Photonic Devices with Multi-Domain Liquid Crystal Structures
Abstract
:1. Introduction
2. Photoalignment Based on Azo Dye Nanolayers
3. Applications of Photoalignment
3.1. Security Films
3.2. Field Sequential Color Ferroelectric LCD
3.3. Liquid Crystal Sensors
3.3.1. LC polarimetry Sensor
3.3.2. Fiber/LC Sensor
3.4. Liquid Crystal Lenses
3.5. Fresnel Lens
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- O’Neill, M.; Kelly, S. Photoinduced surface alignment for liquid crystal displays. J. Phys. D Appl. Phys. 2000, 33, R67. [Google Scholar] [CrossRef]
- Ichimura, K. Photoalignment of liquid-crystal systems. Chem. Rev. 2000, 100, 1847–1874. [Google Scholar] [CrossRef] [PubMed]
- Folwill, Y.; Zeitouny, Z.; Lall, J.; Zappe, H. A practical guide to versatile photoalignment of azobenzenes. Liq. Cryst. 2021, 48, 862–872. [Google Scholar] [CrossRef]
- McGinty, C.P.; Kołacz, J.; Spillmann, C.M. Large rewritable liquid crystal pretilt angle by in situ photoalignment of brilliant yellow films. Appl. Phys. Lett. 2021, 119, 141111. [Google Scholar] [CrossRef]
- Iimura, Y.; Saitoh, T.; Kobayashi, S.; Hashimoto, T. Liquid crystal alignment on photopolymer surfaces exposed by linearly polarized UV light. J. Photopolym. Sci. Technol. 1995, 8, 257–262. [Google Scholar] [CrossRef]
- Schadt, M. Liquid crystal displays and novel optical thin films enabled by photo-alignment. Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A Mol. Cryst. Liq. Cryst. 2001, 364, 151–169. [Google Scholar] [CrossRef]
- Wu, K.-H.; Chen, C.-Q.; Shen, Y.; Cao, Y.; Li, S.-S.; Dierking, I.; Chen, L.-J. Trajectory engineering of directrons in liquid crystals via photoalignment. Soft Matter 2023, 19, 4483–4490. [Google Scholar] [CrossRef]
- Sellers, D. iPhone X (with OLED), iPad Pro (with ProMotion) Win Display Industry Awards. Available online: https://appleworld.today/iphone-x-with-oled-ipad-pro-with-promotion-win-display-industry-awards/ (accessed on 16 March 2024).
- Ma, Y.; Zhao, Z.; Morris, S.M.; He, C. Twisted microdomains in liquid crystals for polarization-insensitive phase modulation. Light Sci. Appl. 2024, 13, 8. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.-C.; Yuan, Z.-N.; Sun, Z.-B.; Srivastava, A.K. 3-3: Large-FoV Fast LiDAR System based on Electrically Suppressed Helix Ferroelectric Liquid Crystal. SID Symp. Dig. Tech. Pap. 2023, 54, 9–12. [Google Scholar] [CrossRef]
- Srivastava, A.K. LiDAR/3D depth mapping systems using advanced swift FLC photonics (Conference Presentation). In Proceedings of the Emerging Liquid Crystal Technologies XVIII, San Francisco, CA, USA, 1–2 February 2023; p. 1244206. [Google Scholar]
- Yoshida, H.; Abe, Y.; Igeta, K.; Higuchi, A.; Kobashi, J.; Tomioka, Y.; Oka, S. Transversely graded polarization volume gratings fabricated by freeform holographic photoalignment. Opt. Lett. 2024, 49, 121–124. [Google Scholar] [CrossRef]
- Chen, F.; Zheng, J.; Xing, C.; Sang, J.; Shen, T. Applications of liquid crystal planer optical elements based on photoalignment technology in display and photonic devices. Displays 2024, 82, 102632. [Google Scholar] [CrossRef]
- Berteloot, B.; Nys, I.; Liu, S.; Neyts, K. Two-Dimensional Liquid-Crystal Photoalignment by Multiple Illumination Steps. ACS Appl. Opt. Mater. 2023. [Google Scholar] [CrossRef]
- Chigrinov, V.; Kozenkov, V.; Kwok, H. Photoaligning: Physics and Applications in Liquid Crystal Devices; Wiley VCH: Weinheim, Germany, 2008. [Google Scholar]
- Chigrinov, V.; Pikin, S.; Verevochnikov, A.; Kozenkov, V.; Khazimullin, M.; Ho, J.; Huang, D.D.; Kwok, H.-S. Diffusion model of photoaligning in azo-dye layers. Phys. Rev. E 2004, 69, 061713. [Google Scholar] [CrossRef] [PubMed]
- Lagerwall, S.T.; Muravski, A.A.; Yakovenko, S.Y.; Konovalov, V.A.; Minko, A.A.; Tsarev, V.P. Pressure-insensitive liquid crystal cell. U.S. Patent US6184967B1, 6 February 2001. [Google Scholar]
- Chen, J.; Xu, T.; Zhao, W.; Ma, L.-L.; Chen, D.; Lu, Y.-Q. Photoresponsive thin films of well-synthesized azobenzene side-chain liquid crystalline polynorbornenes as command surface for patterned graphic writing. Polymer 2021, 218, 123492. [Google Scholar] [CrossRef]
- Fang, Q.; Lv, Y.; Yan, Z.; Sun, X.; Shen, J.; Liu, M.; Wang, T.; Chen, J.; Yin, S. Photoalignment of sub-micrometer periodic liquid crystal polarization grating by using the optical imprinting method. Opt. Express 2023, 31, 13428–13435. [Google Scholar] [CrossRef] [PubMed]
- Lim, K.T.; Liu, H.; Liu, Y.; Yang, J.K. Holographic colour prints for enhanced optical security by combined phase and amplitude control. Nat. Commun. 2019, 10, 25. [Google Scholar] [CrossRef] [PubMed]
- Kim, I.; Jang, J.; Kim, G.; Lee, J.; Badloe, T.; Mun, J.; Rho, J. Pixelated bifunctional metasurface-driven dynamic vectorial holographic color prints for photonic security platform. Nat. Commun. 2021, 12, 3614. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Yu, F.; Liu, X.; Bao, Y.; Chen, R.; Zhao, Z.; Wang, J.; Wang, X.; Liu, W.; Shi, Y. Polychromatic full-polarization control in mid-infrared light. Light Sci. Appl. 2023, 12, 105. [Google Scholar] [CrossRef] [PubMed]
- Phillip, R.W.; Bleikolm, A.F. Optical coatings for document security. Appl. Opt. 1996, 35, 5529–5534. [Google Scholar] [CrossRef]
- Chen, N.; Chen, L.; Li, Y.; Li, W.; Zhao, Y.; Wang, Z.; Wang, X.; Bu, Y. Design and fabrication of metameric interference thin films based on metal-dielectric structure for optical security devices. Surf. Coat. Technol. 2019, 364, 392–397. [Google Scholar] [CrossRef]
- Schadt, M.; Seiberle, H. Optical Element. U.S. Patent US9643445B2, 9 May 2017. [Google Scholar]
- Fan, F. Optical Security Film. Available online: https://www.youtube.com/watch?v=4L32m74e7HE (accessed on 15 April 2024).
- Chigrinov, V.; Kudreyko, A.; Sun, J. Photosensitive Alignment: Advanced Electronic Paper-Based Devices. Crystals 2022, 12, 364. [Google Scholar] [CrossRef]
- Goldstein, D.H. Polarized Light; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Chen, J.; Yu, F.-H.; Huang, H.-C.H.H.-C.; Kwok, H.S.K.H.S. Reflective supertwisted nematic liquid crystal displays. Jpn. J. Appl. Phys. 1998, 37, 217. [Google Scholar] [CrossRef]
- Khoo, I.-C. Liquid Crystals; John Wiley & Sons: Hoboken, NJ, USA, 2007; Volume 64. [Google Scholar]
- Wyatt, P.; Bailey, J.; Nagaraj, M.; Jones, J. A self-healing ferroelectric liquid crystal electro-optic shutter based on vertical surface-relief grating alignment. Nat. Commun. 2021, 12, 4717. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, A.K.; Chigrinov, V.G.; Kwok, H.S. Electrically suppressed helix ferroelectric liquid crystals for modern displays. J. Soc. Inf. Disp. 2015, 23, 176–181. [Google Scholar] [CrossRef]
- Guo, Q.; Yan, K.; Chigrinov, V.; Zhao, H.; Tribelsky, M. Ferroelectric liquid crystals: Physics and applications. Crystals 2019, 9, 470. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, L.; Xu, A.; Wang, L.; Zhang, L.; Liu, S.; Liu, Y.; Li, H. Detecting enzymatic reactions in penicillinase via liquid crystal microdroplet-based pH sensor. Sens. Actuators B Chem. 2018, 258, 1090–1098. [Google Scholar] [CrossRef]
- Amin, N.u.; Siddiqi, H.M.; Kun Lin, Y.; Hussain, Z.; Majeed, N. Bovine serum albumin protein-based liquid crystal biosensors for optical detection of toxic heavy metals in water. Sensors 2020, 20, 298. [Google Scholar] [CrossRef] [PubMed]
- Balenko, N.; Shibaev, V.; Bobrovsky, A. Mechanosensitive polymer-dispersed cholesteric liquid crystal composites based on various polymer matrices. Polymer 2023, 281, 126119. [Google Scholar] [CrossRef]
- Mahadevan-Jansen, A.; Richards-Kortum, R.R. Raman spectroscopy for the detection of cancers and precancers. J. Biomed. Opt. 1996, 1, 31–70. [Google Scholar] [CrossRef]
- Kothari, R.; Jones, V.; Mena, D.; Bermúdez Reyes, V.; Shon, Y.; Smith, J.P.; Schmolze, D.; Cha, P.D.; Lai, L.; Fong, Y. Raman spectroscopy and artificial intelligence to predict the Bayesian probability of breast cancer. Sci. Rep. 2021, 11, 6482. [Google Scholar] [CrossRef]
- Azzouz, A.; Hejji, L.; Kim, K.-H.; Kukkar, D.; Souhail, B.; Bhardwaj, N.; Brown, R.J.; Zhang, W. Advances in surface plasmon resonance–based biosensor technologies for cancer biomarker detection. Biosens. Bioelectron. 2022, 197, 113767. [Google Scholar] [CrossRef] [PubMed]
- Pourasl, M.H.; Vahedi, A.; Tajalli, H.; Khalilzadeh, B.; Bayat, F. Liquid crystal-assisted optical biosensor for early-stage diagnosis of mammary glands using HER-2. Sci. Rep. 2023, 13, 6847. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Xu, T.; Noel, A.; Chen, Y.-C.; Liu, T. Applications of liquid crystals in biosensing. Soft Matter 2021, 17, 4675–4702. [Google Scholar] [CrossRef] [PubMed]
- Rajesh; Gangwar, L.K.; Mishra, S.K.; Choudhary, A.; Biradar, A.M.; Sumana, G. Technological advancements in bio-recognition using liquid crystals: Techniques, applications, and performance. Luminescence 2023, 38, 811–833. [Google Scholar] [CrossRef] [PubMed]
- Hsu, W.-L.; Myhre, G.; Balakrishnan, K.; Brock, N.; Ibn-Elhaj, M.; Pau, S. Full-Stokes imaging polarimeter using an array of elliptical polarizer. Opt. Express 2014, 22, 3063–3074. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Bermak, A.; Boussaid, F.; Du, T.; Chigrinov, V.G. High-resolution photoaligned liquid-crystal micropolarizer array for polarization imaging in visible spectrum. Opt. Lett. 2009, 34, 3619–3621. [Google Scholar] [CrossRef]
- Crawford, G.P. Electrically switchable Bragg gratings. Opt. Photonics News 2003, 14, 54–59. [Google Scholar] [CrossRef]
- Brodzeli, Z.; Silvestri, L.; Michie, A.; Guo, Q.; Pozhidaev, E.P.; Chigrinov, V.; Ladouceur, F. Sensors at your fibre tips: A novel liquid crystal-based photonic transducer for sensing systems. J. Light. Technol. 2013, 31, 2940–2946. [Google Scholar] [CrossRef]
- Kiselev, A.D.; Pozhidaev, E.P.; Chigrinov, V.G.; Kwok, H.-S. Polarization-gratings approach to deformed-helix ferroelectric liquid crystals with subwavelength pitch. Phys. Rev. E 2011, 83, 031703. [Google Scholar] [CrossRef]
- Brodzeli, Z.; Silvestri, L.; Michie, A.; Guo, Q.; Pozhidaev, E.P.; Chigrinov, V.; Ladouceur, F. Reflective mode of deformed-helix ferroelectric liquid crystal cells for sensing applications. Liq. Cryst. 2013, 40, 1427–1435. [Google Scholar] [CrossRef]
- Berreman, D.W. Variable focus liquid crystal lens system. U.S. Patent US4190330A, 26 February 1980. [Google Scholar]
- Sato, S. Liquid-crystal lens-cells with variable focal length. Jpn. J. Appl. Phys. 1979, 18, 1679. [Google Scholar] [CrossRef]
- Lin, Y.-H.; Cheng, W.-C.; Reshetnyak, V.; Huang, H.-H.; Huang, T.-W.; Cheng, C.-C.; Wu, Y.-H.; Yang, C.-L. Electrically tunable gradient-index lenses via liquid crystals: Beyond the power law. Opt. Express 2023, 31, 37843–37860. [Google Scholar] [CrossRef]
- Algorri, J.F.; Zografopoulos, D.C.; Urruchi, V.; Sánchez-Pena, J.M. Recent advances in adaptive liquid crystal lenses. Crystals 2019, 9, 272. [Google Scholar] [CrossRef]
- Fan, F.; Srivastava, A.K.; Du, T.; Tseng, M.C.; Chigrinov, V.; Kwok, H.S. Low voltage tunable liquid crystal lens. Opt. Lett. 2013, 38, 4116–4119. [Google Scholar] [CrossRef] [PubMed]
- Sato, S.; Sugiyama, A.; Sato, R. Variable-focus liquid-crystal Fresnel lens. Jpn. J. Appl. Phys. 1985, 24, L626. [Google Scholar] [CrossRef]
- Mukherjee, S.; Yuan, Z.-N.; Sun, Z.-B.; Li, A.-R.; Kang, C.-B.; Kwok, H.-S.; Srivastava, A.K. Fast refocusing lens based on ferroelectric liquid crystals. Opt. Express 2021, 29, 8258–8267. [Google Scholar] [CrossRef]
- Chigrinov, V.G.; Srivastava, A. Ferroelectric liquid crystal cells for advanced applications in displays and photonics. Mol. Cryst. Liq. Cryst. 2014, 595, 39–49. [Google Scholar] [CrossRef]
- Tsukamoto, Y.; Ozaki, M. Liquid crystal micro-Fresnel zone plate with fine variable focusing properties. Opt. Contin. 2023, 2, 1889–1900. [Google Scholar] [CrossRef]
- Zou, J.; Li, L.; Wu, S.-T. Gaze-matched pupil steering Maxwellian-view augmented reality display with large angle diffractive liquid crystal lenses. Adv. Photonics Res. 2022, 3, 2100362. [Google Scholar] [CrossRef]
Twist Angle, | 240° |
---|---|
Thickness | 5 μm |
Elastic constants | K11 = 1.28 × 10−11 N, K22 = 7.25 × 10−12 N, K33 = 2.06 × 10−11 N |
Refractive indices parallel and perpendicular to the optical axis |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kudreyko, A.; Chigrinov, V.; Neyts, K.; Chausov, D.; Perestoronina, A. Photonic Devices with Multi-Domain Liquid Crystal Structures. Crystals 2024, 14, 512. https://doi.org/10.3390/cryst14060512
Kudreyko A, Chigrinov V, Neyts K, Chausov D, Perestoronina A. Photonic Devices with Multi-Domain Liquid Crystal Structures. Crystals. 2024; 14(6):512. https://doi.org/10.3390/cryst14060512
Chicago/Turabian StyleKudreyko, Aleksey, Vladimir Chigrinov, Kristiaan Neyts, Denis Chausov, and Arina Perestoronina. 2024. "Photonic Devices with Multi-Domain Liquid Crystal Structures" Crystals 14, no. 6: 512. https://doi.org/10.3390/cryst14060512
APA StyleKudreyko, A., Chigrinov, V., Neyts, K., Chausov, D., & Perestoronina, A. (2024). Photonic Devices with Multi-Domain Liquid Crystal Structures. Crystals, 14(6), 512. https://doi.org/10.3390/cryst14060512