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Abstract: A reaction between copper(II) nitrate and trans-1,4-cyclohexanedicarboxylic acid (H2chdc) carried
out under hydrothermal conditions led to a new metal-organic coordination polymer [Cu2(Hchdc)2(chdc)]n.
According to single-crystal XRD data, the compound is based on bi-nuclear paddlewheel-type carboxylate
blocks that are joined with polymeric chains due to the (µ3-κ1:κ2) coordination of carboxylate groups. The
chains are interconnected by chdc2− bridging ligands into layers containing free COOH groups of terminal
Hchdc−. The neighboring layers adopt a RCOOH···OOCR hydrogen bond-assisted arrangement into a
dense-packed structure. Magnetization measurements showed the presence of a strong antiferromagnetic
exchange interaction (J/kB = −495 K) inside the bi-nuclear blocks. At the same time, no significant
interaction was found between the {-Cu2(OOCR)4-} units in spite of their polymeric in-chain packing.
Patterns of magnetic behavior of [Cu2(Hchdc)2(chdc)]n were thoroughly analyzed and explained from a
structural point of view.

Keywords: coordination polymer; copper(II) complex; carboxylate; X-ray diffraction; magnetization;
antiferromagnetism

1. Introduction

Metal-organic coordination polymers (MOCPs) have attracted significant research
attention due to their broad structural design [1–3] and targeted modulation of properties
that is possible by varying functional metal centers [4], organic ligands [5], and guest
substrates [6]. Polynuclear and polymeric blocks consisting of unpaired electron-rich metal
ions can present valuable magnetic properties (such as ferro- [7], antiferro- [8], and ferrimag-
nets [9], as well as slow magnetic relaxation [10,11]), complex luminescence patterns [12,13],
redox behavior [14], and unique chemical bonding features [15]. In particular, such metal
centers are of interest for the synthesis of MOCPs with designable and unique properties
and unveil the usage of coordination polymers in diverse magnetic materials [16], in highly
efficient luminophores and sensors [4,17], for data storage [18], and for production of
multifunctional and “smart” materials [19].

Copper(II) is one of the readily available ions with valuable functional characteristics,
and it is widely used in MOCP chemistry [20,21]. The redox activity and optical prop-
erties of Cu2+ are applicable in the design of catalysts and photocatalysts [22,23], while
the relative structural rigidity of its coordination environment increases the predictability
of the polymer lattice [24]. The paramagnetism of Cu2+ ion (S = ½) can provide deep
insights into the structural dynamics and the nature of adsorption centers in mechanistic
studies [25–27], by means of physical methods, and allows us to achieve an extremely
strong magnetic exchange in its polymeric complexes [28,29]. In this work, a new MOCP
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with the formula [Cu2(Hchdc)2(chdc)]n (I), containing differently charged anions of trans-
1,4-cyclohexanedicarboxylic acid (H2chdc), being also readily available but mildly spread
in coordination chemistry [30], as ligands, was structurally characterized. A (µ3-κ1:κ2) coor-
dination of the carboxylates and hydrogen bonds between them and free carboxylic groups
induce a formation of a corrugated layered structure based on 1D chains of magnetoactive
Cu2+ ions. However, magnetic measurements demonstrated that these copper-carboxylate
chains represent a set of weakly interacting antiferromagnetic dimers with a very strong
(J/kB = −495 K) inner exchange and a pronounced influence of structural defects regarding
their low-temperature magnetization behavior.

2. Materials and Methods
2.1. Materials

Copper(II) nitrate trihydrate (analytical reagent; Chimmed, Moscow, Russian Feder-
ation), trans-1,4-cyclohexanedicarboxylic acid (H2chdc, >97.0%; TCI, Tokyo, Japan), and
acetone (reagent grade; Vekton, Saint Petersburg, Russian Federation) were used as received.
Distilled water was used in all synthetic experiments.

2.2. Instruments

Bruker Scimitar FTS 2000 spectrometer (Billerica, MA, USA) was used to obtain in-
frared (IR) spectra in the range of 4000−400 cm−1 with KBr pellets. VarioMICROcube
analyzer (Elementar Analysensysteme GmbH, Hanau, Germany) was used for elemental
CHNS analyses. Bruker D8 Advance diffractometer (Cu-Kα radiation, λ = 1.54178 Å;
Billerica, MA, USA) was used for powder X-ray diffraction (PXRD) data acquisition at
room temperature. Netzsch TG 209 F1 Iris device (Selb, Germany) was used for thermo-
gravimetric analysis under Ar flow (30 cm3·min−1) at a 10 K·min−1 heating rate.

A Quantum Design MPMS-XL (San Diego, CA, USA) SQUID magnetometer was used
to measure the magnetic susceptibility of [Cu2(Hchdc)2(chdc)] (I) in the temperature range
of 1.77–300 K under applied magnetic fields H = 0–10 kOe. The measured values of the total
molar susceptibility, χ = M/H, were corrected for the temperature-independent diamagnetic
core contribution, χd, calculated using the Pascal’s additive scheme, which allowed us
to determine the paramagnetic component of the magnetic susceptibility, χp(T). To check
for the presence of ferromagnetic trace impurities in the sample, we measured isothermal
M(H) dependencies at several temperatures and took M(T) data in various magnetic fields;
a weak FM contribution, χFM(T), was indeed detected in this way and subtracted from the
data. Due to the low magnetic susceptibility of the sample and its low amount available,
4 cycles of measurements were carried out in the range of 1.77–300 K at both heating and
cooling to increase the accuracy of measurements and confirm their reproducibility.

2.3. Synthetic Methods

Synthesis of [Cu2(Hchdc)2(chdc)]n (I). Cu(NO3)2·3H2O (1.67 g, 6.9 mmol), H2chdc
(1.46 g, 8.5 mmol), and 25.0 mL of water were mixed in a Teflon liner (50 mL general volume).
The liner was placed into a stainless steel autoclave and heated at 120 ◦C during 48 h with
50 ◦C·h−1 heating and cooling rates. After cooling, the obtained white-blue crystalline
precipitate was washed with water (~20 mL) and then with acetone (~5 mL) and dried in
air. Yield: 5%. IR spectrum main bands (KBr, cm−1): 3191 ν(O–HCOOH), 2944 ν(C(sp3)–
HCHring), 2853 ν(C(sp3)–HCH2ring), 1728 ν(COCOOH), 1585 νas(COO−), and 1416 νs(COO−).
Elemental CHN analysis, calculated for [Cu2(Hchdc)2(chdc)] (C24H32O12Cu2) (%): C 45.1;
H 5.0; N 0.0. Found (%): C 45.0; H 5.0; N 0.0.

2.4. Single Crystal X-ray Diffraction Details

Diffraction data for single crystals of I were collected on the ‘Belok’ beamline [31,32]
(λ = 0.74503 Å) of the National Research Center ‘Kurchatov Institute’ (Moscow, Russian
Federation) using a Rayonix SX165 CCD detector. XDS program (Version 10 January 2022)
package [33] was used for data indexing, integration, scaling, and absorption correction.
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Dual-space algorithm (SHELXT [34]) was used for structure solution, and the full-matrix
least squares technique (SHELXL [35]) was used for structure refinement. Anisotropic
approximation was applied for all atoms, except hydrogens. Positions of C-bonded hy-
drogen atoms were calculated geometrically and refined in the riding model. Positions of
O-bonded H atoms were found directly and further refined with the application of DFIX
restraints for stable refinement. A non-merohedral twinning with an orientation matrix
(−1 0 0 0 −1 0 −0.426 −0.199 1) and second component weight (BASF) of ca. 0.34 was
found and analyzed using PLATON [36] software (Version 13 May 2024) after finding
a structural model and its primary refinement. Details for single-crystal structure de-
termination experiments and structure refinements are summarized in Table 1. CCDC
2309813 (I) entry contains the supplementary crystallographic data for this paper. These
data can be obtained free of charge from The Cambridge Crystallographic Data Center at
https://www.ccdc.cam.ac.uk/structures/ (accessed on 12 June 2024).

Table 1. Single-crystal X-ray diffraction and structure refinement details.

Parameter I

Chemical formula C12H16CuO6

Mr, g·mol−1 319.79

Crystal system Triclinic

Space group P¯1

a, Å 5.160(1)

b, Å 10.820(2)

c, Å 22.630(5)

Temperature, K 100

α, ◦ 86.95(3)

β, ◦ 86.90(3)

γ, ◦ 83.34(3)

V, Å3 1251.7(4)

Z 4

Dcalc, g·cm−3 1.697

µ, mm−1 1.99

F(000) 660

Crystal size, mm 0.04 × 0.02 × 0.02

θ range for data collection, ◦ 2.0 ≤ θ ≤ 26.55

Index ranges −6 ≤ h ≤ 6; −13 ≤ k ≤ 13; −3 ≤ l ≤ 27

No. of reflections: measured/independent/
observed [I > 2σ(I)] 4376/4376/4145

Rint –

Goodness-of-fit on F2 1.221

Final R indices [I > 2σ(I)] R1 = 0.1024; wR2 = 0.2961

Final R indices [all data] R1 = 0.1045; wR2 = 0.2970

Largest diff. peak, hole, e·Å−3 1.90, −1.75

https://www.ccdc.cam.ac.uk/structures/
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3. Results and Discussion
3.1. Synthesis

Compound [Cu2(Hchdc)2(chdc)]n (I) was obtained in a single-crystalline phase in
low yield by heating a mixture of copper(II) nitrate and H2chdc in water in a stainless
steel autoclave with a Teflon liner at 120 ◦C for 48 h. After cooling the reaction mixture
to room temperature, the solid mixture contained blue single crystals of I and colorless
crystals of unreacted trans-1,4-cyclohexanedicarboxylic acid. Then, H2chdc was removed
by washing the precipitate with acetone to obtain I in a pure form. Attempts to increase the
target product yield by adding potassium hydroxide or several weak organic bases (such
as 1,4-diazabicyclo[2.2.2]octane, urotropine, triethylamine, urea, N,N-dimethylformamide)
to the reaction mixture, as well as by increasing the temperature of the synthesis, led
to the admixtures of the previously reported [Cu2(chdc)2] [37] or unidentified copper-
containing products.

3.2. Crystal Structure

According to SCXRD results, I crystallized in the triclinic system with the P¯1 space
group. I contains two independent Cu(II) ions. Both Cu(1) and Cu(2) have a similar
square/pyramidal coordination polyhedron, consisting of five oxygen atoms from five
COO groups, two of which have a (µ2-κ1:κ1) coordination, and three more adopt the (µ3-
κ1:κ2) coordination (Figure 1a). Cu–O bond lengths are very close for both independent
metal ions and lie in the range of 1.947(7)–1.996(7) Å for O atoms of pyramid bases and are
2.204(6) Å, 2.210(6) Å for the pyramid vertices. Such coordination modes of carboxylate
groups lead to the formation of paddlewheel blocks condensed through the O atoms of
µ3-COO groups into polymeric {-Cu2(OOCR)4-}n chains lying along a crystallographic
axis. The Cu. . .Cu distances inside paddlewheels are 2.571(2) Å and 2.576(2) Å, and the
shortest interblock Cu. . .Cu distances are 3.21–3.22 Å, which can suggest strong exchange
interactions between paramagnetic metal ions both inside the bi-nuclear blocks and between
them—along polymeric chains. Nearby chains are interlinked along the b axis by bridging
trans-1,4-cyclohexanedicarboxylates (chdc2−) into layers (Figure 1b). Monoprotonated
Hchdc− ligands containing uncoordinated COOH groups are coordinated to the chains
almost perpendicularly to the ab planes (Figure 1c), forming interlayer H(COOH)···O(COO)
hydrogen bonds with the corresponding oxygen–oxygen distances of 2.72–2.73 Å. The
resulting three-dimensional packing of layers in I does not contain any significant voids.

Crystals 2024, 14, x FOR PEER REVIEW 4 of 12 
 

 

Compound [Cu2(Hchdc)2(chdc)]n (I) was obtained in a single-crystalline phase in low 
yield by heating a mixture of copper(II) nitrate and H2chdc in water in a stainless steel 
autoclave with a Teflon liner at 120 °C for 48 h. After cooling the reaction mixture to room 
temperature, the solid mixture contained blue single crystals of I and colorless crystals of 
unreacted trans-1,4-cyclohexanedicarboxylic acid. Then, H2chdc was removed by washing 
the precipitate with acetone to obtain I in a pure form. Attempts to increase the target 
product yield by adding potassium hydroxide or several weak organic bases (such as 1,4-
diazabicyclo[2.2.2]octane, urotropine, triethylamine, urea, N,N-dimethylformamide) to 
the reaction mixture, as well as by increasing the temperature of the synthesis, led to the 
admixtures of the previously reported [Cu2(chdc)2] [37] or unidentified copper-containing 
products. 

3.2. Crystal Structure 
According to SCXRD results, I crystallized in the triclinic system with the Pˉ1 space 

group. I contains two independent Cu(II) ions. Both Cu(1) and Cu(2) have a similar 
square/pyramidal coordination polyhedron, consisting of five oxygen atoms from five 
COO groups, two of which have a (µ2-κ1:κ1) coordination, and three more adopt the (µ3-
κ1:κ2) coordination (Figure 1a). Cu–O bond lengths are very close for both independent 
metal ions and lie in the range of 1.947(7)–1.996(7) Å for O atoms of pyramid bases and 
are 2.204(6) Å, 2.210(6) Å for the pyramid vertices. Such coordination modes of carbox-
ylate groups lead to the formation of paddlewheel blocks condensed through the O atoms 
of µ3-COO groups into polymeric {-Cu2(OOCR)4-}n chains lying along a crystallographic 
axis. The Cu…Cu distances inside paddlewheels are 2.571(2) Å and 2.576(2) Å, and the 
shortest interblock Cu…Cu distances are 3.21–3.22 Å, which can suggest strong exchange 
interactions between paramagnetic metal ions both inside the bi-nuclear blocks and be-
tween them—along polymeric chains. Nearby chains are interlinked along the b axis by 
bridging trans-1,4-cyclohexanedicarboxylates (chdc2−) into layers (Figure 1b). Monoproto-
nated Hchdc− ligands containing uncoordinated COOH groups are coordinated to the 
chains almost perpendicularly to the ab planes (Figure 1c), forming interlayer 
H(COOH)···O(COO) hydrogen bonds with the corresponding oxygen–oxygen distances 
of 2.72–2.73 Å. The resulting three-dimensional packing of layers in I does not contain any 
significant voids. 

 

 
(a) (b) 

Figure 1. Cont.



Crystals 2024, 14, 555 5 of 11
Crystals 2024, 14, x FOR PEER REVIEW 5 of 12 
 

 

 
(c) 

Figure 1. {Cu2(OOCR)4} bi-nuclear blocks and their connection in the structure of I (a). Coordination 
network in I; view along c axis (b). Three-dimensional package of I; view along a axis (c). Copper 
atoms are shown in blue; oxygen atoms are shown in red. Hydrogen bonds are shown by orange 
dashed lines. 

3.3. Phase Purity and Characterization 
The phase purity of I was confirmed by powder X-ray diffraction (PXRD, Figure 2a). 

Elemental (CHN) analysis results are in full agreement with the chemical formula 
[Cu2(Hchdc)2(chdc)]n obtained from the SCXRD data. The IR spectrum of I contains char-
acteristic absorption bands of C(sp3)–H stretching vibrations at 2944 cm−1 and 2853 cm−1, 
C=O stretching vibrations in the free COOH group at 1728 cm−1, symmetric and antisym-
metric vibrations of the coordinated carboxyl group at 1416 cm−1 and 1585 cm−1, respec-
tively, and a broad absorption band of O–H stretching vibrations at ~3200 cm−1. According 
to thermogravimetric analysis (TGA) data, the sample is stable up to 300 °C. The first step 
of weight loss is observed at 345 °C (Figure 2b). The residual weight after the first decom-
position step is 48%, corresponding well to the presumable formula Cu2O(chdc) for the 
intermediate decomposition product (49.0% theoretical weight). The second weight loss 
step is observed at 390 °C. The final weight residue after the second stage is 22% and cor-
responds well to Cu2O as the final product for the decomposition of I (22.4% theoretical 
weight) in an inert atmosphere. Such a stepwise shape of the TGA curve is similar to the 
examples within the literature for other “acidic” trans-1,4-cyclohexanedicarboxylates, 
such as non-isostructural [Mn2(Hchdc)2(chdc)]n [38]. 

Figure 1. {Cu2(OOCR)4} bi-nuclear blocks and their connection in the structure of I (a). Coordination
network in I; view along c axis (b). Three-dimensional package of I; view along a axis (c). Copper
atoms are shown in blue; oxygen atoms are shown in red. Hydrogen bonds are shown by orange
dashed lines.

3.3. Phase Purity and Characterization

The phase purity of I was confirmed by powder X-ray diffraction (PXRD, Figure 2a). Elemen-
tal (CHN) analysis results are in full agreement with the chemical formula [Cu2(Hchdc)2(chdc)]n
obtained from the SCXRD data. The IR spectrum of I contains characteristic absorption bands of
C(sp3)–H stretching vibrations at 2944 cm−1 and 2853 cm−1, C=O stretching vibrations in the
free COOH group at 1728 cm−1, symmetric and antisymmetric vibrations of the coordinated
carboxyl group at 1416 cm−1 and 1585 cm−1, respectively, and a broad absorption band of O–H
stretching vibrations at ~3200 cm−1. According to thermogravimetric analysis (TGA) data, the
sample is stable up to 300 ◦C. The first step of weight loss is observed at 345 ◦C (Figure 2b). The
residual weight after the first decomposition step is 48%, corresponding well to the presumable
formula Cu2O(chdc) for the intermediate decomposition product (49.0% theoretical weight). The
second weight loss step is observed at 390 ◦C. The final weight residue after the second stage
is 22% and corresponds well to Cu2O as the final product for the decomposition of I (22.4%
theoretical weight) in an inert atmosphere. Such a stepwise shape of the TGA curve is similar to
the examples within the literature for other “acidic” trans-1,4-cyclohexanedicarboxylates, such as
non-isostructural [Mn2(Hchdc)2(chdc)]n [38].

3.4. Magnetization Data

The magnetic susceptibility χ = M/H of complex I, measured during thermal cycling
of the sample in the temperature range of 1.77–300 K, did not depend on either its thermo-
magnetic history or the magnetic field strength, except for at lower temperatures, where
the field dependence χ(H) fitted well to the Brillouin function for paramagnetic ions with
spin S = 1/2. The paramagnetic component of the magnetic susceptibility χp (Figure 3a),
obtained after subtracting the temperature-independent diamagnetic contribution, was
≈1.5·10−3 emu/mol at 300 K and gradually decreased almost to zero upon cooling the
sample from room temperature to 50–60 K. Such a pronounced drop in magnetic suscepti-
bility indicates not only the presence of strong antiferromagnetic (AF) interactions between
Cu2+ ions but also the formation of a gap in the spectrum of spin excitations in the system;
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without such a gap, significant magnetic susceptibility would persist, even in a completely
ordered AF state. The occurrence of a spin gap along with the smooth decrease in χp
are known to be the typical manifestations of AF-coupled dimers [39] and dimer-derived
structures. This observation appears in perfect agreement with the crystal structure of
complex I based on polymeric chains of bi-nuclear Cu(II)-carboxylate blocks (Figure 1). The
strength of the AF interaction can be seen clearly in the χpT(T) graph (Figure 3b), where
χpT is almost zero at temperatures below 60–70 K and reaches only half the value that
would be observed for the two Cu2+ ions in [Cu2(Hchdc)2(chdc)]n at room temperature—in
the absence of an interaction between them.
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Figure 3. Temperature dependences of χp (a) and χpT (b) of complex I measured in a magnetic field
H = 10 kOe. Each curve was obtained by averaging two series of measurements. The dashed lines in
graph (b) show the levels corresponding to one ion with spin S = 1/2 and g-factors g = 2.0; 2.19.

In the low-temperature region (T < 60 K), an increase in χp is observed (Figure 3a),
which is associated with the presence of impurities retaining their paramagnetic state
down to the minimal temperature T = 1.77 K. An impurity paramagnetism of sample I
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apparently arises from the decomposition of bi-nuclear blocks in near-surface crystallite
defects with the formation of single Cu2+ ions [40]. As can be seen from Figure 3a, there is
virtually no overlap of temperature ranges at points where significant contributions to the
magnetic susceptibility of AF dimers (T ≥ 70 K) and paramagnetic impurities (T ≤ 50 K)
are observed. This allows the concentration and magnetic parameters of single Cu2+ ions to
be determined by simply approximating the low-temperature χp(T) data (Figure 4) using
the Curie–Weiss dependence χCW(T) = NAµ2

eff/3kB(T − θ)—where NA and kB are the
Avogadro number and the Boltzmann constant, respectively, µeff is the effective magnetic
moment of a single Cu2+ ion, and θ is the Weiss constant—reflecting its interaction with
neighboring copper ions. In turn, the analysis of the χp(T) dependence in the region
T ≥ 70 K has shown good agreement with the behavior theoretically predicted for AF
Cu2+–Cu2+ dimers [39]. Accordingly, a quantitative analysis of the data over the entire
temperature range was carried out using the modified Bleaney–Bowers formula [39], which
takes into account the presence of AF dimers and monomer molecules:

χp(T) = (1 − δ)χdim + 2δχCW = (1 − δ)(2NAµB
2g2/3kBT)/[1 + exp(-J/kBT)/3] + 2δχCW, (1)

where χdim and χCW are the magnetic susceptibilities of dimers and monomers, respec-
tively; δ is the mole fraction of dimers transformed into monomers; g is the g-factor of Cu2+

ions (assumed to be the same for dimers and monomers); and J is the exchange interaction

energy between copper ions in dimers described by the Hamiltonian H = −J
→
S 1 ·

→
S 2.

As can be seen in Figure 5, the experimental data can be approximated very well using
Formula (1) with parameters J/kB ≈ −495 K; g ≈ 2.19; δ ≈ 0.45 mol. %.
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Since the dimer blocks are assembled into polymer chains within the crystal struc-
ture of complex I, a more rigorous analysis of the magnetic properties should be car-
ried out using the model of partially dimerized chains described by the Hamiltonian

H = −J
n/2
∑
i
(
→
S 2i−1 ·

→
S 2i + α

→
S 2i ·

→
S 2i+1), where the inter-dimer interaction J’ = αJ is also con-

sidered in addition to the intra-dimer Cu2+–Cu2+ exchange J [41]. However, upon applying
this model, no further improvement exceeding the experimental error was obtained in the
description of the χp(T) data, which indicates that the interaction between the blocks is
very weak (J’ << J).
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Figure 5. Experimental χp(T) data for complex I (symbols) and their approximation by the theoretical
expression obtained using the Bleaney–Bowers model (solid line). Contributions from dimers and
monomers are shown by the dashed and dash-dotted lines, respectively. The inset illustrates the chain
built from AF dimers with strong intra-dimer coupling J, and a weak interaction between dimers J’.

Despite the apparent consistency between magnetization and structural data, one may
wonder whether the identification of bi-nuclear paddlewheel fragments of polymer chains
as AF Cu2+-Cu2+ dimers, weakly coupled with each other magnetically, is actually correct.
Indeed, at a first glance, the exchange-interaction pathways through Cu-O-Cu bonds (inset
to Figure 5) may seem preferable over the Cu-O-C-O-Cu ones. However, this is not the
case; both the strong AF coupling in the paddlewheel blocks and the weak superexchange
interaction through Cu-O-Cu bonds of the geometry in complex I are confirmed by many
sources of data within the literature on similar compounds. The most clear example is the
compound [Cu2Y2L10(H2O)4·3H2O]n, where HL = trans-2-butenoic (crotonic) acid, in which
{Cu2(OOCR)4} paddlewheel units in polymer chains are spatially separated by diamagnetic
bi-nuclear {Y2(OOCR)6} blocks and are thus magnetically isolated from each other [42]. The
value of the AF exchange interaction in isolated copper(II)-based paddlewheel dimer units
was found to be J/kB ≈ −486 K [41], appearing very close to the value −495 K obtained in
this work. Even closer magnetic parameters (J/kB ≈ −493 K; g ≈ 2.188) were defined for
isolated {Cu2(OOCR)4} blocks in ref. [37]. In turn, studies of di-nuclear Cu(II) complexes
with Cu2O2 cores possessing a geometry similar to complex I have revealed only a weak
(|J/kB| ~ 5 K) exchange interaction through Cu-O-Cu bonds, whose sign is dependent on
the Cu-O-Cu angle [43].

Among the compounds based on {-Cu2(OOCR)4-}n polymeric chains [28,37,44], the clos-
est ones to complex I parameters (J/kB = −485 K; g = 2.207) were reported for layered com-
pound [Cu2(cis,cis-1,3,5-Hchtc)2]n [37], where 1,3,5-H3chtc = 1,3,5-cyclohexanetricarboxylic
acid. For all the referenced chain-based compounds, the insignificance of the exchange
interaction between bi-nuclear blocks was emphasized [28,37,44], and only the authors in
ref. [28] qualitatively determined the value of J’/kB ≈ 8.5 K, which appears to be almost
two orders of magnitude smaller than the interaction within the dimer units (J/kB). It
should be noted that in all the listed works, impurity paramagnetism (described by the
Curie–Weiss model) was observed at T < 50 K, and it was typically subtracted empirically
and not analyzed in detail. We can suggest that such a feature of complex I is associated
with the destruction of paddlewheel units in the near-surface defects of crystallites, forming
monomer paramagnetic ions. According to the parameter δ ≈ 0.45 mol. % (reflecting the
fraction of decomposed dimers as ≈1/220), the average number of paddlewheel blocks in a
single {-Cu2(OOCR)4-}n chain should be n ≈ 220. Using the cell parameter a = 5.16 Å, whose
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crystallographic vector is aligned parallel to the chains, the average length of defect-free
copper(II)-carboxylate chains in complex I can be estimated as (220·0.516 ≈ 114) nm, which
is quite large and consistent with high crystallinity shown by PXRD results.

4. Conclusions

To summarize, a new metal-organic coordination polymer of copper(II), which con-
tains differently charged trans-1,4-cyclohexanedicarboxylate anions, was synthesized. The
compound is based on two-dimensional coordination layers, while its magnetically active
substructure is represented by one-dimensional copper-carboxylate chains. The packing of
layers within the crystal structure is supported by hydrogen bonds between protonated
(uncoordinated) carboxyl groups and bound carboxylate anions. Magnetization measure-
ments have shown the presence of strong antiferromagnetic interactions (J/kB = −495 K)
in {Cu2(OOCR)4} paddlewheel units without any significant exchange between even the
closest bi-nuclear fragments.
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