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Abstract: In the current work, a facile ion-solution spraying strategy was employed for one-step
fabrication of CsPbBr3 perovskite thin films under atmosphere. The dependences of sample properties
on annealing parameters (toleration temperature and duration time) were investigated in detail. As
the results suggested, the sample prepared at 200 ◦C for 15 min featured better properties than others.
The sample displayed a cubic phase with good crystallinity, a dense and compact morphology, a
bandgap energy of 2.289 eV, and an average decay lifetime of 55.536 ns. Furthermore, the sample
presented a Br-rich state, which was favorable for the carrier behavior and structure stability.

Keywords: spraying; annealing; thin film; CsPbBr3 perovskite

1. Introduction

Nowadays, lead halide perovskite is considered a promising candidate for the ap-
plications of solar cells [1], lighting [2], lasers [3], display techniques [4], in sensors [5],
and the biomedicine area [6], because of its excellent features of a high absorption coef-
ficient [7], tunable bandgap [8], and good carrier mobility [9]. Tobias et al. investigated
the optical properties of CsPbBr3 perovskite organic multiple quantum wells and con-
firmed their potential as high-efficiency LED and laser sources [10]. Park et al. controlled
the crystallization and surface morphology of α-form formamidine lead iodate (FAPbI3)
perovskite films by adding volatile alkyl ammonium chloride, achieving control over
the growth of perovskite layer crystals and improving the efficiency of perovskite solar
cells [11]. In 2024, Li et al. [12] used acid etching-driven nano surface reconstruction to
reconstruct perovskite quantum dots (CsPbI3 QDs) on the nano surface, resulting in highly
efficient and stable red LED displays. Currently, the hybrid organic–inorganic perovskites
(CH3NHPbX3, CH(NH2)2PbX3, X=Cl, Br, I) are in prevalence, and the recorded power
conversion efficiency (PCE) of photovoltaic devices is up to 26% [13]. However, the poor
heating and moisture stability, which were caused by the volatility of organic cations
(CH3NH3+, CH(NH2)2+), is the tricky issue for these hybrid ones [14]. Compared to the
abovementioned organic–inorganic perovskites, all-inorganic perovskites showed great
stability due to their higher structure tolerance, especially in CsPbX3 material. This was
desirable for the fabrication of high-performance photovoltaic devices [15].

Nowadays, devised methods, such as spin coating [16,17], co-evaporation [18,19], gas-
phase-assisted solution [20], and nanocrystals (NCs) coating [21] have been employed for
the fabrication of perovskite thin films. The co-evaporation and the gas-phase-assisted de-
position method belong to vacuum technology. Ma et al. [22] employed the co-evaporation
method to prepare a CsPbBr3 photon-harvesting layer, and the PCE of the device was 4.7%.
Patil et al. reported the fabrication of this perovskite material by the gas-phase-assisted
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method, and gained a device PCE of 16.45% [23]. Unfortunately, these vacuum methods
were restricted by their high energy consumption and complicated operation. Spin coating
and NCs coating were the typical non-vacuum avenues for the fabrication. Wu et al. pre-
pared the perovskite solar cells by spin coating, and the PCE of the fabricated device was
16.07% [24]. In 2021, Hu et al. reported an 8.1% PCE for the device which was fabricated
via the strategy of NCs coating [25]. However, the spin coating had poor repeatability and
was not suitable for large-area production, and the NCs coating was complicated and time
consuming which was caused by the synthesis process.

Concerning the issues of the above methods, the spraying approach, which features
facile operation, low time-consumption, and scalable production, may be an effective
dissolution strategy. Currently, it has been widely employed for the fabrication of binary
and multiple compounds. Yang et al. reported their work on the deposition of CsPbBr3 thin
film by the spraying approach based on CsPbBr3 NCs for the first time [26]. Wang [27] et al.
first dissolved CsBr and PbBr2 in a DMF solution, then added oleic acid (OA) and oleyl
amine (OLA) as ligands, and then placed the above solution in a centrifuge at 8000 rpm for
10 min to remove the residue to obtain a transparent precursor solution. Finally, luminescent
CsPbBr3 thin films were prepared by the spraying method. The Park team used dimethyl
sulfoxide (DMSO) and N,N-dimethylformamide (DMF) as solvents to prepare CsPbBr3
precursor solutions, and then sprayed thin films on a substrate at 150 ◦C. The crystal size
of CsPbBr3 was controlled by adjusting the concentration ratio of DMSO/DMF [28].

Differing from the abovementioned work, a one-step deposition strategy for CsPbBr3
perovskite thin films via the spraying approach with ion-solution was displayed in our
current work. To our knowledge, similar reports have been rarely reported to date. More-
over, the effects of annealing parameters (toleration temperature and duration time) on the
structural, compositional, morphological, and optical performances of fabricated CsPbBr3
thin films were investigated in detail. The purpose of the present work is to provide a new
possibility for the facile and high-performance fabrication of CsPbBr3 thin films, which is
desired for photovoltaic devices.

2. Experimental
2.1. Fabrication of CsPbBr3 Thin Films by the Ion-Solution Spraying Method

Typically, 0.2 mmol CsBr (cesium bromide, 99%, AR) and 0.2 mmol PbBr2 (lead
bromide, 99%, AR) were successively dissolved in 20 mL DMSO (dimethyl sulfoxide, 90%)
to prepare the ion-solution. The stoichiometric ratio of Cs:Pb:Br was 1:1:3. The magnetic
stirring was carried out for the sufficient dissolution under room temperature. Then, this
solution was placed into a spray gun, and deposited on the heating glass-substrate to obtain
the precursor thin films. Finally, the above thin films were annealed by a hot platform
under atmosphere. Different annealing parameters including toleration temperature and
duration time were employed. During the spraying process, the distance between the
spray gun and the substrate was about 20 cm, and the inclination angle was 45 ◦. For the
subsequent work, ITO conductive glass was used as the substrate in the experiment. The
brief schematic diagram for the preparation process is shown in Figure 1.
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2.2. Characterizations for the As-Obtained Samples

The film’s crystalline structure was characterized by X-ray diffraction (XRD, Ultima
IV, Rigaku, Tokyo, Japan). The surface morphology was measured by scanning electron
microscopy (SEM, Quanta 200, FEI, Eindhoven, Netherlands). The optical property of
as-prepared samples was determined by an Ultraviolet-Visible-Infrared spectrophotometer
(UV-vis-IR, UH 4150, Hitachi, Tokyo, Japan). Energy dispersive X-ray spectroscopy (EDS,
Genesis Apollo X, EDAX, PA, USA) and X-ray photoelectron spectroscopy (XPS, Axis Ultra
DLD, Kratos, Manchester, UK) were employed for the study of chemical constitution. All
tests were carried out at room temperature.

3. Results and Discussion
3.1. Effects of Toleration Temperature on CsPbBr3 Thin Films

Regarding the spraying method, the possible mechanism could be described as follows.
In the first step, the bromides of CsBr and PbBr2 were sufficiently dissolved in the polar
solvent of DMSO to form the expected ion-solution. The dissolution process could be
displayed in Equations (1) and (2). In this solution, Cs+, Pb2+, and Br− ions were distributed
isolatedly and homogeneously. In the second stage, the ion-solution was deposited onto
the heating substrate. These ions would incorporate with each other to form CsPbBr3
products by heating treatment with the evaporation of the solvent, which was depicted as
Equation (3). In this stage, the yellow precursor film could be obtained. Successively, the
annealing treatment was carried out to proceed with the reaction further.

CsBr → Cs+ + Br− (1)

PbBr2 → Pb2+ + 2Br− (2)

Cs+ + Pb2+ +3Br− → CsPbBr3 (3)

To observe the effect of the annealing temperature on the properties of CsPbBr3 thin
films, the temperatures were varied at a 175~250 ◦C range with an increment of 25 ◦C.
The duration time was 10 min. The XRD patterns of as-prepared samples at different
toleration temperatures are shown in Figure 2a. The diffraction peaks locating at 15.21,
21.62, and 30.70◦ were separately attributed to (100), (110), and (200) planes of CsPbBr3
with cubic structure (JCPDS No 00-054-0752). As seen in Figure 2a, the intensity of the
diffraction peak showed an upward trend with the annealing temperature at 175~200 ◦C,
which indicated an improving crystallinity. When the temperature was over 200 ◦C, the
crystallinity deteriorated as the temperature increased. As previously reported [29], when
the temperature was low, the decomposition of solvent volatiles was slow, and the growth
rate of crystals was slow. However, when the temperature was too high, the solvent
evaporates rapidly and the crystal growth was insufficient, resulting in a decrease in grain
size. It was observed that the shape of these peaks changed as the temperature varied.
These changes could be described by full width at half maximum (FWHM). After 200 ◦C,
the value of FWHM increased when the toleration temperature rose. According to the
Scherrer formula [30] (D = kλ/βcosθ, where D is the grain size, k is a constant, λ is the Cu
Kα wavelength (0.15406 nm), β is the value of FWHM, and θ is the diffraction angle), the
grain size was inversely proportional to FWHM. The error lines for FWHM and crystal size
of the samples prepared at different annealing temperature are shown in Figure 2b. It was
noted that the 200 ◦C sample had the largest crystal size compared with the others.



Crystals 2024, 14, 604 4 of 10
Crystals 2024, 14, x FOR PEER REVIEW 4 of 11 
 

 

 

Figure 2. (a) XRD pattern and (b) the error lines for FWHM and crystal size of the samples prepared 
at different toleration temperatures. 

Figure 3 shows the surface morphologies of as-obtained CsPbBr3 thin films fabricated 
at different annealing temperatures. As observed in Figure 3a–d, the products on the sur-
face were in an angular strip-bulk shape without cracks and holes, meanwhile, these films 
featured compact and dense. This morphology may facilitate carrier migration, which is 
desirable for high-performance photovoltaic devices. It was noted that the size of the bulk 
products at 200 °C was larger than the other samples. In addition, it was also found that 
the organics from the used solvent could be evaporated as well.  

  

  

Figure 3. Morphologies of the samples prepared at different temperatures: (a) 175 °C, (b) 200 °C, (c) 
225 °C, (d) 250 °C. 

The absorption spectra of as-prepared samples are displayed in Figure 4a. For CsP-
bBr3 material, the conduction band minimum (CBM) was mostly occupied by Pb-6p orbit-
als, while the valence band maximum (VBM) with antibonding features was mainly con-
sisted of Br-4p orbitals. The transition from the valence band to the conduction band de-
termined the optical properties of CsPbBr3 in the visible region [31]. As observed, these 
annealed samples all presented a clear absorption edge. The absorption edge steepened 
as the annealing temperature increased in the 175~200 °C range, which indicated the crys-
tallinity improved. However, the steepness decreased with the increasing temperature in 
the 200~250 °C range. This was consistent with XRD analysis. The bandgap energy Eg of 
these samples was determined by extrapolating the straight line of (Ahv)2 vs. (hv) plots as 
exampled in the inset of Figure 4b. Here, A is absorbance, h is Planck’s constant, and v is 

Figure 2. (a) XRD pattern and (b) the error lines for FWHM and crystal size of the samples prepared
at different toleration temperatures.

Figure 3 shows the surface morphologies of as-obtained CsPbBr3 thin films fabricated
at different annealing temperatures. As observed in Figure 3a–d, the products on the
surface were in an angular strip-bulk shape without cracks and holes, meanwhile, these
films featured compact and dense. This morphology may facilitate carrier migration, which
is desirable for high-performance photovoltaic devices. It was noted that the size of the
bulk products at 200 ◦C was larger than the other samples. In addition, it was also found
that the organics from the used solvent could be evaporated as well.
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(c) 225 ◦C, (d) 250 ◦C.

The absorption spectra of as-prepared samples are displayed in Figure 4a. For CsPbBr3
material, the conduction band minimum (CBM) was mostly occupied by Pb-6p orbitals,
while the valence band maximum (VBM) with antibonding features was mainly consisted of
Br-4p orbitals. The transition from the valence band to the conduction band determined the
optical properties of CsPbBr3 in the visible region [31]. As observed, these annealed samples
all presented a clear absorption edge. The absorption edge steepened as the annealing
temperature increased in the 175~200 ◦C range, which indicated the crystallinity improved.
However, the steepness decreased with the increasing temperature in the 200~250 ◦C range.
This was consistent with XRD analysis. The bandgap energy Eg of these samples was
determined by extrapolating the straight line of (Ahv)2 vs. (hv) plots as exampled in the
inset of Figure 4b. Here, A is absorbance, h is Planck’s constant, and v is frequency. As
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observed, the error line of Eg value variation is shown in Figure 4b. When the annealing
temperature was 200 ◦C, the Eg value was 2.262 eV.

Crystals 2024, 14, x FOR PEER REVIEW 5 of 11 
 

 

frequency. As observed, the error line of Eg value variation is shown in Figure 4b. When 
the annealing temperature was 200 °C, the Eg value was 2.262 eV. 

 

Figure 4. (a) Absorption spectra and (b) error lines of (Ahv)2 vs. (hv) of the samples prepared at 
different temperatures. 

As above analyzed, the 200 °C sample featured better crystallinity, morphology, and 
optical property compared with other samples. This suggested the annealing temperature 
of 200 °C was promising for the next investigation.  

3.2. Effects of duration time on CsPbBr3 thin films 
Here, the annealing time was changed to a 5~20 min range with intervals of 5 min to 

examine the property variations of the prepared samples. The annealing temperature was 
set to 200 °C as above suggested. Figure 5a displays the XRD patterns of the samples un-
dertaken by different duration times. As seen, the diffraction peaks at 15.21, 21.62, and 
30.70° were attributed to (100), (110), and (200) planes of cubic CsPbBr3, respectively. It 
was noted that the absence of impurity suggested the obtained product was in the pure 
phase. It was found that the peak intensity increased as the time prolonged in 5~15 min, 
which indicated an improving crystallinity and crystal size. Unfortunately, the continued 
extension of annealing time led to the decomposition of thin film grains, resulting in a 
decrease in crystallinity and grain size. A similar phenomenon was also reported in pre-
vious work [32]. The error lines for FWHM and crystal size of the samples prepared at 
different annealing times are shown in Figure 5b. The FWHM showed a downward trend 
in the 5~15 min range, and an upward variation when the annealing time was over 15 min. 
This was consistent with the shape changes of diffraction peaks. According to the Scherrer 
formula, FWHM and grain size were inversely proportional. When the annealing time 
was 15 min, the FWHM of the prepared sample was the smallest and the grain size was 
the largest.  

 

Figure 4. (a) Absorption spectra and (b) error lines of (Ahv)2 vs. (hv) of the samples prepared at
different temperatures.

As above analyzed, the 200 ◦C sample featured better crystallinity, morphology, and
optical property compared with other samples. This suggested the annealing temperature
of 200 ◦C was promising for the next investigation.

3.2. Effects of Duration Time on CsPbBr3 Thin Films

Here, the annealing time was changed to a 5~20 min range with intervals of 5 min
to examine the property variations of the prepared samples. The annealing temperature
was set to 200 ◦C as above suggested. Figure 5a displays the XRD patterns of the samples
undertaken by different duration times. As seen, the diffraction peaks at 15.21, 21.62, and
30.70◦ were attributed to (100), (110), and (200) planes of cubic CsPbBr3, respectively. It
was noted that the absence of impurity suggested the obtained product was in the pure
phase. It was found that the peak intensity increased as the time prolonged in 5~15 min,
which indicated an improving crystallinity and crystal size. Unfortunately, the continued
extension of annealing time led to the decomposition of thin film grains, resulting in
a decrease in crystallinity and grain size. A similar phenomenon was also reported in
previous work [32]. The error lines for FWHM and crystal size of the samples prepared at
different annealing times are shown in Figure 5b. The FWHM showed a downward trend
in the 5~15 min range, and an upward variation when the annealing time was over 15 min.
This was consistent with the shape changes of diffraction peaks. According to the Scherrer
formula, FWHM and grain size were inversely proportional. When the annealing time
was 15 min, the FWHM of the prepared sample was the smallest and the grain size was
the largest.

The surface morphology of the samples prepared at different annealing times is shown
in Figure 6. When the annealing time was 5 min, the holes appeared on the sample surface
and disappeared during the 10~20 min range. This may be attributed to the product
growing as the annealing time increased. As seen, the morphology of these samples was
dense and compact. The stripped products on the film surface presented as bulk-state,
which is favorable for carrier migration. Regarding the 15 min sample, the largest size of
the bulk products could be over 500 nm.
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The optical properties of CsPbBr3 thin films prepared at different duration times are
shown in Figure 7. Figure 7a shows the absorption spectra of the obtained samples, while
the transmission mode was conducted here. All the samples featured a cut-off absorption
edge. For the 15 min sample, it had the steepest cut-off edge for the absorption spectrum,
which can be attributed to the best crystallinity as suggested by XRD analysis. Figure 7b
shows the error line of Eg values variation. As observed, the Eg presented an upward trend
in the 5~10 min range and declined when the duration time was prolonged to 20 min. The
Eg value of the thin film prepared under annealing of 200 ◦C and 15 min was 2.289 eV.

According to the above analyses, the properties of the films prepared at 200 ◦C for
15 min were better than those of the other samples. As suggested by previous work [33],
the carrier lifetime was one of the key factors for photovoltaic devices. Figure 8 shows the
time-resolved fluorescence decay curves of CsPbBr3 films at 200 ◦C for 15 min. The curves
could be fitted by a bi-exponential function as shown in Equation (4) [34]:

y = A0 + A1exp
(
− t

τ1

)
+ A2 exp

(
− t

τ2

)
(4)

τave =
(

A1τ2
1 + A2τ2

2

)
/(A1τ1 + A2τ2) (5)
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Here, τ1 is the fast decay component which reflects the no-radiative recombination
process resulting from the defects, τ2 is the slow decay component relating to the trap-
assisted radiative process in the bulk perovskite. A1 and A2 are the corresponding fractional
amplitudes of τ1 and τ2, respectively. A0 is a constant. In addition, the average lifetime
τave is calculated by Equation (5). For the obtained samples, the τ1 value was 2.308 ns, τ2
value was 99.895 ns, and their corresponding A1 and A2 values were 45.51% and 54.49%,
respectively. The calculated τave value was 55.536 ns. This indicated the sample had a good
carrier migration behavior which was beneficial to separate the free electron from the hole
effectively as suggested by previous work [33]. The value of the statistical indicator R2 was
0.995, which was very close to 1, indicating that the model used had a good fitting effect.

In order to better characterize the performance of the thin film, the SEM cross-sectional
image of the prepared sample is shown in Figure 9a. The thickness of the prepared sample
is 3.7 µm. In the future, the preparation process could be further improved to make the film
thickness thinner. Furthermore, the chemical composition of this sample was determined by
EDS. As shown in Figure 9b, the atomic percent of Cs:Pb:Br was 1:0.89:3.03. The Pb/(Cs+Br)
ratio was 0.22, which suggested a Pb-poor state of the synthesized sample resulting from
the poor solubility of the Pb source in the reaction solution [35]. The Br/(Cs+Pb) ratio was
around 1.6. This indicated the sample was in a Br-rich state. As suggested by previous
studies [36], the Br-rich state could facilitate the reduction of Br vacancies, which is favorable
for the carrier behavior. In addition, this chemical composition was also beneficial for the
structure stability of the prepared sample [35].
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cal composition.

The composition of the obtained sample prepared under the condition of 200 ◦C for
15 min was further investigated by XPS observation. The full spectrum of XPS is shown in
Figure 10a. It was found that the spectrum of each element had double detected peaks of
self-spin orbit splitting, which resulted from the spin orbit coupling [31]. As Figure 10b
displays, the peaks located at 723.29 eV and 737.38 eV correspond to Cs 3d5/2 and Cs
3d3/2, respectively. The splitting space was 13.9 eV. This indicated Cs was univalent. For
Pb, two characteristic peaks of 137.26 eV and 142.11 eV with a separation of 4.85 eV were
observed as shown in Figure 10c. These two peaks were attributed to Pb 4f7/2 and Pb 4f5/2,
respectively. This confirmed the existence of bivalent Pb. Two different binding states of
68.15 eV and 67.21 eV were obtained as shown in Figure 10d. It suggested two different
chemical environments of the Br element: the peak of 68.15 eV deriving from the high
energy band of Pb-Br, and the peak of 67.21 eV originating from the low energy band of
Cs-Br [21].
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4. Conclusions

In summary, we have successfully fabricated a CsPbBr3 thin film based on the facile
spraying approach under atmosphere. The intrinsic relationship between annealing pa-
rameters (toleration temperature and duration time) and the samples’ properties was
investigated in detail. As the results show, the best sample could be obtained under the
condition of 200 ◦C for 15 min. The sample featured a good crystallinity with a cubic
structure, a dense and compact surface morphology, and a bandgap energy of 2.289 eV.
The PL lifespan was obtained through fitting, the τ1 value was 2.308 ns, the τ2 value was
99.895 ns, and their corresponding A1 and A2 values were 45.51% and 54.49%, respectively.
The calculated τave value was 55.536 ns. Moreover, the fabricated sample was in a Br-rich
state, which was favorable for the carrier behavior and structure stability. Finally, the XPS
spectrum confirmed the composition of the prepared sample and the binding energy of
different elements. In future work, the as-fabricated CsPbBr3 thin film will be involved in
the fabrication of photovoltaic devices.
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