu, F. (Eds.) Functional Molecular Materials: An Introductory Textbook; Pan Stanford Publishing, Pte. Ltd.: Singapore, 2018. [Google Scholar]
- Ouahab, L. Multifunctional Molecular Materials; Pan Stanford Publishing, Pte. Ltd.: Singapore, 2013. [Google Scholar]
- Mamula, O.; von Zelewsky, A. Supramolecular coordination compounds with chiral pyridine and polypyridine ligands derived from terpenes. Coord. Chem. Rev. 2003, 242, 87–95. [Google Scholar] [CrossRef]
- Bauer, E.B. Chiral-at-metal complexes and their catalytic applications in organic synthesis. Chem. Soc. Rev. 2012, 41, 3153–3167. [Google Scholar] [CrossRef] [PubMed]
- Knof, U.; von Zelewsky, A. Predetermined chirality at metal centers. Angew. Chem. Int. Ed. Engl. 1999, 38, 302–322. [Google Scholar] [CrossRef]
- Mukhtar, S.D.; Suhail, M. Chiral metallic anticancer drugs: A brief-review. Eur. J. Chem. 2022, 13, 483–490. [Google Scholar] [CrossRef]
- Anthony, E.J.; Bolitho, E.M.; Bridgewater, H.E.; Carter, O.W.L.; Donnelly, J.M.; Imberti, C.; Lant, E.C.; Lermyte, F.; Needham, R.J.; Palau, M.; et al. Metallodrugs are unique: Opportunities and challenges of discovery and development. Chem. Sci. 2020, 11, 12888–12917. [Google Scholar] [CrossRef]
- Li, D.-P.; Wang, T.-W.; Li, C.-H.; Liu, D.-S.; Li, Y.-Z.; You, X.-Z. Single-ion magnets based on mononuclear lanthanide complexes with chiral Schiff base ligands [Ln(FTA)3L] (Ln = Sm, Eu, Gd, Tb and Dy). Chem. Commun. 2010, 46, 2929–2931. [Google Scholar] [CrossRef]
- Guo, P.-H.; Liu, J.-L.; Jia, J.-H.; Wang, J.; Guo, F.-S.; Chen, Y.-C.; Lin, W.-Q.; Leng, J.-D.; Bao, D.-H.; Zhang, X.-D.; et al. Multifunctional DyIII4 cluster exhibiting white-emitting, ferroelectric and single-molecule magnet behavior. Chem. Eur. J. 2013, 19, 8769–8773. [Google Scholar] [CrossRef]
- Wen, H.-R.; Hu, J.-J.; Yang, K.; Zhang, J.-L.; Liu, S.-J.; Liao, J.-S.; Liu, C.-M. Family of chiral ZnII-LnIII (Ln = Dy and Tb) heterometallic complexes derived from the amine-phenol ligand showing multifunctional properties. Inorg. Chem. 2020, 59, 2811–2824. [Google Scholar] [CrossRef]
- Liu, C.-M.; Zhang, D.-Q.; Xiong, R.-G.; Hao, X.; Zhu, D.-B. A homochiral Zn-Dy heterometallic left-handed helical chain complex without chiral ligands: Anion-induced assembly and multifunctional integration. Chem. Commun. 2018, 54, 13379–13382. [Google Scholar] [CrossRef]
- Wang, K.; Zeng, S.; Wang, H.; Dou, J.; Jiang, J. Magneto-chiral dichroism in chiral mixed (phthalocyaninato)(porphyrinato) rare earth triple-decker SMMs. Inorg. Chem. Front. 2014, 1, 167–171. [Google Scholar] [CrossRef]
- Atzori, M.; Dhbaibi, K.; Douib, H.; Grasser, M.; Dorcet, V.; Breslavetz, I.; Paillot, K.; Cador, O.; Rikken, G.L.J.A.; Le Guennic, B.; et al. Helicene-based ligands enable strong magneto-chiral dichroism in a chiral ytterbium complex. J. Am. Chem. Soc. 2021, 143, 2671–2675. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.-M.; Sun, R.; Wang, B.-W.; Wu, F.; Hao, X.; Shen, Z. Homochiral Ferromagnetic Coupling Dy2 single-molecule magnets with strong magneto-optical Faraday effects at room temperature. Inorg. Chem. 2021, 60, 12039–12048. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Du, M.-H.; Xu, H.; Long, L.-S.; Kong, X.-J.; Zheng, L.-S. Cocrystallization of chiral 3d-4f clusters {Mn10Ln6} and {Mn6Ln2}. Inorg. Chem. 2021, 60, 5925–5930. [Google Scholar] [CrossRef] [PubMed]
- Lefeuvre, B.; Mattei, C.A.; Gonzalez, J.F.; Gendron, F.; Dorcet, V.; Riobé, F.; Lalli, C.; Guennic, B.L.; Cador, O.; Maury, O.; et al. Solid-state near-infrared circularly polarized luminescence from chiral YbIII-single-molecule magnet. Chem. Eur. J. 2021, 27, 7362–7366. [Google Scholar] [CrossRef] [PubMed]
- El Rez, B.; Liu, J.; Béreau, V.; Duhayon, C.; Horino, Y.; Suzuki, T.; Coolen, L.; Sutter, J.-P. Concomitant emergence of circularly polarized luminescence and single-molecule magnet behavior in chiral-at-metal Dy complex. Inorg. Chem. Front. 2020, 7, 4527–4534. [Google Scholar] [CrossRef]
- Woodruff, D.N.; Winpenny, R.E.P.; Layfield, R.A. Lanthanide single-molecule magnets. Chem. Rev. 2013, 113, 5110–5148. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.-S.; Jiang, S.-D.; Wang, B.-W.; Gao, S. Understanding the magnetic anisotropy toward single-ion magnets. Acc. Chem. Res. 2016, 49, 2381–2389. [Google Scholar] [CrossRef]
- Liu, K.; Shi, W.; Cheng, P. Toward heterometallic single-molecule magnets: Synthetic strategy, structures and properties of 3d-4f discrete complexes. Coord. Chem. Rev. 2015, 289–290, 74–122. [Google Scholar] [CrossRef]
- Gupta, S.K.; Rajeshkumar, T.; Rajaraman, G.; Murugavel, R. An air-stable Dy(III) single-ion magnet with high anisotropy barrier and blocking temperature. Chem. Sci. 2016, 7, 5181–5191. [Google Scholar] [CrossRef]
- Liu, J.; Chen, Y.-C.; Liu, J.-L.; Vieru, V.; Ungur, L.; Jia, J.-H.; Chibotaru, L.F.; Lan, Y.; Wernsdorfer, W.; Gao, S.; et al. A stable pentagonal bipyramidal Dy(III) single-ion magnet with a record magnetization reversal barrier over 1000 K. J. Am. Chem. Soc. 2016, 138, 5441–5450. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.-S.; Chilton, N.F.; Winpenny, R.E.P.; Zheng, Y.-Z. On approaching the limit of molecular magnetic anisotropy: A near-perfect pentagonal bipyramidal dysprosium(III) single-molecule magnet. Angew. Chem. Int. Ed. 2016, 55, 16071–16074. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.-S.; Xu, L.; Xiong, J.; Yuan, Q.; Liu, T.; Wang, B.-W.; Gao, S. Low-coordinate single-ion magnets by intercalation of lanthanides into a phenol matrix. Angew. Chem. Int. Ed. 2018, 57, 4763–4766. [Google Scholar] [CrossRef]
- Goodwin, C.A.P.; Ortu, F.; Reta, D.; Chilton, N.F.; Mills, D.P. Molecular magnetic hysteresis at 60 kelvin in dysprosocenium. Nature 2017, 548, 439–442. [Google Scholar] [CrossRef] [PubMed]
- Guo, F.-S.; Day, B.M.; Chen, Y.-C.; Tong, M.-L.; Mansikkamäki, A.; Layfield, R.A. Magnetic hysteresis up to 80 kelvin in a dysprosium metallocene single-molecule magnet. Science 2018, 362, 1400–1403. [Google Scholar] [CrossRef] [PubMed]
- Meena, R.; Meena, P.; Kumari, A.; Sharma, N.; Fahmi, N. Schiff Base in Organic, Inorganic and Physical Chemistry; Chapter 4; Akitsu, T., Ed.; IntechOpen: London, UK, 2023. [Google Scholar]
- Boulechfar, C.; Ferkous, H.; Delimi, A.; Djedouani, A.; Kahlouche, A.; Boublia, A.; Darwish, A.S.; Lemaoui, T.; Verma, R.; Benguerba, Y. Schiff bases and their metal complexes: A review on the history, synthesis, and applications. Inorg. Chem. Commun. 2023, 150, 110451. [Google Scholar] [CrossRef]
- Ceramella, J.; Iacopetta, D.; Catalano, A.; Cirillo, F.; Lappano, R.; Sinicropi, M.S. A review on the antimicrobial activity of Schiff bases: Data collection and recent studies. Antibiotics 2022, 11, 191. [Google Scholar] [CrossRef]
- Ren, M.; Xu, Z.-L.; Wang, T.-T.; Bao, S.-S.; Zheng, Z.-H.; Zhang, Z.-C.; Zheng, L.-M. Homochiral mononuclear Dy-Schiff base complexes showing field-induced double magnetic relaxation processes. Dalton Trans. 2016, 45, 690–695. [Google Scholar] [CrossRef]
- Yao, M.-X.; Zheng, Q.; Gao, F.; Li, Y.-Z.; Song, Y.; Zuo, J.-L. Field-induced slow magnetic relaxation in chiral seven-coordinated mononuclear lanthanide complexes. Dalton Trans. 2012, 41, 13682–13690. [Google Scholar] [CrossRef]
- Szłyk, E.; Wojtczak, A.; Dobrzańska, L.; Barwiołek, M. X-ray crystal structure and nuclear Overhauser effect studies of cerium(IV) complexes with Schiff bases obtained from N,N′-(1R,2R)(-)-1,2-cyclohexanediamine and benzaldehyde derivatives. Polyhedron 2008, 27, 765–776. [Google Scholar] [CrossRef]
- Sui, Y.; Fang, X.-N.; Hu, R.-H.; Li, J.; Liu, D.-S. A new type of multifunctional single ionic dysprosium complex based on chiral salen-type Schiff base ligand. Inorg. Chim. Acta 2014, 423, 540–544. [Google Scholar] [CrossRef]
- Sui, Y.; Hu, R.-H.; Luo, Z.-G.; Lin, W.-H.; Liu, D.-S. Synthesis, structure and properties of an erbium(iii) complex with chiral salen-type Schiff base ligand. Z. Anorg. Allg. Chem. 2015, 641, 1566–1570. [Google Scholar] [CrossRef]
- Okumura, Y.; Takiguchi, Y.; Nakame, D.; Akitsu, T. Crystal structure and Hirshfeld surface analysis of ((S,S)-2,2′-{(1,2-diphenylethane-1,2-diyl)bis[(azaniumylylidene) methanylylidene]}bis(6-methoxyphenolato))trinitratosamarium(III). Acta Cryst. 2021, E77, 579–582. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.-H.; Wang, A.-D.; Bi, C.-F.; Xiao, Y.; Bi, S.-Y.; Zhang, X.; Wang, Q. Synthesis, crystal structure and anticancer activity of 2D-coordination polymer of cerium(III) with chiral Schiff base trans-N,N-bis-(2-hydroxy-1-naphthalidehydene)-(1R,2R)-cyclohexanediamine. Synth. Met. 2011, 161, 1552–1556. [Google Scholar] [CrossRef]
- Wen, H.-R.; Bao, J.; Liu, S.-J.; Liu, C.-M.; Zhang, C.-W.; Tang, Y.-Z. Temperature-controlled polymorphism of chiral CuII-LnIII dinuclear complexes exhibiting slow magnetic relaxation. Dalton Trans. 2015, 44, 11191–11201. [Google Scholar] [CrossRef] [PubMed]
- Orita, S.; Akitsu, T. Variety of crystal structures of chiral Schiff base Lu(III)-Ni(II)/Cu(II)/Zn(II) and the related complexes. Open Chem. 2014, 1, 1–14. [Google Scholar] [CrossRef]
- Wen, H.-R.; Liu, S.-J.; Xie, X.-R.; Bao, J.; Liu, C.-M.; Chen, J.-L. A family of nickel-lanthanide heterometallic dinuclear complexes derived from a chiral Schiff-base ligand exhibiting single-molecule magnet behaviors. Inorg. Chim. Acta 2015, 435, 274–282. [Google Scholar] [CrossRef]
- Okamoto, Y.; Nidaira, K.; Akitsu, T. Environmental dependence of artifact CD peaks of chiral Schiff base 3d-4f complexes in soft mater PMMA matrix. Int. J. Mol. Sci. 2011, 12, 6966–6979. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.-C.; Vieru, V.; Chibotaru, L.F.; Wernsdorfer, W.; Jiang, S.-D.; Wang, X.-Y. Determination of magnetic anisotropy in a multinuclear TbIII-based single-molecule magnet. Chem. Commun. 2015, 51, 10373–10376. [Google Scholar] [CrossRef]
- Liu, C.-M.; Sun, R.; Wang, B.-W.; Hao, X.; Li, X.-L. Effects of counterions, coordination anions, and coordination solvent molecules on single-molecule magnetic behaviors and nonlinear optical properties of chiral Zn2Dy Schiff base complexes. Inorg. Chem. 2022, 61, 18510–18523. [Google Scholar] [CrossRef]
- Deng, X.-W.; Cai, L.-Z.; Zhu, Z.-X.; Gao, F.; Zhou, Y.-L.; Yao, M.-X. Synthesis, structures and magnetic properties of chiral 3d–3d’–4f heterotrimetallic complexes based on [(Tp*)Fe(CN)3]−. New J. Chem. 2017, 41, 5988–5994. [Google Scholar] [CrossRef]
- Constable, E.C.; Zhang, G.; Housecroft, C.E.; Neuburger, M.; Zampese, J.A. The mononuclear-dinuclear dance: Twisting the backbone in metalloligands operates a coordination switch. Inorg. Chim. Acta 2010, 363, 4207–4213. [Google Scholar] [CrossRef]
- Sui, Y.; Liu, D.-S.; Hu, R.-H.; Huang, J.-G. One-dimensional zigzag chain of Cu-Gd coordination polymers derived from chiral hexadentate Schiff base ligands: Synthesis, structure and magnetic properties. Inorg. Chim. Acta 2013, 395, 225–229. [Google Scholar] [CrossRef]
- Yadav, M.; Bhunia, A.; Jana, S.K.; Roesky, P.W. Manganese- and lanthanide-based 1D chiral coordination polymers as an enantioselective catalyst for sulfoxidation. Inorg. Chem. 2016, 55, 2701–2708. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.; Hua, L.; Li, X.; Yao, Y.; Leng, X.; Chen, Y. Rare-earth/zinc heterometallic complexes containing both alkoxy-amino-bis(phenolato) and chiral salen ligands: Synthesis and catalytic application for copolymerization of CO2 with cyclohexene oxide. Dalton Trans. 2019, 48, 10565–10573. [Google Scholar] [CrossRef] [PubMed]
- Mayans, J.; Saez, Q.; Font-Bardia, M.; Escuer, A. Enhancement of magnetic relaxation properties with 3d diamagnetic cations in [ZnIILnIII] and [NiIILnIII], LnIII = Kramers lanthanides. Dalton Trans. 2019, 48, 641–652. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Sun, R.; Wu, X.-F.; Liu, Y.; Zhan, J.-Z.; Wang, B.-W.; Gao, S. Circularly polarized luminescence and magnetooptic effects from chiral Dy(III) single molecule magnets. Dalton Trans. 2023, 52, 7646–7651. [Google Scholar] [CrossRef] [PubMed]
- Bi, W.-Y.; Lu, X.-Q.; Chai, W.-L.; Song, J.-R.; Wong, W.-Y.; Wong, W.-K.; Jones, R.A. Construction and NIR luminescent property of hetero-bimetallic Zn-Nd complexes from two chiral salen-type Schiff-base ligands. J. Mol. Struct. 2008, 891, 450–455. [Google Scholar] [CrossRef]
- Long, J.; Rouquette, J.; Thibaud, J.-M.; Ferreira, R.A.S.; Carlos, L.D.; Donnadieu, B.; Vieru, V.; Chibotaru, L.F.; Konczewicz, L.; Haines, J.; et al. A high-temperature molecular ferroelectric Zn/Dy complex exhibiting single-ion-magnet behavior and lanthanide luminescence. Angew. Chem. Int. Ed. Engl. 2015, 54, 2236–2240. [Google Scholar] [CrossRef]
- Long, J.; Ivanov, M.S.; Khomchenko, V.A.; Mamontova, E.; Thibaud, J.-M.; Rouquette, J.; Beaudhiun, M.; Granier, D.; Ferreira, R.A.S.; Carlos, L.D.; et al. Room temperature magnetoelectric coupling in a molecular ferroelectric ytterbium(III) complex. Science 2020, 367, 671–676. [Google Scholar] [CrossRef]
- Margeat, O.; Lacroix, P.G.; Costes, J.P.; Donnadieu, B.; Lepetit, C. Synthesis, structures, and physical properties of copper(II)-gadolinium(III) complexes combining ferromagnetic coupling and quadratic nonlinear optical properties. Inorg. Chem. 2004, 43, 4743–4750. [Google Scholar] [CrossRef] [PubMed]
- Hamamatsu, T.; Matsumoto, N.; Re, N.; Mrozinski, J. Chiral ferromagnetic chain of copper(II)-gadolinium(III) complex. Chem. Lett. 2009, 38, 762–763. [Google Scholar] [CrossRef]
- Yamashita, A.; Watanabe, A.; Akine, S.; Nabeshima, T.; Nakano, M.; Yamamura, T.; Kajiwara, T. Wheel-shaped ErIIIZnII3 single-molecule magnet: A macrocyclic approach to designing magnetic anisotropy. Angew. Chem. Int. Ed. Engl. 2011, 50, 4016–4019. [Google Scholar] [CrossRef] [PubMed]
- Visinescu, D.; Alexandru, M.-G.; Madalan, A.M.; Pichon, C.; Duhayon, C.; Sutter, J.-P.; Andruh, M. Magneto-structural variety of new 3d-4f-4(5)d heterotrimetallic complexes. Dalton Trans. 2015, 44, 16713–16727. [Google Scholar] [CrossRef] [PubMed]
- Fustero, S.; Román, R.; Asensio, A.; Maesto, M.A.; Aceña, J.L.; Simón-Fuentes, A. An approach to 2,4-substituted pyrazolo[1,5-a]pyridines and pyrazolo[1,5-a]azepines by ring-closing metathesis. Eur. J. Org. Chem. 2013, 7164–7174. [Google Scholar] [CrossRef]
- Sun, J.-W.; Zhu, J.; Song, H.-F.; Li, G.-M.; Yao, X.; Yan, P.-F. Spontaneous resolution of racemic salen-type ligand in the construction of 3d homochiral lanthanide frameworks. Cryst. Growth Des. 2014, 14, 5356–5360. [Google Scholar] [CrossRef]
- Gao, B.; Zhang, Q.; Yan, P.; Hou, G.; Li, G. Crystal engineering of salen type cerium complexes tuned by various cerium counterions. CrystEngComm 2013, 15, 4167–4175. [Google Scholar] [CrossRef]
Complex | 4f Ion | Space Group | Coordination Number | CD, λmax (nm) | χMT (r.t.) (cm3Kmol−1) | Ueff (K) | t0 (s) | Ref. |
---|---|---|---|---|---|---|---|---|
1R/1S | Dy | C2 | 8 | - | 14.40 | 39.90 b | 3.62 × 10−6 | [32] |
2R/2S | Dy | P21 | 7 | - | 13.84 | 13.27 c | 2.02 × 10−6 | [33] |
3R/3S | Tb | P21 | 7 | −291, −391 +350 a | 11.80 | - | - | [33] |
4R/4S | Ho | P21 | 7 | - | 14.12 | - | - | [33] |
5R | Ce | P43 | 8 | −343, +320 a | - | - | - | [34] |
6R | Dy | P21 | 8 | - | - | - | - | [35] |
7S | Er | P21 | 8 | - | - | - | - | [36] |
8R/8S | Dy | C2 | 7 | −281, −389, +348 a | 13.47 | 24.61 c | 8.49 × 10−8 | [33] |
9S | Sm | C2 | 10 | - | - | - | - | [37] |
10R | Ce | P1 | 9, 10 | - | - | - | - | [38] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raptopoulou, C.P. Chiral 4f and 3d-4f Complexes from Enantiopure Salen-Type Schiff Base Ligands. Crystals 2024, 14, 474. https://doi.org/10.3390/cryst14050474
Raptopoulou CP. Chiral 4f and 3d-4f Complexes from Enantiopure Salen-Type Schiff Base Ligands. Crystals. 2024; 14(5):474. https://doi.org/10.3390/cryst14050474
Chicago/Turabian StyleRaptopoulou, Catherine P. 2024. "Chiral 4f and 3d-4f Complexes from Enantiopure Salen-Type Schiff Base Ligands" Crystals 14, no. 5: 474. https://doi.org/10.3390/cryst14050474
APA StyleRaptopoulou, C. P. (2024). Chiral 4f and 3d-4f Complexes from Enantiopure Salen-Type Schiff Base Ligands. Crystals, 14(5), 474. https://doi.org/10.3390/cryst14050474