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Abstract: This study investigates the impact of varying powder size on porosity, pore parameters,
and intermetallic phase reaction during the reactive sintering of porous TiAl alloys. Ti52Al48 alloys
were prepared using coarse (200 mesh) and fine (325 mesh) Ti powders through elemental powder
metallurgy and were subsequently sintered at different temperatures, 600 and 1200 ◦C. Our findings
reveal a consistent pore morphology and intermetallic phase microstructure across both alloys.
However, samples containing fine Ti powder exhibited a higher number density of small pores
compared to those incorporating coarse Ti powders. Additionally, alloys prepared with fine Ti
powders demonstrated a higher porosity than those prepared with coarse powders. Consequently,
fine Ti powder promoted enhanced diffusion between Ti and Al during sintering, as reflected by the
lower onset temperature and enthalpy of intermetallic reaction during sintering.

Keywords: TiAl alloys; powder size; sintering; intermetallic compounds

1. Introduction

Porous intermetallic alloys have been considered valuable engineering materials
across various industrial sectors, particularly in exhaust gas adsorption and filtration
applications [1–4]. However, their utilization in high-temperature exhaust gas filtration
has been limited due to inherent susceptibility to corrosion, burning, and oxidation [5–10].
Recently, there has been growing interest in porous TiAl alloys as promising candidates for
filtering dust particles from exhaust gases at high temperatures [11,12]. These alloys exhibit
exceptional corrosion resistance to both acids and alkalis, along with robust oxidation
resistance, even at temperatures exceeding 750 ◦C [13,14].

Elemental powder metallurgy (EPM) remains a cost-effective method for producing
porous TiAl alloys due to its simple sintering process and the use of inexpensive raw mate-
rials, i.e., elemental powders [15]. Numerous studies have elucidated the reaction behavior
and diffusional phenomenon involved in the formation of porous TiAl alloys [16–18]. For
instance, the Kirkendall effect plays a role in the formation of TiAl-based intermetallic com-
pounds (IMCs) [19]. However, the formation of IMCs varies depending on the processing
conditions due to disparities in the diffusion rates of Ti and Al [20]. Al particles, with their
lower melting point, exhibit rapid diffusion at lower sintering temperatures, migrating
towards Ti-rich skeletons and resulting in the formation of Al-rich IMCs [21]. As sintering
temperatures increase, the formation of IMCs transition from Al-rich to Ti-rich phases due
to the accelerated diffusion of Ti [22]. Consequently, controlling the pore size of the alloy
presents a significant challenge owing to the different diffusion behaviors of Ti and Al,
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leading to the formation of large pores [23,24]. The presence of these diffusion-controlled
coarse pores significantly diminishes the filtration efficacy of porous TiAl alloys, partic-
ularly in capturing extremely fine particles. Thus, reducing the pore size of porous TiAl
alloys is crucial to enhance their suitability for high-temperature filtration applications.

Cutting-edge manufacturing processes, such as hot-isostatic pressing and spark
plasma sintering using alloy powders, have reported the effective development of TiAl
alloys with finer pore sizes [25,26]. However, these advanced techniques often lead to a
significant increase in production costs, rendering them unsuitable for widespread com-
mercial applications [27,28]. Alternatively, a viable approach to effectively reduce pore size
involves decreasing the initial powder size utilized in the EPM process. Previous studies
reported that alloys containing smaller powder sizes produce finer pores after the sintering
process [29,30]. For instance, Yang et al. [30] demonstrated the fabrication of porous TiAlNb
alloys using a combination of powders with varying particle sizes. However, incorporating
2 at. % of Nb yielded a similar pore size as the Ti52Al48 (at. %) alloy owing to its lower
solubility in Ti [31]. In contrast, Li et al. [32] prepared TiAl3 IMCs of fine pore sizes using
fine Al and Ti powders. However, their study was limited to a low-temperature sintering
process, specifically at 700 ◦C. It is well understood that complete IMC formation may
not occur during reaction sintering at low temperatures, resulting in a typical skeleton
microstructure with Ti-rich cores and TiAl3 formed at the surfaces. Therefore, achieving a
well-bonded porous structure necessitates sintering at elevated temperatures. Nevertheless,
controlling the melting of fine Al particles during high-temperature sintering presents an
utmost challenge. Hence, instead of employing fine Al and Ti powders, in the present study,
we aimed to control the pore size of TiAl by utilizing only fine Ti powder. Furthermore,
we conducted a comprehensive analysis of the microstructure, the nature of IMCs, and
pore parameters of the fabricated alloys after sintering at both low (600 ◦C) and elevated
(1200 ◦C) temperatures.

2. Materials and Methods

Porous TiAl alloys were fabricated with a nominal composition of 52 at. % Ti and
48 at. % Al using 99.9% Al and hydride–dehydride (HDH) Ti powders obtained from
ALCO Engineering, UK, and Sejong Materials Limited, respectively. The Al powder has
particle sizes of 600 mesh, while Ti powders of two different mesh sizes (200 and 325) were
used. The particle size of powders was conducted using a laser diffraction particle size
analyzer (ENSOL instruments, LS I3 320). The powders were dry-blended in a tumbler
ball mill for 2 h at a rotational speed of 200 rpm/min under a pure (99.9%) Ar atmosphere.
Afterward, the mixed powders were cold-pressed into green compacts with dimensions of
25 mm in width and 5.8 mm in height using a mechanical press (SAMWON-80 ton) under
a pressure of 370 MPa. Zinc stearate (1:1 ratio) was utilized as a lubricant for the die walls
during compaction. Subsequently, the green compacts were subjected to sintering at the
temperatures of 600 and 1200 ◦C, with a heating rate of 10 ◦C/min. All sintering processes
were conducted under a vacuum of 1 × 10−5 bar, and the samples were maintained at the
sintering temperature for 2 h.

Porosity and pore parameters were determined using Mercury inclusion testing (Mi-
cromeritics, Autopore IV 9510, Norcross, GA, USA), employing an evacuation pressure
of 50 mm/Hg and a 10 s intrusion time. Microstructural analysis was conducted using
optical microscopy (OM; Olympus GX50, Tokyo, Japan) and scanning electron microscopy
(SEM; Jeol JSM 6610LV, Tokyo, Japan). All microscopy samples underwent grinding and
polishing following standard metallography procedures. Intermetallic phase analysis was
carried out using an X-ray diffractometer (XRD; Rigaku Dmax 2500, Tokyo, Japan) and
energy-dispersive X-ray spectroscopy (EDS) detector integrated with the SEM. The reaction
mechanism of intermetallic phases was evaluated using a differential thermal analyzer
(DTA; SDT Q6000, New Castle, DE, USA), operated at a heating rate of 10 ◦C/min. Part of
the Ti 200 mesh powder sample results used in this study were taken from the author’s
previous work [31].
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3. Results
3.1. Effect of Powder Size on Microstructure and Bulk Volume

The average particle diameter distribution of the Al 600 mesh and Ti 200 and 325 mesh
powders used in this study is depicted in Figure 1a–c, respectively. The analysis revealed
an average particle diameter of 20.4 µm for Al 600 mesh, 42.8 µm for Ti 200 mesh, and
26.6 µm for Ti 325 mesh powders.
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Figure 1. Particle size distribution of powders utilized in the fabrication of Ti52Al48 alloys: (a) Al
600 mesh, and Ti of (b) 200 and (c) 325 mesh.

Figure 2 shows secondary electron (SE) images of Ti52Al48 alloy specimens prepared
to employ (a,c,e) 200 and (b,d,f) 325 mesh Ti powders. Notably, the green compacts
present agglomerated powders with small pores resulting from the compaction process.
Based on the SE image contrast, dark grey agglomerates were identified as Al, while
light grey agglomerates were attributed to Ti. It is discernible that the Ti agglomerates
in the 200 mesh sample exhibited a coarser size distribution compared to their 325 mesh
counterpart. Consequently, the 200 mesh sample exhibited large inner titanium pores
(ITP) as well as inter-particle pores (IPP). Subsequent to sintering at 600 ◦C, the contrast
differentiation within the agglomerates persisted, alongside an escalation in the sizes of
ITPs and IPPs. Notably, the 325 mesh Ti powders-containing sample displayed a higher
density of smaller pores relative to the 200 mesh specimen. Upon sintering at 1200 ◦C, both
alloys showed a skeleton-type microstructure characterized by large IPPs. The contrast
disparity between agglomerates dissipated, indicative of the complete transformation of
Ti-rich skeletons into IMCs. However, the IPPs in the 200 mesh sample appeared coarser in
comparison to those observed in the 325 mesh specimen.
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3.2. Effect of Powder Size on Pore Size and Porosity

Figure 3 presents the quantitative analysis of pore size and porosity of Ti52Al48 alloys,
investigated via mercury intrusion tests. Figure 3a,b illustrate the variation in pore diameter
for the 200 and 325 mesh samples, respectively. Notably, the pore diameter of the green
compacts increased sequentially after sintering, as depicted in Figure 3c for the media pore
diameter comparison. According to Table 1, it is evident that the median pore size of the
compacted 200 mesh sample increased from 0.70 µm to 3.68 µm and further to 15.28 µm
following sintering at 600 and 1200 ◦C, respectively. Conversely, the 325 mesh sample
exhibited a smaller initial pore size of 0.6 µm, which increased to 1.71 µm at 600 ◦C and to
8.90 µm at 1200 ◦C, although it remained smaller than the 200 mesh specimen. Figure 3d,e
display the cumulative pore volumes of the 200 and 325 mesh alloys, respectively. The
corresponding porosity analysis shown in Figure 3f reveals an increase in the porosity of
green compacts after sintering. Notably, the porosity of the 325 mesh sample surpassed
that of the 200 mesh sample in both compacted and sintered (600 and 1200 ◦C) states, as
presented in Table 1. This increment is attributed to a higher number and density of fine
pores in the 325 mesh sample.
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alloy specimens fabricated using Ti powders of different sizes under as-compacted and sintered (600
and 1200 ◦C) conditions. (d,e) Cumulative pore volume and (f) porosity of alloys for the comparison
of Ti52Al48 alloy specimens prepared using Ti powders of different sizes under as-compacted and
sintered (600 and 1200 ◦C) conditions. (Part of the 200 mesh sample results were taken from the
author’s previous work [31]).

Table 1. Pore size parameters of compacted and sintered (600 and 1200 ◦C) Ti52Al48 alloys prepared
using Ti powders of different mesh sizes. (Part of the 200 mesh sample results was taken from the
author’s previous work [31]).

Pore
Parameters

200 Mesh 325 Mesh

As-
Compacted

600 ◦C
Sintered

1200 ◦C
Sintered

As-
Compacted

600 ◦C
Sintered

1200 ◦C
Sintered

Median Pore
Size (µm) 0.70 3.68 15.28 0.60 1.71 8.90

Porosity (%) 5.82 18.23 25.91 8.51 23.71 34.84

3.3. Effect of Powder Size on Intermetallic Phases

Figure 4a,b present the XRD analysis results for Ti52Al48 alloys with Ti powder sizes
of 200 and 325 mesh, subjected to compaction and sintering at 600 and 1200 ◦C. In the
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compacted state, both samples displayed distinct peaks corresponding to Ti and Al. To
differentiate between the powder sizes of the 200 and 325 mesh specimens, the crystallite
size was determined using Scherrer’s equation [33]:

D =
Kλ

βcosθ
(1)

where D represents the crystallite size in nm, K denotes Scherrer’s constant (0.9) [33], λ is
the wavelength of the X-ray source (0.154 nm), β indicates the full-width at half maximum
(in rad), and θ denotes the peak position (in rad). The Ti peak analysis of the as-compacted
samples yielded a crystallite size of 0.13 and 0.55 µm for the 200 and 325 mesh samples,
respectively. These results suggest that the finer Ti powder particles in the 325 mesh
specimen produced smaller agglomerates. After sintering, both samples exhibited no
noticeable differences in terms of IMC phase formation. For instance, Al-rich IMCs, TiAl3,
and TiAl2 were observed in specimens sintered at 600 ◦C alongside elemental Ti and Al
peaks. The elemental Ti and Al peaks completely disappeared after sintering at 1200 ◦C,
with only Ti-rich IMC peaks observed, i.e., TiAl and Ti3Al. However, the intensity of
the IMC phase peaks in the 325 mesh specimen was significantly higher compared to
the 200 mesh specimen. This observation suggests that the diffusion rate is faster in the
325 mesh sample, facilitating more pronounced IMC phase reactions.
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(Parts of the 200 mesh sample results were taken from the author’s previous work [31]).

Furthermore, we conducted backscattered electron (BSE) imaging combined with the
EDS analysis of Ti52Al48 alloys. Figure 5a–c depicts the BSE images of the 325 mesh specimen
in both compacted and sintered states (600 and 1200 ◦C), respectively. As seen in Figure 5a, the
as-compacted sample reveals the presence of Al and Ti agglomerates. Upon sintering at 600
◦C, Al-rich IMC Al3Ti formed on the surface of Ti-rich agglomerates while their core remained
rich in Ti. Subsequently, sintering at 1200 ◦C resulted in the complete transformation of the
Ti-rich agglomerates into IMCs. This transformation was evidenced by the presence of the
skeleton structure containing the TiAl phase on the surface and the Ti3Al phase in their cores.
The corresponding elemental point analysis results are presented in Table 2.

Table 2. EDS analysis results obtained from the locations shown in Figure 5.

Specimen As-Compacted 600 ◦C Sintered 1200 ◦C Sintered

Location Ti Al Ti Al Ti Al

i (at. %) 0.70 99.30 99.61 0.39 69.88 30.12
ii (at. %) 99.14 0.86 71.43 28.57 49.53 50.47
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4. Discussion

The sintering process of porous TiAl alloys often triggers the formation of IMCs, char-
acterized by an exothermic reaction that induces volume expansion and pore formation.
Specifically, due to the higher diffusivity of Al at lower temperatures, a solid–solid dif-
fusion reaction precedes Al melting [34], resulting in the formation of the Al-rich Al3Ti
phase on the surface of Ti agglomerates [35]. This process generates the formation of
Kirkendall pores at prior Al sites, which has been explained in detail previously [15]. As
the sintering temperature increases, additional intermetallic phase transformations occur
via the diffusion of Ti, such as the reactions TiAl3 + 2Ti→ TiAl and TiAl + 2Ti→ Ti3Al.
The activation energy for Ti diffusion in the intermetallic structure is significantly higher
than that for Al at elevated temperatures [21,22]. Consequently, the presence of excess Ti
enhances the thermodynamic stability of Ti-rich IMCs. Moreover, the stoichiometry of the
IMCs and the size of the pores may vary depending on the sintering duration at higher
temperatures [36,37].

To understand the intermetallic phase reactions in the Ti52Al48 alloy, we conducted the
DSC analysis on 200 and 325 mesh samples in a compacted state. The DSC results depicted
in Figure 6a,b revealed two exothermic peaks and one endothermic peak for both samples.
The initial exothermic peak corresponds to the formation of the Al3Ti phase, succeeded by
the endothermic reaction of Al melting [38,39]. Notably, the onset temperature of the first
exothermic peak was observed to be lower for the 325 mesh sample (630.1 ◦C) compared to
the 200 mesh sample (638.7 ◦C). The XRD results presented in Figure 4 corroborate these
findings. Furthermore, we calculated the enthalpy of the exothermic reaction for both
samples by integrating the area under the peak in the heat flow vs. time plots, as shown
in Figure S1. The resulting values of 175.68 kJ/g and 129.77 kJ/g were obtained for the
200 and 325 mesh samples, respectively. Previously, it has been suggested that coarser
powders result in less intimate contact between Ti and Al agglomerates, leading to lower
interfacial energy and necessitating a stronger diffusion driving force, typically denoted
by a higher reaction onset temperature [32,39]. Consequently, the formation of Al3Ti at
elevated temperatures in the samples containing coarser powder releases a larger amount
of exothermic heat [32]. The second exothermic peak in the heat flow curves indicates the
formation of Ti-rich IMCs following Al melting. Similarly, the peak onset temperature of
325 mesh (806.2 ◦C) was lower compared to the 200 mesh specimen (810.3 ◦C). SE images
in Figure 2 revealed that Ti agglomerates in the 200 mesh specimen were coarser than those
in the 325 mesh sample. Thus, the lower wettability of coarse agglomerates by liquid Al
requires prolonged diffusion times for Ti-rich IMC formation, resulting in an increase in
the exothermic reaction temperature [40,41].
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The driving force for the diffusion of liquid Al is defined by the pressure difference (P)
existing between pores originating from compaction and those formed during sintering.
Assuming partial melting of all Al agglomerates, the pressure exerted by the liquid Al
spreading towards Ti agglomerates can be quantified as follows [32]:

P =
2γ

r
(2)

where γ represents the surface tension, and r denotes the particle size. Equation (2)
elucidates that larger Ti particles result in lower P. Consequently, reaction speeds diminish
during sintering in the 200 mesh sample, thereby prolonging diffusion time and facilitating
pore enlargement [42]. Conversely, Al diffusion into fine Ti agglomerates is easier, leading
to the formation of IMCs with reduced heat flow.

Despite the higher diffusion rates and faster IMC phase reactions observed, the 325 mesh
alloy exhibited greater porosity compared to the 200 mesh sample. This increased porosity
is attributed to the finer Ti powder particles’ higher surface energy [32], which promotes
agglomeration. Thus, voids can become trapped within these agglomerates, leading to a higher
number and density of pores compared to the coarser Ti powder. This is corroborated by the
cumulative pore volume data in Figure 3d,e and the SE images in Figure 2a,b. Additionally, the
Kirkendall effect, which involves differential diffusion rates between Ti and Al, can contribute
to porosity through the formation of vacancies during sintering [19]. In fine powders, the
higher surface area to volume ratio exacerbates this effect, potentially resulting in more
pronounced porosity despite the theoretically higher densification rate. Consequently, the
325 mesh samples exhibited a higher density of fine pores with elevated porosity, rendering
them favorable for exhaust gas filtration applications.

5. Conclusions

The present study investigated the effect of varying powder sizes on the porosity, pore
characteristics, and intermetallic phase formation in porous TiAl alloys. Ti52Al48 alloys
were fabricated using both fine (325 mesh) and coarse (200 mesh) Ti powders, revealing a
skeleton-like IMC microstructure in both cases. At lower sintering temperatures, an Al-rich
Al3Ti phase was formed on the surface of Ti-rich skeletons while the core remained Ti-rich.
Upon sintering at 1200 ◦C, the skeleton cores transformed into the Ti3Al phase, while the
surface exhibited the TiAl phase. Notably, the intermetallic reaction remained consistent
across the alloys, with a lower reaction onset temperature and enthalpy observed for the
325 mesh sample. This resulted in the accelerated diffusion of Al into the Ti skeletons at
lower temperatures, leading to a high number and density of fine pores and increased
porosity in the 325 mesh specimen.
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mdpi.com/article/10.3390/cryst14060559/s1, Figure S1: Heat flow vs. time plots of Ti52Al48 alloys
prepared using Ti powders of varying mesh sizes; (a) 200 mesh and (b) 325 mesh, under compacted
and sintered (600 and 1200 ◦C) conditions.
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