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Abstract: We examine the impact of temperature (T) on the Seebeck coefficient S, i.e., the T depen-
dence of S for a single-component molecular conductor [Pd(dddt)2] (dddt = 5,6-dihydro-1,4-dithiin-
2,3-dithiolate) with a half-filled band, where the coefficient is obtained from a ratio of the thermal
conductivity to the electrical conductivity. The present paper demonstrates theoretically the novel
result of large anisotropy in the Seebeck coefficient components of three-dimensional Dirac electrons
in a molecular conductor. The conductor exhibits a nodal line with the energy variation around
the chemical potential and provides the density of states (DOS) with a minimum. Using a three-
dimensional tight-binding (TB) model in the presence of both impurity and electron–phonon (e–p)
scatterings, we study the Seebeck coefficient Sy for the molecular stacking and the most conducting
direction. The impact of T on Sy exhibits a sign change, where Sy > 0 with a maximum at high
temperatures and Sy < 0 with a minimum at low temperatures. The T dependence of Sy suggests
that the contribution from the conduction (valence) band is dominant at low (high) temperatures.
Further, it is shown that the the Seebeck coefficient components for perpendicular directions Sx and
Sz are much smaller than Sy and present no sign change, in contrast to Sy. These results are analyzed
in terms of the spectral conductivity as a function of the energy ϵ close to the chemical potential µ.

Keywords: Seebeck coefficient; nodal line semimetal; single-component molecular conductor; spectral
conductivity; density of states; tight-binding model

1. Introduction

Massless Dirac fermions exhibit characteristic properties of electrons, which originate
from the energy band with a linear dispersion [1]. The Dirac electron in a bulk system has
been found in the following two kinds of molecular conductors [2,3].

One is the organic conductor α-(BEDT-TTF)2I3 under pressures [(BEDT-TTF=bis
(ethylenedithio)tetrathiafulvalene], in which the Dirac cone is discovered [4,5] using the
tight-binding (TB) model with the transfer energy estimated by the extended Hückel
method [6–8]. The conductor exhibits a zero-gap state (ZGS) with the density of states
(DOS) vanishing linearly at the Fermi energy. The Dirac cone was confirmed by the first-
principles DFT calculation [9]. Further, a two-band model [10,11] was proposed to examine
the Dirac electron in an organic conductor. Several properties of the Dirac cone appear in
the temperature (T) dependence of physical quantities. The reversal of the sign of the Hall
coefficient, which occurs for the chemical potential being equal to the energy of the Dirac
point, was proposed theoretically [12] and was also observed experimentally in the Hall
conductivity [13]. The conductivity of Dirac electrons has been examined using a two-band
model with the conduction and valence bands. The static conductivity at absolute zero
temperature remains finite with a universal value, i.e., independent of the magnitude of the
impurity scattering due to a quantum effect [14]. At finite temperatures, the conductivity
depends on the magnitude of the impurity scattering, Γ0, which is proportional to the
inverse of the life-time by the disorder. With increasing temperature, the conductivity
increases for Γ0 ≪ T [15]. Although a monotonic increase in the conductivity is expected,
the measured conductivity (or resistivity) on the above organic conductor shows an almost
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constant behavior at high temperatures [16–20]. Noting the electron–phonon (e–p) inter-
action enhances the resistivity of the conventional metal at high temperatures; a nearly
constant conductivity at high temperatures is explained by adding an acoustic phonon
scattering to a two-band model with the Dirac cone [21].

Another Dirac electron system was found in a single-component molecular con-
ductor, [Pd(dddt)2], (dddt = 5,6-dihydro-1,4-dithiin-2,3-dithiolate) [3], which exhibits a
three-dimensional Dirac electron system under a high pressure with almost temperature-
independent resistivity [22]. First-principles calculations [23] show a three-dimensional
Dirac electron system, consisting of HOMO (Highest Occupied Molecular Orbital) and
LUMO (Lowest Unoccupied Molecular Orbital) bands, and a TB model exhibits a loop of
Dirac points [24]. This system is one of a type of system called a nodal line semimetal, i.e., a
loop of Dirac points [25–27]. There are several studies on the effective Hamiltonian, where
a general two-band model is introduced [28] and the explicit calculation is performed for
the nodal line semimetal [29]. The conductivity was also examined [30] to comprehend the
almost temperature-independent conductivity. Recently, a TB model was improved using
the crystal structure, which was obtained under high pressure [31]. This band calculation
shows the DOS, which depends linearly on a wide region of the energy being compatible
with the temperature corresponding to almost constant conductivity. Thus, we recalcu-
lated the almost constant resistivity in [Pd(dddt)2] using the newly found TB model and
by taking account of both impurity and acoustic phonon scatterings [32]. It was shown
that an interplay of two kinds of scattering explains the T dependence of the resistivity
obtained by the experiment. In addition to two-dimensional systems with Dirac points,
three-dimensional systems with nodal line semimetal are of interest due to anisotropic
conductivity and a common feature of the almost constant conductivity.

The Seebeck coefficient, which is proportional to a ratio of the thermal conductivity to
the electrical conductivity, is a quantity displaying a competition between the conduction
and valence bands in Dirac electrons. It does not depend on details of the e–p interaction
and impurity scattering. The general formula has been established in terms of linear
response theory [33–35]. For the Seebeck coefficient, Sν (ν = x and y) of the organic
conductor α-(BEDT-TTF)2I3, there are experiments on the T dependence under hydrostatic
pressures [36,37], where the sign of Sx (perpendicular to the molecular stacking axis) is
positive except for low temperatures depending on samples. There are theoretical studies
for Sy at ambient pressure with a correlation [38] and for Sx under a uniaxial pressure [39].
Using a TB model [40], which was derived from the DFT calculation with the experimental
lattice structure, it has been shown that the Seebeck coefficient under hydrostatic pressures
is positive, i.e., Sx, Sy > 0, at finite temperatures. However, the Seebeck coefficient of the
nodal line semimetal has not yet been clarified.

In the present paper, we examine the Seebeck effect of [Pd(dddt)2] in addition to the
conductivity [32], where the T dependence of µ takes a crucial role. In Section 2, the model
and formulation for the Seebeck coefficient of [Pd(dddt)2] with 1/2-filled band are given.
In Section 3, the electronic states are examined by calculating the energy band, the nodal
line of Dirac points, DOS, and the T dependence of the chemical potential. In Section 4,
we present the Seebeck coefficient and the electric conductivity for both directions being
parallel and perpendicular to the molecular stacking (y) axis. They are analyzed in terms of
the spectral conductivity [39]. Section 5 is devoted to summary and discussion.

2. Formulation
2.1. Model

We consider a two-dimensional Dirac electron system given by

H = HTB + Hp + He−p + Himp . (1)

Here, HTB denotes a TB model of the single-component molecular conductor consisting
of four molecules per unit cell, which is shown below. The second term denotes the
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harmonic phonon given by Hp = ∑q ωqb†
qbq with ωq = vs|q| and h̄ =1. The third term is

the electron–phonon (e–p) interaction with a coupling constant gq [41],

He−p = ∑
k,γ

∑
q

gqcγ(k + q)†cγ(k)(bq + b†
−q) , (2)

with cγ(k) = ∑α dαγaα(k), which is obtained by the diagonalization of HTB, as shown later.
The e–p scattering is considered within the same band (i.e., intraband) due to the energy
conservation with v ≫ vs, where v ≃ 0.05 [10] denotes the averaged velocity of the Dirac
cone. The last term of Equation (1), Himp, denotes a normal impurity scattering.

Figure 1 displays the crystal structure of [Pd(dddt)2] [3,24], which consists of four
molecules (1, 2, 3, and 4) with HOMO and LUMO per unit cell providing eight molecular
orbitals. These molecules are located on two kinds of layers with the x–y plane, where
layer 1 consists of molecules 1 and 3, and layer 2 consists of molecules 2 and 4. The z axis is
perpendicular to the x–y plane of layers 1 and 2, forming a three-dimensional system.
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Figure 1. Crystal structure of [Pd(dddt)2] shown in the x–z plane [24], where the molecule is stacked
along the y direction perpendicular to the plane. Layer 1 (molecules 1 and 3) and layer 2 (molecules
2 and 4) are parallel to the x–y plane and alternated along the z direction. The notations x, y, and z
correspond to a, b, and c of the conventional crystallography.

A revised TB model corresponding to Figure 1 has been recently obtained using the
crystal structure observed under pressure [31]. There are several kinds of transfer energies
between two molecular orbitals, which are listed in Table 1. The interlayer energies in
the z direction are given by a (1 and 2 molecules, and 3 and 4 molecules), and c (1 and
4 molecules, and 2 and 3 molecules). The intralayer energies in the x–y plane are given
by p (1 and 3 molecules), q (2 and 4 molecules), and b (along the molecular stacking y
axis). Further, these energies are classified by three kinds of transfer energies given by
HOMO-HOMO (H), LUMO-LUMO (L), and HOMO-LUMO (HL).

Table 1. Transfer energies for P = 5.9 GPa [31], which are multiplied by 10−3 eV. The energy difference
between the HOMO and LUMO is taken as ∆E = 0.696 eV.

H − H L − L H − L

b1 209.3 −1.9 −51.2 (stacking)
p1(p) 28.1 −12.4 19.9 Layer 1

p2 — — 17.1

b2 49.9 −80.4 −67.2 (stacking)
q1(q) 10.8 8.1 9.3 Layer 2

q2 — — 9.2

a1 −28.2 14.6 −20.1
a2 2.2 1.3 −1.7 Interlayer
c1 15.4 12.7 14.1
c2 −3.9 15.8 −11.8
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The TB model Hamiltonian in Equation (1) is expressed as

HTB =
N

∑
i,j=1

∑
α,β

ti,j;α,β |i, α⟩ ⟨j, β| , (3)

where ti,j;α,β are transfer energies between nearest-neighbor sites and < i, α| is a state vector.
The spin degree of freedom is discarded. In addition, α, β = H1, H2, · · · , L3, and L4.

Using a Fourier transform |α(k)⟩ = N−1/2 ∑j exp[−ikrj] |j, α⟩ with a wave vector
k = (kx, ky, kz), Equation (3) is rewritten as

HTB = ∑
k
|Φ(k)⟩ Ĥ(k) ⟨Φ(k)| , (4)

where ⟨Φ(k)| = (⟨H1| , ⟨H2| , ⟨H3| , ⟨H4|, ⟨L1| , ⟨L2| , ⟨L3| , ⟨L4|). We take the lattice con-
stant as unity and then 0 < |kx|, |ky|, |kz| < π in the first Brillouin zone. The expres-
sion Ĥ(k) is an 8 × 8 matrix Hamiltonian, where hα,β =

(
Ĥ(k)

)
α,β; hα,β(k) denotes a

Fourier transform of ti,j;α,β with a complex conjugate relation hα,β(k) = hβ,α(k); k =
kxa∗ + kyb∗ + kzc∗ ≡ (kx, ky, kz), where the ky corresponds to the molecular staking axis,
and the lattice constant is taken as unity. Matrix elements hα,β(k) are given in the previous
work [32]. These energies in the unit of eV are listed in Table 1, where the gap between the
energy of HOMO and that of LUMO is taken as ∆E = 0.696 eV to reproduce the energy
band of the first principle calculation [24].

The energy band Ej(k) and the wave function |Ψj(k)⟩, (j = 1, 2, · · · , 8) are calculated
from

Ĥ(k) |Ψj(k)⟩ = Ej(k) |Ψj(k)⟩ , (5)

where E1 > E2 > · · · > E8 and

|Ψj(k)⟩ = ∑
α

dαj(k) |α⟩ , (6)

with α = H1, H2, H3, H4, L1, L2, L3, and L4.

2.2. Dirac Points and DOS

Since the electron close to the chemical potential is relevant for the electron-hole
excitation, we consider only E4(k) and E5(k), i.e., the valence and conduction bands for
the present calculation. Thus, E4(k) and E5(k) are replaced by E+(k) and E−(k) for the
calculation of the transport, while E±(k) represents not only the Dirac cone but also full
dispersion of E4(k) and E5(k) in the first Brillouin zone. The present energy bands E±(k)
provide a nodal line, i.e., a loop of the Dirac point kD, which is obtained from

E+(kD) = E−(kD) . (7)

The chemical potential µ = µ(T) is determined self-consistently from

1
N ∑

k

8

∑
j=1

f (Ej(k)− µ(T))

=
∫ ∞

−∞
dω D(ω) f (ω − µ) = 4 , (8)

where f (ω) = 1/(exp[ω/T] + 1), with T being temperature in units of eV, and kB = 1.
Equation (8) is the condition of the half-filled band due to the HOMO and LUMO bands.
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The expression D(ω) denotes a density of states (DOS) per spin and per unit cell, which is
given by

D(ω) =
1
N ∑

k
∑

γ=±
δ(ω − Eγ(k)) , (9)

where
∫

dωD(ω) = 8.

2.3. Electric Transport

The conductivity is given by [42]

σν(T) =
∫ ∞

−∞
dϵ

(
−∂ f (ϵ − µ)

∂ϵ

)
× σν(ϵ, T) . (10)

The quantity σν(ϵ, T) denotes the spectral conductivity [39] for ν = x, y, and z, which
is calculated as (γ, γ′ = 4 and 5)

σν(ϵ, T) = ∑
γ,γ′

σ
γγ′
ν (ϵ, T) , (11)

σ
γγ′
ν (ϵ, T) =

e2

πh̄N ∑
k

vν
γγ′(k)∗vν

γ′γ(k)

×
Γγ

(ϵ − Eγ(k))2 + Γ2
γ
×

Γγ′

(ϵ − Eγ′(k))2 + Γ2
γ′

,

(12)

vν
γγ′(k) = ∑

αβ

dαγ(k)∗
∂hαβ

∂kν
dβγ′(k) . (13)

Here, h = 2πh̄ and e denote Planck’s constant and electric charge, respectively. The spectral
conductivity depends on T due to the e–p interaction; Γγ denotes the damping of the
electron of the γ band given by

Γγ = Γ + Γγ
ph , (14)

where the first term comes from the impurity scattering and the second term corresponding
to the phonon scattering is given by [21,43]

Γγ
ph = C0R × T|ξγ,k| , (15)

R =
λ

λ0
, (16)

λ = |gq|2/ωq, ξγ,k = Eγ(k) − µ, C0 = 6.25λ0/(2πv2), v = 0.05 and λ0/2πv = 0.1; λ0
corresponds to λ for an organic conductor [44,45], and λ becomes independent of |q| for
small |q|. For parameters Γ and R, we take mainly Γ = 0.0003 and R = 2 in the present
numerical calculation.

In linear response theory [33–35], the electric current density j = (jx, jy, jz) is obtained
by the electric field E = (Ex, Ey, Ez), and the temperature gradient ∇T, i.e., the ν (= x, y,
and z) component of the current density is expressed as

jν = Lν
11Eν − Lν

12∇νT/T , (17)
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where Lν
11 is the electrical conductivity σν[42] as shown in Equation (10), and Lν

12 is the
thermal conductivity. From (17), the Seebeck coefficient Sν(T) is obtained by

Sν(T) =
Lν

12
TLν

11
= ∑

γ,γ′
Sγγ′

ν (T) , (18)

where Lν
11 and Lν

12 are calculated as

Lν
11 = σν(T) , (19)

Lν
12 =

−1
e

∫ ∞

−∞
dϵ

(
−∂ f (ϵ − µ)

∂ϵ

)
(ϵ − µ)σν(ϵ, T) , (20)

and Sγγ′
ν (T) is given by

Sγγ′
ν =

−1
e

∫ ∞

−∞
dϵ

(
−∂ f (ϵ − µ)

∂ϵ

)
×(ϵ − µ)σγγ′

ν (ϵ, T)× 1
TLν

11
. (21)

Noting that −∂ f (ϵ − µ)/∂ϵ is the even function of ϵ − µ, Equations (19) and (21) are
calculated as

σν(ϵ, T) = σν(µ, T) + σ
′
ν(µ, T)(ϵ − µ)

+
1
2

σ
′′
ν (µ, T)(ϵ − µ)2 + · · · , (22)

eLν
12(T) = −π2

3
σ
′
ν(µ, T)T2 − 7π4

90
σ
′′′
ν (µ, T)T4

+ · · · . (23)

At low temperatures, the sign change of Sν(T) with decreasing T comes from the first
term of Equation (23).

3. Electronic States
3.1. Energy Band

Figure 2a shows energy bands Ej (j = 4 and 5) for the fixed kz = 0, where E4 (upper
band) and E5 (lower band) correspond to the conduction and valence bands, respectively.
It is found that E4(kD) = E5(kD) = ϵD and E4(k) > ϵD > E5(k). A one-dimensional band
is seen along the ky direction. Two bands correspond to LUMO and HOMO, which are
convex downward and upward, respectively. When HOMO–LUMO coupling is absent,
there is an intersection due to overlapping. When HOMO–LUMO coupling is present,
the intersection disappears due to a gap except for a Dirac point kD. LUMO (HOMO)
corresponds to E4 (E5), when LUMO band is larger than HOMO band. The relation is
reversed when the LUMO band is smaller than the HOMO band. Figure 2b shows energy
bands Ej (j = 4 and 5) on the kz–kx plane for the fixed ky = 0. The Dirac point exists between
E4 and E5, which correspond to HOMO or LUMO in similar way to those of Figure 2a.
Note that ϵD of Figure 2a is smaller than that of Figure 2b.
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Figure 2. (a) Energy band at kz = 0, where the Dirac point is given by kD = ±(0, 0.075, 0)π; (b) Energy
band at ky = 0, where the Dirac point is given by kD = ±(0.344, 0,−0.275)π.

3.2. Nodal Line and DOS

Figure 3a shows Dirac points in 3D momentum space forming a nodal line, where
A (B) on the line corresponds to a minimum (maximum) of the energy and exists on a
plane of kz = 0 (ky = 0). The width of the energy variation along the nodal line is given by
∼ 0.002. The chemical potential is located between A and B. The energy is symmetric with
respect to the Γ point, (kx, ky, kz) = (0, 0, 0) and kx = 0. Figure 3b shows DOS as function
of ω − µ0, where µ0 denotes the chemical potential at T = 0. It is found that D(µ0) ̸= 0
due to the nodal line, where the energy varies around µ0. There is an asymmetry of D(ω)
with respect to ω = µ0, which shows D(µ0 − ω̃) < D(µ0 + ω̃) for ω̃ = ω − µ0 > 0.002,
and D(µ0 − ω̃) > D(µ0 + ω̃) for ω̃ < 0.002 [32]. The dashed line denotes D̃(µ0 + ω̃),
which is defined by D(µ0 − ω̃). Noting that D(ω) ∝ |ω − µ0| without tilting of the Dirac
cone, which is proportional to the inverse of the averaged velocity of the Dirac cone [42],
the velocity of the valence band (ω̃ < 0) is larger than that of the conduction band (ω̃ > 0)
except for the momentum around the the nodal line. The inset denotes the T dependence of
µ − µ0, which increases slightly for µ close to the nodal line and decreases with increasing
T for µ being away from the nodal line.

A

B

−0.01 0 0.01
0

10

20

0 0.01 0.02
−0.01

−0.005

0

T 

µ−µ0

ω−µ0

DOS

(/eV)

(eV)

(b)

Figure 3. Nodal line (a) and DOS (b) [32]. (a) Closed circle denotes Dirac point in 3D momentum
space (kx, ky, kz), which gives a nodal line. The points A and B on the line correspond to a Dirac point
in Figure 2a and Figure 2b, respectively. They provide a minimum and a maximum of the energy on
the nodal line. The chemical potential exists on the line between A and B. (b) DOS [D(ω)] is shown
as a function of ω − µ0, where µ0 denotes the chemical potential at T = 0. The dashed line is drawn
to compare with the blue line, where the dashed line and the red line are symmetric around ω = µ0.
Inset denotes the T dependence of µ − µ0 with µ0 = 0.5053.
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4. Seebeck Coefficients

Since the present salt of [Pd(dddt)2] shows the largest conductivity along the y-axis,
we first examine the Seebeck coefficient Sy. Next, we examine Sν (ν = x and z) with
the direction perpendicular to the y-direction. Further, the mutual relation between the
conductivity and the Seebeck coefficient is clarified, where both quantities are determined
by the spectral conductivity.

4.1. Coefficient for the y-Axis Direction

Figure 4 shows the conductivity σy and the band components σ
γγ′
y as a function of

T for some choices of Γ0 = 0.0003 and 0.0005 with R = 2; E5 ( E4) corresponds to the
valence band (conduction band), which is given by ϵ < µ0 (ϵ > µ0). However, such a
correspondence is invalid in a small region of |ϵ − µ0| < 0.0002 due to the variation of the
energy on nodal line. It is found that σ44

y > σ55
y at low temperatures (T < 0.002), whereas

σ44
y < σ55

y at high temperatures (T > 0.002). Thus, the contribution from the valence band
is larger (smaller) than that from the conduction band at high (low) temperatures. Such a
relation can be understood from DOS in Figure 3b, where the average velocity of the Dirac
cone of the conduction band is larger (smaller) than that of the valence band for the electron
with 0 < ϵ − µ0 < 0.002 ( ϵ − µ0 > 0.002). The band component normalized by the total σy
shows a small dependence on Γ0 (impurity scattering), while the total one decreases clearly
by the increase in Γ0.

0 0.01 0.02
0

0.5

1

0

1

2

3

T 

R=2 Γ0=0.0003 

σy
γγ’

σy

/σy

Γ0=0.0005 (dot)

σy
44

/σy

σy
55

/σy

σy
54

/σy

(eV)

Figure 4. T dependence of the conductivity σy (right axis) and the band components σ
γγ′

y (left axis)
for Γ0 = 0.0003 (solid line) and 0.0005 (dotted line) with R = 2, where σy = σ44

y + σ55
y +σ54

y + σ45
y .

Quantities σ44
y /σy and σ55

y /σy (σ45
y /σy and σ54

y /σy) correspond to intraband (interband) contribution.

In Figure 5, the Seebeck coefficient Sy (Γ0 = 0.0003 and 0.0005) is examined with
some choices of R = 1, 2, and 4. It turns out that there is a sign change of Sy around
T ≃ 0.006, where Sy(> 0) at high temperatures takes a maximum and Sy(< 0) at low
temperatures takes a minimum. At high temperatures, Sy decreases with the increase in R
due to the effect of the e–p interaction, which is enhanced by the increase in T, as seen from
Equation (15). Note that Sy for T ≃ 0.008 is almost independent of R. At low temperatures,
Sy reduces to zero in the limit of T → 0, as seen from Equations (22) and (23) [39]. The
Seebeck coefficient Sy with Γ0 = 0.0003 is compared with Γ0 = 0.0005. The increase in
Γ0 reduces Sy(> 0), implying that the reduction of Ly

12 is larger than that of Ly
11. The

temperature corresponding to the sign change (Sy = 0) decreases for increasing R, but it
remains almost the same for the increase in Γ0.
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Figure 6 shows that the band components of the Seebeck coefficients Sγγ′
y and Sy for

Γ0 = 0.0003 with R = 2. S44
y (< 0) comes from the conduction band with ϵ > µ0, which is

obtained from the LUMO band outside the nodal line and from the HOMO band inside
the nodal line; S55

y (> 0) comes from the valence band with ϵ < µ0, which is given by
the HOMO band outside the nodal line and by the LUMO band inside the nodal line.
The off-diagonal component S45

y (= S54
y ) is negligibly small compared with the diagonal

components S44
y and S55

y . The total contribution Sy(= S44
y + S55

y ) is shown by the right hand
axis, where Sy < 0 at low temperatures, Sy > 0 at high temperatures, and Sy = 0, i.e., the
sign change occurs at T ∼ 0.006. The dotted line denotes −S44

y and is compared with S55
y ,

where their intersection gives Sy = 0.

0 0.01 0.02

0

50

T 

Sy

(µV/K)

R=1

4

Γ0=0.0003 

0.0005 (dot)

(eV)

2

Figure 5. T dependence of the Seebeck coefficient Sy with R = 1 (dot-dashed line), 2 (solid line), and
4 (dashed line) for Γ0 = 0.0003 and 0.0005 (dot).
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Γ0=0.0003 
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γγ’
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44

Figure 6. T dependence of the band components of the Seebeck coefficients Sγγ′

y and Sy for Γ0 = 0.0003
with R = 2; S44

y is negative due to the conduction band with ϵ > µ0, whereas S55
y is positive due

to the valence band with ϵ < µ0. The interband component S45
y is negligibly small compared with

the intraband components S44
y and S55

y . The total contribution Sy(= S44
y + S55

y ) is shown by the right
hand axis, where Sy < 0 at low temperatures and Sy > 0 at high temperatures leading to Sy = 0 at
T ∼ 0.006. The −S44

y (dotted line) is shown to compare with S55
y .

4.2. Coefficients for the x and z-Axes Directions

Figure 7 shows Sν(T) and σν(T) for ν = x and z. The conductivity σν with ν = x and
z is much smaller than σy due to the large anisotropy of the velocity vx, vz << vy, since
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the transfer energy for the y axis is largest due to the molecular stacking direction. Both
Sx(> 0) and Sz(> 0) show no sign change. The fact that σz(T) > σx(T) and Sx > Sz at
high temperatures suggests that the effect of the conductivity is larger than that of the
thermal conductivity. At high temperatures, Sx(T) is much larger than Sz, and Sz decreases
rapidly. Note that Sx takes a minimum at low T and Sx ≃ 0 at T ≃ 0.002. Such a minimum
suggests that Sx is close to the sign change, as discussed later.

0 0.01 0.02
−40

−20

0

20

40

0

0.1

0.2

0.3

T 

σν

σx

Sx

Sν
(µV/K)

R=2

Γ0=0.0003

Sz

σz

(eV)

Figure 7. Seebeck coefficient Sν(T) and conductivity σν(T) for ν = x and z with fixed Γ0 = 0.0003
and R = 2.

Figure 8 shows band components of the normalized conductivity σ
γγ′
ν /σν with ν = x

(solid line) and z (dashed line) for Γ0 = 0.0003 and R = 2. The total conductivity is given by
σν ( = σ44

ν + σ55
ν +σ54

ν + σ45
ν ). Quantities σ44

ν /σν and σ55
ν /σν (σ45

ν /σν and σ54
ν /σν) correspond

to intraband (interband) contribution, where the interband contribution is negligibly small.
The difference between σ55

ν (the valence band) and σ44
ν (conduction band) increases by the

increase in T. The difference between σ
γγ′
x /σx and σ

γγ′
z /σz is small compared with that

between σx and σz. Thus, the main contribution for the conductivity is given by the valence
band at high temperatures.

0 0.01 0.02
0

0.5

1

T 

R=2ν=x (solid)

σν
γγ

/σν

ν=z (dash)

σν
55

/σν

σν
44

/σν

σν
54

/σν

(eV)

Figure 8. Components of the normalized conductivity σ
γγ′

ν /σν with ν = x (solid line) and z (dashed
line) for Γ0 = 0.0003 and R = 2, where σν = σ44

ν + σ55
ν +σ54

ν + σ45
ν . Quantities σ44

ν /σν and σ55
ν /σν

(σ45
ν /σν and σ54

ν /σν) correspond to intraband (interband) contribution.

Figure 9 shows band components of the Seebeck coefficient Sγγ′
ν (T) for ν = x and

z, which are mainly determined by the intraband contributions, i.e., S55
ν and S44

ν . The
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contribution from the valence band S55
ν has a positive sign and that of the conduction band

S44
ν has a negative sign. The total Seebeck coefficient has a positive sign due to S55

ν > |S44
ν |.

The difference between S44
x and S44

z is negligibly small, while S55
x is larger than S55

z except
for low temperatures. The minimum of Sx at T ≃ 0.002 in Figure 7 is compatible with the
fact that S55

x ≃ −S44
x at low temperatures in Figure 9 (the solid line is compared with the

dotted line).

0 0.01 0.02
−100

0

100

Sz
44

− Sx
44

Sx
55

Sx
44

Sx
45

Sz
55

− Sz
44

Sν

γγ’

Sz
45

T (eV)

R=2

Figure 9. Components of Seebeck coefficient Sγγ′

ν (T) for ν = x and z as a function of T.

4.3. Spectral Conductivity

The Seebeck coefficient is obtained from the spectral conductivity, which is expanded
in terms of ϵ − µ. From Equations (22) and (23), the Seebeck coefficient is written as

Sν(T) = −π2T
3e

× σ′
ν(µ, T) + (7π2/30)σ′′′

ν (µ, T)T2 + · · ·
σν(µ, T) + (π2/6)σ′′

ν (µ, T)T2 + · · · .

(24)

In the limit of low T, the sign of Sy(T) is determined by that of −σy
′(µ, T) due to

Sy(T) ≃ −(π2/3e)Tσy
′(µ, T)/σy(µ, T). Since the sign change of Sν is determined by

zero of the numerator, the temperature for the sign change deviates slightly from that of
σ′(µ, T) = 0. In Figure 10a,b, spectral conductivities σν(ϵ, T) are shown as a function of
ϵ − µ0.

Figure 10a presents σy(ϵ, T), which takes a minimum at ϵ = ϵmin. The variation of
σy(ϵ, T) at low temperatures is small for |ϵ − µ0| < 0.0002, which corresponds to the energy
region of the nodal line. A linear increase in σy(ϵ, T) for |ϵ− µ0| > 0.0002 can be understood
from the increase in DOS (Figure 3b). When T increases, ϵmin(< 0) increases to zero, and
σy(ϵ, T) at ϵ = ϵmin increases slowly. However, for ϵ being away from ϵmin, the opposite
behavior of the T dependence of σy(ϵ, T) is found, i.e., σy(ϵ, T) decreases with increasing T.
These two behaviors can be understood from Equation (12). The T dependence of σy(ϵ, T)
is determined by that of Γγ, which increases by T as shown in Equations (14) and (15).
From Equation (12), the numerator gives the increase in σy(ϵ, T) at ϵ = ϵmin, whereas the
denominator gives the decrease in σy(ϵ, T) at ϵ being far away from ϵmin. Such a mechanism
also explains the T dependence of the conductivity σy in Figure 4, which increases at low T
but decreases at high T. The vertical lines denote the corresponding µ(T), where µ(0) is
shown by the solid line; µ(T) increases for 0 < T < 0.001 and decreases for 0.001 < T, as
shown in the inset of Figure 3b. Since σy

′(µ, T) > 0 for 0 < T < 0.002 and σy
′(µ, T) < 0 at

T = 0.004, T corresponding to σy
′(µ, T) = 0 is lower than that of the sign change of Sy = 0

(Figure 5), i.e., T ≃ 0.006. Such a discrepancy suggests that the second term of Equation (23)
becomes relevant with increasing T. Figure 10b presents the ϵ − µ0 dependence of σν(ϵ, T)
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for ν = x and z, which takes a minimum at ϵ = ϵmin. Since ϵmin > µ(T) is found at
any T, σν

′(µ, T) < 0 at finite temperatures suggests Sν(T) > 0, i.e., no sign change of
the Seebeck coefficient. At T ≃ 0.002, the unequality of |σx

′(µ, T)| < |σz
′(µ, T)| suggests

Sx(T) < Sz(T), while the effect of the higher order of Equation (23) may give rise to a
minimum of Sx(T) in Figure 7.
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0
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ε−µ0

σy(ε,T)

T=0.001 (1)

0.002 (2)

R=2

ε=µ(0.001)

0.004 (3)

0.008 (4)

µ(0.004)

µ(0.002)

(1)

(4)

(a)

−0.001 0 0.001
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0.3

ε−µ0

T=0.001 (1)
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µ(0.002)
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σν(ε,T)

ε=µ(0.001)

σz(ε)

0.004 (3)

0.008 (4)

µ(0.004)

(1)

(4)

(1)

(4)

(b)

R=2

Figure 10. Spectral conductivities (a) σy(ϵ, T) and (b) σν(ϵ, T) as a function of ϵ − µ0 with Γ0 = 0.0003
and R = 2 for T = 0.001(1), 0.002 (2), 0.004, and 0.008 (4). The vertical lines denote µ − µ0 for the
corresponding T; T = 0 and 0.002.

5. Summary and Discussion

In summary, we calculated the T dependence on the Seebeck coefficient Sν(T) (ν = y, x,
and z) of the molecular conductor [Pd(dddt)2] under a high pressure and examined in terms
of the spectral conductivity σν(µ, T). The conductor exhibits the largest conductivity along
the y direction corresponding to the molecular stacking, where the z axis is perpendicular
to a two-dimensional y–x plane.

Noticeable behavior is found in the T dependence of Sy(T). With decreasing T, Sy(T)
changes the sign from positive to negative, as seen in Figure 5. This implies the crossover of the
dominant contribution from the hole of the valence band (E5) to the electron of the conduction
band (E4) (Figure 6). The Seebeck coefficient Sy in Figure 5 is determined by the k dependence
of the velocity vy

γγ′ . The sign change is also understood from the energy dependence of DOS
being proportional to the inverse of the averaged velocity (Figure 3b), where the average
velocity of the conduction (valence) band is larger than that of the valence (conduction) band
close to (away from) ω = µ0. This is quantitatively understood from the crossover of the
band components of the conductivity (Figure 4), where σ44

y > σ55
y at lower temperatures and

σ55
y > σ44

y at higher temperatures. The result of Sy(T) < 0 at low temperature is consistent
with the spectral conductivity at low temperature (Figure 10a), i.e., σy

′(µ, T) > 0 at T = 0.001.
Note that such a sign change has been also found for α-(BEDT-TTF)2I3 under a uniaxial
pressure [39], which is understood from the band components of the conductivity and the
spectral conductivity. However, the relevance of the Seebeck coefficient to the asymmetry of
the Dirac cone is unclear in the case of the uniaxial pressure.

Finally, we note the T dependence of Sν with ν = x and z. There is a large anisotropy of
the conductivity, where σx and σz are much smaller than σy, suggesting that the velocity for
x and z are much smaller than that for y. In this case, it is complicated to discuss the Seebeck
coefficient in terms of the ω dependence of DOS. In fact, there is no change of the sign at
low temperatures, i.e., Sx > 0 and Sz > 0 (Figure 7), implying that the contribution from
the valence band is always larger than that from the conduction band (Figures 8 and 9).
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No sign change at low temperature is also understood from the spectral function, where
σy

′(µ, T) < 0 at low temperatures (Figure 10b). This result shares a common feature with
the Seebeck coefficient of the α-(BEDT-TTF)2I3 under a hydrostatic pressure, where the
hole-like behavior at finite temperatures with the zero doping is obtained [40].

Here, we note a possible experiment on the Seebeck coefficent. The nodal line
semimetal in the single component molecular conductor [Pd(dddt)2] was discovered under
pressures of P ≃ 12 GPa [31], which are much higher than P ≃ 2 GPa corresponding to the
experiment on the Seebeck coefficient in organic conductors [36,37]. Since the ambient or
low pressures are needed for the measurement of the thermal conductivity, it is a future
problem to find such a new molecular conductor that displays the nodal line semimetal
with the chemical potentials located between the HOMO and LUMO bands in addition to
the small T dependence of resistivity [3].
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