Coercivity of (Fe0.7Co0.3)2B Nanowire and Its Bonded Magnet
Abstract
:1. Introduction
2. Computational Method and Details
3. Results
3.1. Micromagnetic Simulation of Coercivity in (Fe0.7Co0.3)2B Nanowires
3.1.1. Coercivity of Defect-Free (Fe0.7Co0.3)2B Nanowires
3.1.2. Coercivity of (Fe0.7Co0.3)2B Nanowires with Surface Defects
3.2. Coercivity of (Fe0.7Co0.3)2B Bonded Magnet from Nanowires
3.3. Challenge and Roadmap for Developing (Fe0.7Co0.3)2B-Based Permanent Magnets
4. Summary
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Coey, J.M.D. Perspective and Prospects for Rare Earth Permanent Magnets. Engineering 2020, 6, 119–131. [Google Scholar] [CrossRef]
- Gutfleisch, O.; Willard, M.A.; Brück, E.; Chen, C.H.; Sankar, S.G.; Liu, J.P. Magnetic Materials and Devices for the 21st Century: Stronger, Lighter, and More Energy Efficient. Adv. Mater. 2011, 23, 821–842. [Google Scholar] [CrossRef] [PubMed]
- Coey, J.M.D. Permanent Magnets: Plugging the Gap. Scr. Mater. 2012, 67, 524–529. [Google Scholar] [CrossRef]
- Kramer, M.J.; McCallum, R.W.; Anderson, I.A.; Constantinides, S. Prospects for Non-Rare Earth Permanent Magnets for Traction Motors and Generators. JOM 2012, 64, 752–763. [Google Scholar] [CrossRef]
- Cui, J.; Kramer, M.; Zhou, L.; Liu, F.; Gabay, A.; Hadjipanayis, G.; Balasubramanian, B.; Sellmyer, D. Current Progress and Future Challenges in Rare-Earth-Free Permanent Magnets. Acta Mater. 2018, 158, 118–137. [Google Scholar] [CrossRef]
- Mohapatra, J.; Liu, X.; Joshi, P.; Liu, J.P. Hard and Semi-Hard Fe-Based Magnetic Materials. J. Alloys Compd. 2023, 955, 170258. [Google Scholar] [CrossRef]
- Yibole, H.; Lingling-Bao, B.; Xu, J.Y.; Alata, H.; Tegus, O.; Hanggai, W.; van Dijk, N.H.; Brück, E.; Guillou, F. (Fe,Co)2(P,Si) Rare-Earth Free Permanent Magnets: From Macroscopic Single Crystals to Submicron-Sized Particles. Acta Mater. 2021, 221, 117388. [Google Scholar] [CrossRef]
- Yin, L.; Juneja, R.; Lindsay, L.; Pandey, T.; Parker, D.S. Semihard Iron-Based Permanent-Magnet Materials. Phys. Rev. Appl. 2021, 15, 024012. [Google Scholar] [CrossRef]
- Wang, J.-P. Environment-Friendly Bulk Fe16N2 Permanent Magnet: Review and Prospective. J. Magn. Magn. Mater. 2019. [Google Scholar] [CrossRef]
- Coene, W.; Hakkens, F.; Coehoorn, R.; de Mooij, D.B.; de Waard, C.; Fidler, J.; Grössinger, R. Magnetocrystalline Anisotropy of Fe3B, Fe2B and Fe1.4Co0.6B as Studied by Lorentz Electron Microscopy, Singular Point Detection and Magnetization Measurements. J. Magn. Magn. Mater. 1991, 96, 189–196. [Google Scholar] [CrossRef]
- Iga, A. Magnetocrystalline Anisotropy in (Fe1-xCox)2 B System. Jpn. J. Appl. Phys. 1970, 9, 415–416. [Google Scholar] [CrossRef]
- Kuz'min, M.D.; Skokov, K.P.; Jian, H.; Radulov, I.; Gutfleisch, O. Towards High-Performance Permanent Magnets without Rare Earths. J. Phys. Condens. Matter 2014, 26, 064205. [Google Scholar] [CrossRef] [PubMed]
- Edström, A.; Werwiński, M.; Iuşan, D.; Rusz, J.; Eriksson, O.; Skokov, K.P.; Radulov, I.A.; Ener, S.; Kuz’Min, M.D.; Hong, J.; et al. Magnetic Properties of (Fe1-XCox)2 B Alloys and the Effect of Doping by 5d Elements. Phys. Rev. B Condens. Matter Mater. Phys. 2015, 92, 174413. [Google Scholar] [CrossRef]
- Lamichhane, T.N.; Palasyuk, O.; Antropov, V.P.; Zhuravlev, I.A.; Belashchenko, K.D.; Nlebedim, I.C.; Dennis, K.W.; Jesche, A.; Kramer, M.J.; Bud’ko, S.L.; et al. Reinvestigation of the Intrinsic Magnetic Properties of (Fe1-XCox)2B Alloys and Crystallization Behavior of Ribbons. J. Magn. Magn. Mater. 2020, 513, 167214. [Google Scholar] [CrossRef]
- Kim, K.M.; Kwon, H.W.; Lee, J.G.; Yu, J.H. Coercivity and Phase Evolution in Mechanically Milled (FeCo)2 B-Type Hard Magnetic Alloy. IEEE Trans. Magn. 2018, 54, 1–5. [Google Scholar] [CrossRef]
- Wallisch, W.; Fidler, J.; Toson, P.; Sassik, H.; Svagera, R.; Bernardi, J. Synthesis and Characterisation of (Fe,Co)2–3B Microcrystalline Alloys. J. Alloys Compd. 2015, 644, 199–204. [Google Scholar] [CrossRef]
- Campbell, R.B.; Julien, C.A. Structure of Alnico v. J. Appl. Phys. 1961, 32, S192–S194. [Google Scholar] [CrossRef]
- Zhou, L.; Miller, M.K.; Lu, P.; Ke, L.; Skomski, R.; Dillon, H.; Xing, Q.; Palasyuk, A.; McCartney, M.R.; Smith, D.J.; et al. Architecture and Magnetism of Alnico. Acta Mater. 2014, 74, 224–233. [Google Scholar] [CrossRef]
- Ortega, E.; Reddy, S.M.; Betancourt, I.; Roughani, S.; Stadler, B.J.H.; Ponce, A. Magnetic Ordering in 45 Nm-Diameter Multisegmented FeGa/Cu Nanowires: Single Nanowires and Arrays. J. Mater. Chem. C Mater. 2017, 5, 7546–7552. [Google Scholar] [CrossRef]
- Zighem, F.; Mercone, S. Magnetization Reversal Behavior in Complex Shaped Co Nanowires: A Nanomagnet Morphology Optimization. J. Appl. Phys. 2014, 116, 193904. [Google Scholar] [CrossRef]
- Maurer, T.; Ott, F.; Chaboussant, G.; Soumare, Y.; Piquemal, J.-Y.; Viau, G. Magnetic Nanowires as Permanent Magnet Materials. Appl. Phys. Lett. 2007, 91, 172501. [Google Scholar] [CrossRef]
- Gandha, K.; Elkins, K.; Poudyal, N.; Liu, X.; Liu, J.P. High Energy Product Developed from Cobalt Nanowires. Sci. Rep. 2014, 4, 5345. [Google Scholar] [CrossRef] [PubMed]
- Dumestre, F.; Chaudret, B.; Amiens, C.; Fromen, M.-C.; Casanove, M.-J.; Renaud, P.; Zurcher, P. Shape Control of Thermodynamically Stable Cobalt Nanorods through Organometallic Chemistry. Angew. Chem. Int. Ed. 2002, 41, 4286–4289. [Google Scholar] [CrossRef]
- Mohapatra, J.; Xing, M.; Elkins, J.; Beatty, J.; Liu, J.P. Extraordinary Magnetic Hardening in Nanowire Assemblies: The Geometry and Proximity Effects. Adv. Funct. Mater. 2021, 31, 2010157. [Google Scholar] [CrossRef]
- Liu, Q.; Zhao, H.; Jiang, M.; Kang, Q.; Zhou, W.; Wang, P.; Zhou, F. Boron Enhances Oxygen Evolution Reaction Activity over Ni Foam-Supported Iron Boride Nanowires. J. Mater. Chem. A Mater. 2020, 8, 13638–13645. [Google Scholar] [CrossRef]
- Beron, F.; Clime, L.; Ciureanu, M.; Menard, D.; Cochrane, R.W.; Yelon, A. First-Order Reversal Curves Diagrams of Ferromagnetic Soft Nanowire Arrays. IEEE Trans. Magn. 2006, 42, 3060–3062. [Google Scholar] [CrossRef]
- Brown, W.F., Jr. Micromagnetics; Wiley: New York, NY, USA, 1963. [Google Scholar]
- Fidler, J.; Schrefl, T. Micromagnetic Modelling—The Current State of the Art. J. Phys. D Appl. Phys. 2000, 33, R135–R156. [Google Scholar] [CrossRef]
- Durst, K.-D.; Kronmüller, H. The Coercive Field of Sintered and Melt-Spun NdFeB Magnets. J. Magn. Magn. Mater. 1987, 68, 63–75. [Google Scholar] [CrossRef]
- Vansteenkiste, A.; De Wiele, B.V. Mumax: A New High-Performance Micromagnetic Simulation Tool. J. Magn. Magn. Mater. 2011, 323, 2585–2591. [Google Scholar] [CrossRef]
- Vansteenkiste, A.; Leliaert, J.; Dvornik, M.; Helsen, M.; Garcia-Sanchez, F.; van Waeyenberge, B. The Design and Verification of MuMax3. AIP Adv. 2014, 4, 107133. [Google Scholar] [CrossRef]
- Brown, W.F. The fundamental theorem of the theory of fine ferromagnetic particles. Ann. N. Y. Acad. Sci. 1969, 147, 463–488. [Google Scholar] [CrossRef]
- Liu, X.B.; Nlebedim, I.C. Robustness of Magnetocrystalline Anisotropy and Coercivity in Fe–Co–B. Phys. B Condens. Matter 2024, 683, 415914. [Google Scholar] [CrossRef]
- Ma, Z.; Mohapatra, J.; Wei, K.; Liu, J.P.; Sun, S. Magnetic Nanoparticles: Synthesis, Anisotropy, and Applications. Chem. Rev. 2023, 123, 3904–3943. [Google Scholar] [CrossRef] [PubMed]
- Coey, J. Magnetism and Magnetic Materials; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Gong, M.; Dai, Q.; Ren, S. Magnetic Dipolar Interaction Induced Cobalt Nanowires. Nanotechnology 2016, 27, 07LT02. [Google Scholar] [CrossRef] [PubMed]
- Nlebedim, I.C.; Ucar, H.; Hatter, C.B.; McCallum, R.W.; McCall, S.K.; Kramer, M.J.; Paranthaman, M.P. Studies on in Situ Magnetic Alignment of Bonded Anisotropic Nd-Fe-B Alloy Powders. J. Magn. Magn. Mater. 2017, 422, 168–173. [Google Scholar] [CrossRef]
- Knowles, J. Packing Factor and Coercivity in Tapes: A Monte Carlo Treatment. IEEE Trans. Magn. 1985, 21, 2576–2582. [Google Scholar] [CrossRef]
- Lyberatos, A.; Wohlfarth, E.P. A Monte Carlo Simulation of the Dependence of the Coercive Force of a Fine Particle Assembly on the Volume Packing Factor. J. Magn. Magn. Mater. 1986, 59, L1–L4. [Google Scholar] [CrossRef]
- Chang, C.-R.; Shyu, J.-P. Particle Interaction and Coercivity for Acicular Particles. J. Magn. Magn. Mater. 1993, 120, 197–199. [Google Scholar] [CrossRef]
- Skomski, R.; Liu, Y.; Shield, J.E.; Hadjipanayis, G.C.; Sellmyer, D.J. Permanent Magnetism of Dense-Packed Nanostructures. J. Appl. Phys. 2010, 107, 09A739. [Google Scholar] [CrossRef]
- Knowles, J.E. Coercivity and Packing Density in Acicular Particles. J. Magn. Magn. Mater. 1981, 25, 105–112. [Google Scholar] [CrossRef]
- Panagiotopoulos, I.; Fang, W.; Ott, F.; Boué, F.; Aït-Atmane, K.; Piquemal, J.-Y.; Viau, G. Packing Fraction Dependence of the Coercivity and the Energy Product in Nanowire Based Permanent Magnets. J. Appl. Phys. 2013, 114, 143902. [Google Scholar] [CrossRef]
- Donev, A.; Stillinger, F.H.; Chaikin, P.M.; Torquato, S. Unusually Dense Crystal Packings of Ellipsoids. Phys. Rev. Lett. 2004, 92, 255506. [Google Scholar] [CrossRef] [PubMed]
- Kusner, W. Upper Bounds on Packing Density for Circular Cylinders with High Aspect Ratio. Discret. Comput. Geom. 2014, 51, 964–978. [Google Scholar] [CrossRef]
Size (nm) | SFL Thickness (nm) | Hci (kOe) | Hcireduce (kOe) | |
---|---|---|---|---|
c-nanowire | Φ16 × 256 | 0 | 10.5 | 10.1 |
c-nanowire | Φ16 × 256 | 1 | 9.9 | 9.6 |
c-nanowire | Φ16 × 256 | 2 | 9.4 | 9.1 |
c-nanowire | Φ32 × 256 | 0 | 8.2 | 8.0 |
s-nanowire | Φ16 × 256 | 0 | 14.1 | 13.8 |
s-nanowire | Φ16 × 256 | 1 | 13.3 | 13.1 |
s-nanowire | Φ16 × 256 | 2 | 12.9 | 12.7 |
s-nanowire | Φ32 × 256 | 0 | 12.0 | 11.8 |
Nanowires | Shape | Size (nm) | A (kOe) | B (kOe) | |
---|---|---|---|---|---|
1 | s-nanowire | Φ16 × 256 | 7.9 | 6.1 | |
2 | Core–shell s-nanowire | Core Φ 12 × 256 Shell thickness: 2 | 6.9 | 6.1 | K1shell = 0.7K1 core |
3 | c-nanowire | Φ16 × 256 | 7.45 | 3.1 | |
4 | Core–shell c-nanowire | Core Φ 12 × 256 Shell thickness: 2 | 6.85 | 3.1 | K1shell = 0.7K1 core |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Nlebedim, I.C. Coercivity of (Fe0.7Co0.3)2B Nanowire and Its Bonded Magnet. Crystals 2024, 14, 624. https://doi.org/10.3390/cryst14070624
Liu X, Nlebedim IC. Coercivity of (Fe0.7Co0.3)2B Nanowire and Its Bonded Magnet. Crystals. 2024; 14(7):624. https://doi.org/10.3390/cryst14070624
Chicago/Turabian StyleLiu, Xubo, and Ikenna C. Nlebedim. 2024. "Coercivity of (Fe0.7Co0.3)2B Nanowire and Its Bonded Magnet" Crystals 14, no. 7: 624. https://doi.org/10.3390/cryst14070624
APA StyleLiu, X., & Nlebedim, I. C. (2024). Coercivity of (Fe0.7Co0.3)2B Nanowire and Its Bonded Magnet. Crystals, 14(7), 624. https://doi.org/10.3390/cryst14070624