Design, Manufacturing, Microstructure, and Surface Properties of Brazed Co-Based Composite Coatings Reinforced with Tungsten Carbide Particles
Abstract
:1. Introduction
2. Materials and Experimental Procedure
3. Results and Discussion
3.1. Analysis of Brazed Coating Microstructures
3.2. X-ray Diffraction Measurements
3.3. Hardness and Wear Measurements
3.4. Electrochemical Corrosion Test
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chang, W.; Xiao, G.; Zhang, H.; Chen, H.; Yi, M.; Zhang, J.; Chen, Z.; Xu, C. Microstructure and properties of graphene reinforced co-based composite coating by laser cladding. Surf. Coat. Technol. 2023, 453, 129139. [Google Scholar] [CrossRef]
- Li, D.; Zhang, Z.; Cui, X.; Feng, L.; Zhang, D.; Jin, G.; Liu, J.; Zheng, W. Effect of graphite/CeO2 on microstructure and tribological property of plasma cladded Co-based coatings. Mater. Chem. Phys. 2022, 280, 125756. [Google Scholar] [CrossRef]
- Zhou, J.; Kong, D. Friction–wear performances and oxidation behaviors of Ti3AlC2 reinforced Co–based alloy coatings by laser cladding. Surf. Coat. Technol. 2021, 408, 126816. [Google Scholar] [CrossRef]
- Pogrebnjak, A.D.; Ruzimov, S.M.; Alontseva, D.L.; Żukowski, P.; Karwat, C.; Kozak, C.; Kolasik, M. Structure and properties of coatings on Ni base deposited using a plasma jet before and after electron beam irradiation. Vacuum 2007, 81, 1243–1251. [Google Scholar] [CrossRef]
- Pogrebnyak, A.D.; Tyurin, Y.N. Modification of material properties and coating deposition using plasma jets. Physics-Uspekhi 2005, 48, 487–514. [Google Scholar] [CrossRef]
- Di, R.; Zhang, J.; Qian, Z.; Fang, Y.; Tian, H.; Song, H.; Lei, J. Effect of WC-12Co on the mechanical and wear performance of laser melting deposition nickel-based alloy. Opt. Laser Technol. 2022, 152, 108094. [Google Scholar] [CrossRef]
- Ardila, L.C.; Dueñas, R.; Orozco, G.; Olaya, J.J.; Ordoñez, A.F.; Moreno, C.M.; Pineda, Y. Influence of Si Addition on the Chemical and Tribological Performance of TiAlCrN Coating Deposited by Co-Sputtering. Crystals 2023, 13, 1666. [Google Scholar] [CrossRef]
- Nurminen, J.; Näkki, J.; Vuoristo, P. Microstructure and properties of hard and wear resistant MMC coatings deposited by laser cladding. Int. Conf. Sci. Hard Mater. 2009, 27, 472–478. [Google Scholar] [CrossRef]
- Verwimp, J.; Rombouts, M.; Geerinckx, E.; Motmans, F. Applications of laser cladded WC-based wear resistant coatings. Phys. Proc. A 2011, 12, 330–336. [Google Scholar] [CrossRef]
- Kong, G.; Zhang, D.; Brown, P.D.; McCartney, D.G.; Harris, S.J. Microstructural characterisation of high velocity oxyfuel thermally sprayed Stellite 6. Mater. Sci. Technol. 2003, 19, 1003–1011. [Google Scholar] [CrossRef]
- Singh Sidhu, H.; Singh Sidhu, B.; Prakash, S. Solid particle erosion of HVOF sprayed NiCr and Stellite-6 coatings. Surf. Coat. Technol. 2007, 202, 232–238. [Google Scholar] [CrossRef]
- Zhang, D.; Cui, X.; Jin, G.; Jiao, Y.; Li, D. Preparation, deposited behavior and hydrophobic property of modified graphene oxide reinforced Ni composite coatings by magnetic field assisted electro-brush plating. Surf. Coat. Technol. 2020, 403, 126363. [Google Scholar] [CrossRef]
- Graf, K.; Tetzlaff, U.; Biscaia de Souza, G.; Scheid, A. Effect of Dilution on the Microstructure and Properties of CoCrMoSi alloy Coatings Processed on High-Carbon Substrate. Mater. Res. 2019, 22, e20180502. [Google Scholar] [CrossRef]
- Wang, G.; Liua, X.-B.; Zhu, G.-X.; Zhu, Y.; Liu, Y.-L.; Zhang, L.; Wang, J.-L. Tribological study of Ti3SiC2/Cu5Si/TiC reinforced Co-based coatings on SUS304 steel by laser cladding. Surf. Coat. Technol. 2022, 432, 128064. [Google Scholar] [CrossRef]
- Yan, H.; Zhang, J.; Zhang, P.; Yu, Z.; Li, C.; Xu, P.; Lu, Y. Laser cladding of Co-based alloy/TiC/CaF2 self-lubricating composite coatings on copper for continuous casting mold. Surf. Coat. Technol. 2013, 232, 362–369. [Google Scholar] [CrossRef]
- Bartkowski, D.; Młynarczak, A.; Piasecki, A.; Dudziak, B.; Gościański, M.; Bartkowska, A. Microstructure, microhardness and corrosion resistance of Stellite-6 coatings reinforced with WC particles using laser cladding. Opt. Laser Technol. 2015, 68, 191–201. [Google Scholar] [CrossRef]
- Nerz, J.; Kushner, B.; Rotolico, A. Microstructural evaluation of tungsten carbide-cobalt coatings. J. Therm. Spray Technol. 1992, 1, 147–152. [Google Scholar] [CrossRef]
- Krappitz, H. 15—Coating Techniques Using Brazing; Advances in Brazing Science, Technology and Applications; Woodhead Publishing Series in Welding and Other Joining Technologies; Woodhead Publishing: Cambridge, UK, 2013; pp. 472–497. [Google Scholar]
- Rass, I. Functional Coatings Made by Brazing. In Thermal Spray 2022: Proceedings from the International Thermal Spray Conference; Paper No: itsc2022p0601; ASM International: Materials Park, OH, USA, 2022; pp. 601–606. [Google Scholar]
- Uțu, I.D.; Hulka, I.; Kazamer, N.; Constantin, A.; Mărginean, G. Hot-Corrosion and Particle Erosion Resistance of Co-Based Brazed Alloy Coatings. Crystals 2022, 12, 762. [Google Scholar] [CrossRef]
- Anghel, I.-M.; Uțu, I.D.; Pascu, A.; Hulka, I.; Woelk, D.H.; Mărginean, G. Microstructure and properties of Co based laser cladded composite coatings. Mater. Test. 2024, 66, 665–674. [Google Scholar] [CrossRef]
- Amdry MM509B-C Cobalt Braze Alloy Powder. Available online: https://www.metcojoiningcladding.com/en/materials-e-guide/amdry-mm509b-c/ (accessed on 20 May 2024).
- Pascal, D.-T. Development of High Temperature Vacuum Brazed WC-Co-NiP Functional Composite Coatings. Ph.D. Thesis, University Politehnica Timisoara, Timisoara, Romania, 2017. [Google Scholar]
Sample | Ecorr [mV] | icorr [µA/cm2] |
---|---|---|
Substrate | −157.5 | 0.148 |
Co+0% WC | −212.12 | 0.133 |
Co+10% WC | −205.22 | 0.140 |
Co+20% WC | −206.7 | 0.212 |
Co+30% WC | −207.05 | 0.232 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uțu, I.-D.; Anghel, I.-M.; Hulka, I.; Marginean, G. Design, Manufacturing, Microstructure, and Surface Properties of Brazed Co-Based Composite Coatings Reinforced with Tungsten Carbide Particles. Crystals 2024, 14, 576. https://doi.org/10.3390/cryst14060576
Uțu I-D, Anghel I-M, Hulka I, Marginean G. Design, Manufacturing, Microstructure, and Surface Properties of Brazed Co-Based Composite Coatings Reinforced with Tungsten Carbide Particles. Crystals. 2024; 14(6):576. https://doi.org/10.3390/cryst14060576
Chicago/Turabian StyleUțu, Ion-Dragoș, Iasmina-Mădălina Anghel (Petculescu), Iosif Hulka, and Gabriela Marginean. 2024. "Design, Manufacturing, Microstructure, and Surface Properties of Brazed Co-Based Composite Coatings Reinforced with Tungsten Carbide Particles" Crystals 14, no. 6: 576. https://doi.org/10.3390/cryst14060576
APA StyleUțu, I. -D., Anghel, I. -M., Hulka, I., & Marginean, G. (2024). Design, Manufacturing, Microstructure, and Surface Properties of Brazed Co-Based Composite Coatings Reinforced with Tungsten Carbide Particles. Crystals, 14(6), 576. https://doi.org/10.3390/cryst14060576