Promoting Thermal Conductivity of Alumina-Based Composite Materials by Systematically Incorporating Modified Graphene Oxide
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of GO-ODA
2.3. Systematic Preparation of Thermal Interface Materials (TIMs) as a Function of GO and ODA-GO Content
2.4. Characterization
3. Results
3.1. Morphological Features and Wettability of TIM Components
3.2. Compositional and Thermal Properties of TIM Components
3.3. Structural Features of Various TIMs
3.4. Thermal Conductivity of Various TIMs as a Function of GO and ODA-GO Contents
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moreira, D.C.; Sphaier, L.A.; Reis, J.M.L.; Nunes, L.C.S. Experimental investigation of heat conduction in polyester–Al2O3 and polyester–CuO nanocomposites. Exp. Therm. Fluid Sci. 2011, 35, 1458–1462. [Google Scholar] [CrossRef]
- Ali, H.M. Thermal management systems for batteries in electric vehicles: A recent review. Energy Rep. 2023, 9, 5545–5564. [Google Scholar] [CrossRef]
- Feng, C.-P.; Yang, L.-Y.; Yang, J.; Bai, L.; Bao, R.-Y.; Liu, Z.-Y.; Yang, M.-B.; Lan, H.-B.; Yang, W. Recent advances in polymer-based thermal interface materials for thermal management: A mini-review. Compos. Commun. 2020, 22, 100528. [Google Scholar] [CrossRef]
- Goyal, V.; Balandin, A.A. Thermal properties of the hybrid graphene-metal nano-micro-composites: Applications in thermal interface materials. Appl. Phys. Lett. 2012, 100, 073113. [Google Scholar] [CrossRef]
- Lewis, J.S.; Perrier, T.; Barani, Z.; Kargar, F.; Balandin, A.A. Thermal interface materials with graphene fillers: Review of the state of the art and outlook for future applications. Nanotechnology 2021, 32, 142003. [Google Scholar] [CrossRef]
- Chung, D.D.L. Thermal interface materials. J. Mater. Eng. Perform. 2001, 10, 56–59. [Google Scholar] [CrossRef]
- Yu, W.; Xie, H.; Yin, L.; Zhao, J.; Xia, L.; Chen, L. Exceptionally high thermal conductivity of thermal grease: Synergistic effects of graphene and alumina. Int. J. Therm. Sci. 2015, 91, 76–82. [Google Scholar] [CrossRef]
- Chen, J.P.; Liu, T.; Zhang, J.; Wang, B.B.; Ying, J.; Liu, F.; Zhang, X.B. Influence of phase and morphology on thermal conductivity of alumina particle/silicone rubber composites. Appl. Phys. A 2014, 117, 1985–1992. [Google Scholar] [CrossRef]
- Liang, W.; Li, T.; Zhou, X.; Ge, X.; Chen, X.; Lin, Z.; Pang, X.; Ge, J. Globular flower-like reduced graphene oxide design for enhancing thermally conductive properties of silicone-based spherical alumina composites. Nanomaterials 2020, 10, 544. [Google Scholar] [CrossRef]
- Xing, W.; Xu, Y.; Song, C.; Deng, T. Recent advances in thermal interface materials for thermal management of high-power electronics. Nanomaterials 2022, 12, 3365. [Google Scholar] [CrossRef]
- Bechteler, C.; Machuj, L.; Hebendanz, K.; Rübling, A.; Girmscheid, R.; Kühl, H. Electrical and thermal conductivity of CNT/alumina-nanocomposite ceramics. Int. J. Ceramic Eng. Sci. 2023, 5, e10167. [Google Scholar] [CrossRef]
- Yuan, Y.; Wu, W.; Hu, H.; Liu, D.; Shen, H.; Wang, Z. The combination of Al2O3 and BN for enhancing the thermal conductivity of PA12 composites prepared by selective laser sintering. RSC Adv. 2021, 11, 1984–1991. [Google Scholar] [CrossRef]
- Zhan, W.; Liu, Y.; Shao, T.; Han, X.; Pang, Q.; Zhang, J.; He, Z. Evaluating the effect of MgO/Al2O3 ratio on thermal behaviors and structures of blast furnace slag with low carbon consumption. Crystals 2021, 11, 1386. [Google Scholar] [CrossRef]
- Huang, Y.; Wan, C. Controllable fabrication and multifunctional applications of graphene/ceramic composites. J. Adv. Ceram. 2020, 9, 271–291. [Google Scholar] [CrossRef]
- Chen, C.; He, Y.; Liu, C.; Yu, W. Comprehensive excellent performance for silicone-based thermal interface materials through the synergistic effect between graphene and spherical alumina. J. Mater. Sci. Mater. Electron. 2020, 31, 4642–4649. [Google Scholar] [CrossRef]
- Kumaresan, V.; Sreekantan, S.; Devarajan, M.; Mohamed, K. Synthesis of dispensable PDMS/Al2O3/GO thermal gap filler and performance comparison with commercial thermal gap fillers for electronics packaging applications. Mater. Technol. 2022, 37, 970–979. [Google Scholar] [CrossRef]
- Akhtar, M.W.; Lee, Y.S.; Yoo, D.J.; Kim, J.S. Alumina-graphene hybrid filled epoxy composite: Quantitative validation and enhanced thermal conductivity. Compos. Part B 2017, 131, 184–195. [Google Scholar] [CrossRef]
- Achagri, G.; Essamlali, Y.; Amadine, O.; Majdoub, M.; Chakira, A.; Zahouily, M. Surface modification of highly hydrophobic polyester fabric coated with octadecylamine-functionalized graphene nanosheets. RSC Adv. 2020, 10, 24941–24950. [Google Scholar] [CrossRef]
- Habibpour, S.; Yazdani-Ahmadabadi, H.; Jolfaei, A.F. Amine-functionalized graphene sheet-induced highly dissipative interfacial regions in photo-polymeric networks containing self-dispersed nano-gel particles. Polym. Bull. 2018, 75, 5843–5858. [Google Scholar] [CrossRef]
- Li, W.; Tang, X.-Z.; Zhang, H.-B.; Jiang, Z.-G.; Yu, Z.-Z.; Du, X.-S.; Mai, Y.-W. Simultaneous surface functionalization and reduction of graphene oxide with octadecylamine for electrically conductive polystyrene composites. Carbon 2011, 49, 4724–4730. [Google Scholar] [CrossRef]
- Gavgani, J.N.; Goharpey, F.; Velankar, S. Interfacially compatibilized PI/PDMS blends with reduced octadecylamine-functionalized graphene oxide: Morphological and rheological properties. Soft Matter 2021, 17, 9670–9681. [Google Scholar] [CrossRef]
- Cumberland, D.J.; Crawford, R.J.; Sprevak, D. A statistical model for the random packing of real powder particles. Eur. Polym. J. 1989, 25, 1173–1182. [Google Scholar] [CrossRef]
- Kumar, S.N.; Das, S.; Bernhard, C.; Varma, G.D. Effect of graphene oxide doping on superconducting properties of bulk MgB2. Supercond. Sci. Technol. 2013, 26, 095008. [Google Scholar]
- Verma, S.; Dutta, R.K. A facile method of synthesizing ammonia modified graphene oxide for efficient removal of uranyl ions from aqueous medium. RSC Adv. 2015, 5, 77192–77203. [Google Scholar] [CrossRef]
- Li, H.; Wei, Z. Impacts of modified graphite oxide on crystallization, thermal and mechanical properties of polybutylene terephthalate. Polymers 2021, 13, 2431. [Google Scholar] [CrossRef]
- Al-Abadleh, H.A.; Grassian, V.H. FT-IR study of water adsorption on aluminum oxide surfaces. Langmuir 2003, 19, 341–347. [Google Scholar] [CrossRef]
- Damayanti, N.P. Preparation of superhydrophobic PET fabric from Al2O3-SiO2 hybrid: Geometrical approach to create high contact angle surface from low contact angle materials. J. Sol-Gel Sci. Technol. 2010, 56, 47–52. [Google Scholar] [CrossRef]
- Mahapatra, S.S.; Ramasamy, M.S.; Yoo, H.J.; Cho, J.W. A reactive graphene sheet in situ functionalized hyperbranched polyurethane for high performance shape memory material. RSC Adv. 2014, 4, 15146–15153. [Google Scholar] [CrossRef]
- Moon, I.K.; Lee, J.; Ruoff, R.S.; Lee, H. Reduced graphene oxide by chemical graphitization. Nat. Commun. 2012, 1, 73. [Google Scholar] [CrossRef]
- Farahmandjou, M.; Golabiyan, N. New pore structure of nano-alumina (Al2O3) prepared by sol gel method. J. Ceram. Process. Res. 2015, 16, 237–240. [Google Scholar]
- Blanton, T.N.; Majumdar, D. X-ray diffraction characterization of polymer intercalated graphite oxide. Powder Diffr. 2012, 27, 104–107. [Google Scholar] [CrossRef]
- Habte, A.T.; Ayele, D.W. Synthesis and characterization of reduced graphene oxide (rGO) started from graphene oxide (GO) using the Tour method with different parameters. Adv. Mater. Sci. Eng. 2019, 2019, 5058163. [Google Scholar] [CrossRef]
- Mungse, H.P.; Singh, R.; Sugimura, H.; Kumar, N.; Khatri, O.P. Molecular pillar supported graphene oxide framework: Conformational heterogeneity and tunable d-spacing. Phys. Chem. Chem. Phys. 2015, 17, 20822–20829. [Google Scholar] [CrossRef] [PubMed]
- Kouloumpis, A.; Spyrou, K.; Dimos, K.; Georgakilas, V.; Rudolf, P.; Gournis, D. A bottom-up approach for the synthesis of highly ordered fullerene-intercalated graphene hybrids. Front. Mater. 2015, 2, 10. [Google Scholar] [CrossRef]
- Rawat, S.S.; Harsha, A.P.; Chouhan, A.; Khatri, O.P. Effect of graphene-based nanoadditives on the tribological and rheological performance of paraffin grease. J. Mater. Eng. Perform. 2020, 29, 2235–2247. [Google Scholar] [CrossRef]
- Xu, L.; Teng, J.; Li, L.; Huang, H.-D.; Xu, J.-Z.; Li, Y.; Ren, P.-G.; Zhong, G.-J.; Li, Z.-M. Hydrophobic graphene oxide as a promising barrier of water vapor for regenerated cellulose nanocomposite films. ACS Omega 2019, 4, 509–517. [Google Scholar] [CrossRef] [PubMed]
- Sheng, Y.; Tang, X.; Peng, E.; Xue, J. Graphene oxide based fluorescent nanocomposites for cellular imaging. J. Mater. Chem. B 2013, 1, 512–521. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.; Yang, J.; Zhang, L.; Chen, L.; Yuan, W. Homogeneous dispersion of high-conductive reduced graphene oxide sheets for polymethylmethacrylate nanocomposites. Powder Diffr. 2014, 29, 241–247. [Google Scholar] [CrossRef]
- Chen, J.; Li, L. Effect of oxidation degree on the thermal properties of graphene oxide. J. Mater. Res. Technol. 2020, 9, 13740–13748. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, N.; Park, J.; Jang, N.; Lee, S.; Kim, D.; Yun, S.; Park, T.W.; Kim, J.-H.; Park, H.-H. Promoting Thermal Conductivity of Alumina-Based Composite Materials by Systematically Incorporating Modified Graphene Oxide. Crystals 2024, 14, 490. https://doi.org/10.3390/cryst14060490
Lee N, Park J, Jang N, Lee S, Kim D, Yun S, Park TW, Kim J-H, Park H-H. Promoting Thermal Conductivity of Alumina-Based Composite Materials by Systematically Incorporating Modified Graphene Oxide. Crystals. 2024; 14(6):490. https://doi.org/10.3390/cryst14060490
Chicago/Turabian StyleLee, Nawon, Jinsol Park, Nayeon Jang, Sehui Lee, Dayeon Kim, Sanggin Yun, Tae Woo Park, Jun-Hyun Kim, and Hyun-Ho Park. 2024. "Promoting Thermal Conductivity of Alumina-Based Composite Materials by Systematically Incorporating Modified Graphene Oxide" Crystals 14, no. 6: 490. https://doi.org/10.3390/cryst14060490
APA StyleLee, N., Park, J., Jang, N., Lee, S., Kim, D., Yun, S., Park, T. W., Kim, J. -H., & Park, H. -H. (2024). Promoting Thermal Conductivity of Alumina-Based Composite Materials by Systematically Incorporating Modified Graphene Oxide. Crystals, 14(6), 490. https://doi.org/10.3390/cryst14060490