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Abstract: Black titania, a conductive ceramic material class, has garnered significant interest due to
its unique optical and electrochemical properties. However, synthesising and properly characterising
these structures pose a considerable challenge. This diverse material family comprises various
titanium oxide phases, many of them non-stoichiometric. The term “black TiO2” was first introduced
in 2011 by Xiaobo Chen, but Arne Magneli’s groundbreaking discovery and in-depth investigation of
black titania in 1957 laid the foundation for our understanding of this material. The non-stoichiometric
black titanium oxides were then called the Magneli phases. Since then, the science of black titania
has advanced, leading to numerous applications in photocatalysis, electrocatalysis, supercapacitor
electrodes, batteries, gas sensors, fuel cells, and microwave absorption. Yet, the literature is rife with
conflicting reports, primarily due to the inadequate analysis of black titania materials. This review
aims to provide an overview of black titania nanostructures synthesis and the proper characterisation
of the most common and applicable black titania phases.

Keywords: Black TiO2; black titania; reduced TiO2; reduced titania; Magneli phases; titanium
suboxide; TiO; Ti2O3; Ti4O7; Ti3O5

1. Introduction

Titania (TiO2) is a well-known white ceramic material with broad applications [1]. It is
obtainable in three main crystal phases: anatase, rutile, and brookite [2]. However, these
are not all the possible structures that belong to titania; some of the structures addressed
are called black TiO2 or black titania. The term “Black TiO2” was coined after its discovery
by Chen et al. in 2011 due to its black appearance, which was in stark contrast to the usual
white colour of TiO2 [3]. This discovery of a new, black variant of TiO2, known as black
titania, has sparked significant interest in the scientific community. This materials group
consists of non-stoichiometric titanium oxides, so-called Magneli phases discovered by
Arne Magneli in 1957 [4], which possess attractive optical and electrical properties [5];
however, the analysis of these structures is highly challenging [6]. Up to now, there
have been many contradicting reports about black titania synthesis and characterisation
methods [7].

The primary method for the formation of Magneli phase black titania is heat treat-
ment methods [8–11]; however, for practical applications, in most cases, nanostructured
materials are required, which are challenging to obtain [12–15]. Many synthesis methods
are applied to overcome these challenges, such as hydrothermal synthesis [16–18], plasma
treatment [19–21], reduction [11,22,23], molten salts [12,24], etc. [25]. Despite this fact, the
application areas are highly dependent on the chosen synthesis method, as every method
has its advantages and disadvantages and gives control over specific parameters [26]. Up
to now, the most advanced application is related to the optical properties of Magneli phase
black titania. It is focused on solar cells, renewable energetics, and visible light photo-
catalysis for air and wastewater remediation [13]. Besides these thoroughly investigated
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applications, several other directions show promising results. One such is self-heating gas
sensors [27,28], where Magneli phases-based heterostructures enable this unconventional
design; others are substrates for efficient HER catalysts [29] and electrodes for the design of
supercapacitors and batteries [17]. Not least important is the characterisation of synthesised
structures. While SEM and TEM can easily characterise morphology, internal structural
analysis is more challenging. XRD, Raman spectroscopy, EDX, XPS, and EPR are applied to
do so [14,16,30]. However, the proper analysis of Magneli phase black titania requires a
focus on synthesis methods with the prediction of the final product and the application of
several independent analysis methods.

Several reports on various aspects of Magneli phase black titania synthesis, characteri-
sation, and application have been published; however, the results are contradictory in many
cases. This review aims to focus on the synthesis methods and proper characterisation of
obtained structures.

2. The Family of Black Titania Materials

The rise of Magneli phase black titania started with Arne Magneli, who discovered
that titanium oxide can be obtainable in Ti2O, TiO, Ti4O7, Ti5O9, Ti6O11, Ti7O13, Ti8O15,
Ti9O17, and Ti10O19 non-stoichiometric oxides, shown in Figure 1. After their discovery,
these oxides were called Magneli phases [4]. Up to now, more non-stoichiometric titanium
oxides, such as Ti2O3 [31,32] and Ti3O5 [33,34], have been synthesised. The first synthesis
procedure for Magneli phase formation was the thermal annealing of pure metallic titanium
in an argon atmosphere.
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While not all of these titania structures are well studied, there are contradicting reports
that TiO might possess a metallic conductivity, while some studies show that it is a low
bandgap semiconductor [16,36,37]. The narrow band gap is one of the main characteristics
common for most Magneli phase black titania species [38]. There are currently many
advanced synthesis methods for Magneli phases, many of which can provide nano-size
products with huge potential for practical applications [26]. Proper selection and an
understanding of the synthesis method are crucial for controlling the materials’ properties.
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3. Synthesis Routes for the Formation of Black Titania

The production of Magneli phase black titania, especially on a large scale, is a challeng-
ing but hot research topic [38,39]. While the studies on this field were started by Magneli
in 1957, up to now, only several methods for various Magneli phase black TiO2 structures
have been reported [1,26]. The main challenge, which is hard to cope with, is the formation
of non-stoichiometric structures and their stabilisation [40–42]. Moreover, the formation
of nanostructures or nanostructured surfaces and the scalability of the processes are also
among the main challenges. In most formation methods, the annealing step is necessary to
form crystalline Magneli phase black titania fully; however, in the case of particle formation,
it leads to the sintering and aggregation of the structures [26,39]. Below, the main synthesis
methods for the formation of Magneli phase black titania are overviewed.

3.1. Annealing under Various Atmospheres

The first studies performed by Arne Magneli used slow heat treatment methods in
an argon atmosphere for the production of the first reported non-stoichiometric titanium
oxides [4,43,44]. Various modifications of heat treatment methods have been reported [45].
While all these methods have the same advantage of a simple procedure, the control
of synthesis products is challenging. One of the main challenges is to have pure phase
materials, as it is with this method; usually, a heterostructure of various phases is reached.
Another critical challenge is the formation of nanomaterials (Figure 2), which is a must
for many novel applications nowadays. While these methods are primarily applicable to
powder samples, they are an excellent strategy for Magneli phase black titania-based thin
film formation, as reported by Arunas Jagminas et al. [16].
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patterns of (e) P25 TiO2 (f) powder calcined at 1173 K. Reprinted from [46].

One of the most popular heat treatment methods is TiO2 reduction under a pure H2 or H2/N2
Ag and H2/Ar gas mixture atmosphere at a temperature higher than 1000 ◦C [3,10,46]. This
method is applied widely to prepare some of the most common Magneli phases (Figure 3).
However, the main disadvantage is that the sintering process happens simultaneously with
reduction, leading to large-size structure formation [47]. Moreover, the reduction in the H2
atmosphere is a precarious method, requiring not only specific equipment but also rigorous
safety precautions.
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Vacuum annealing is another heat treatment method applicable for the formation of
Magneli phase black TiO2. Several independent research groups have reported on the
successful employment of this method [48–50]. In most cases, the temperature range is as it
is for the regular titania annealing, not exceeding 800 ◦C. Moreover, Magneli phase black
titania is reported to be attainable by mixing P-25 powder with metallic Mg or Al [51,52],
which can extract oxygen during annealing in a vacuum or argon [53,54]. Reducing TiO2
with NaBH4 employed a similar technique [55]. The temperature and number of additives
mainly control the formation of Magneli phases.

3.2. Wet Chemical Methods

Several reports of solvothermal synthesis being employed for the formation of Magneli
phase black titania exist. One such method was reported by Shangjun Ding et al. [56],
which consisted of titanium n-butoxide and organic carboxylic acids in addition to alcohol
followed by 20 h of synthesis under 200 ◦C. Under these conditions, the crystalline anatase
spherical structures were obtained without needing an additional annealing step.

Jagminas et al. reported the hydrothermal Magneli phase black titania phase formation
by oxidising metallic titanium foil or particles in an alkaline solution with a selenite anion
additive [16,17,29]. This method leads to the formation of porous nanoplatelet thin films
and particles with a high surface area and a low bandgap (Figure 4). Its morphology and
phase composition are controlled by varying the synthesis temperature, pH, and selenite
anion concentration. However, the synthesis products are amorphous, and annealing under
a vacuum is needed for the final formation of crystal phases.

Another hydrothermal method for the formation of Magneli phase black titania is
based on microwave synthesis. In this case, a small amount of metallic titanium powder is
dissolved in the mixture of the HCl and HF acids, and the formation under hydrothermal
conditions begins. This method reported the formation of Magneli phase black TiO2
nanoparticles [18].
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Sol-gel is a standard method for large-scale Magneli phase black titania formation [57,58].
The most common precursors used in this type of synthesis are TiCl4 [59] and titanium
isopropoxide [60]. Figure 5 shows the principal scheme of how the carbon and carbon-
nitrogen-doped Magneli phase black TiO2 can be obtained.
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One-pot gel combustion is one of the variations of the method, where titanium (IV)
butoxide is mixed with diethylene glycol, and a small amount of water is added [61]. This
method leads to the formation of hydroxylated particles. While the sol-gel process is easily
scalable, the main disadvantage is the need for the calcination step, which leads to the
sintering and aggregation of the structures [62]. There have been several reports of similar
methods applied for the Magneli phase black titania thin film formation [57,58]. However,
in all cases, further annealing is required after the substrate preparation step.

3.3. Laser Ablation

One of the most novel materials formation methods is laser ablation, a rapidly devel-
oping technology finding many application areas [63,64]. Danwen Yao et al. [65] reported
the ablation of P-25 titania nanopowder and turned it into Magneli phase black TiO2 by
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tuning the parameters of generated linearly polarised femtosecond laser pulses with a
centre wavelength of 800 nm and a repetition rate of 500 Hz. The principal scheme of this
process is depicted in Figure 6.
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Several studies investigate laser ablation processes on titania, aiming to form Magneli
phase black TiO2 [65,66]. Xing Chen et al. reported that the laser ablation-prepared samples
had a tunable illumination time, leading to different Magneli phases, which possess a
narrow bandgap compared to regular titania [67]. The advantage of this method is that it
can be performed in liquid media or solid-state if needed.

3.4. Molten Salt Method

The Molten salt method is the least discovered of all the Magneli phase black titania
formation methods. However, it shows promising results for a simple, safe, large-scale
nanocrystal synthesis. Several reports show the formation of various Magneli phase black
TiO2 species from different salts. Jijian Xu et al. reported the facile synthesis of hexagonal
nanosheets through oxidising TiH2 in eutectic ZnCl2/KCl salt melt [24]. Guilian Zhu
et al. prepared Magneli phase black titania via a similar procedure but using a TiO2 and
AlCl3−NaCl salts mixture, where the molten salts-assisted aluminium reduction is the
crucial parameter [12]. This method’s main advantage is that it leads to the formation of
nano-sized structures with a highly controllable morphology, which is a vast improvement
over many other methods.

3.5. Plasma Treatment

One of the titania reduction to Magneli phase black TiO2 strategies is plasma treat-
ment, and reductive H2 plasma is the most widely reported and investigated method. This
strategy can be applied to powders [20,68,69] and thin films [70], resulting in a control-
lable phase formation. The principal scheme of the methods is explained in the Figure 7.
The reduction by plasma is usually performed under vacuum conditions, and it has prin-
cipal similarities to annealing methods. However, the phase control of this method is
more precise.

Besides the H2 plasma treatment, there are other similar methods, such as mixed Ar
and H2 plasma [68], water plasma-assisted [21], and atmospheric-pressure plasma [19]
treatment methods. All these Magneli phase black titania formation methods are similar, as
the primary formation mechanism is based on titania reduction.
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4. Identification of Magneli Phase Black Titania

Properly identifying the Magneli phases is essential to understanding how differ-
ent synthesis methods affect the internal structure and morphology as well as what is
significantly influencing materials’ properties [12,15]. While the pure phase materials’
characterisation is simple, the Magneli phases are usually obtainable in heterostructures,
which makes characterisation more complex [47]. Due to this issue, characterisation with
several methods is always a must; as in most cases, the data from the different analysis
methods provide the information required to understand materials fully. Below, the leading
Magneli phase black titania characterisation methods are summarised, with emphasis on
the most meaningful analysis points.

4.1. Identification through X-ray Diffraction (XRD)

The XRD is a gold standard for evaluating most ceramic materials’ internal structure
and crystal phases. However, it is not as helpful in analysing the Magneli phases’ crystal
structure due to the frequently occurring formation of complex heterostructured samples
of many phases, which can be challenging to identify [72,73]. Another limitation of this
analysis method is the inability to analyse amorphous materials. Regardless, many studies
have successfully employed this analysis technique to analyse Magneli phase black titania
for many purposes. Tingting Hu et al. employed XRD for the investigation of thermal
stability and phase composition [47], as depicted in Figure 8.
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Chao Tang et al. reported a diligent investigation of TiO2 reduction under the NH3
gases atmosphere, where the XRD was employed as the main method to evaluate the
crystal structure [71]. In this study, the Ti4O7, Ti5O9, Ti6O11, Ti7O13, Ti9O17, and Ti3O5
crystal phases were successfully registered. Although there are several reports on the
characterisation of black titania Magneli phases by XRD, which can be used as a reference for
other studies [27,74], the additional characterisation by XPS, EPR, and Raman spectroscopy
is crucial to confirm the crystal phases.

4.2. Identification through Raman Spectroscopy

Raman spectroscopy is a powerful tool for analysing materials, and black titania
Magneli phases are no exception. One of the main advantages is that there are a variety of
laser excitations to choose from, and all of them provide slightly different spectrums with
different information. Moreover, Raman spectroscopy is a susceptible analysis method
that detects even slight changes in the samples, making it valuable for analysing Magneli
phases’ heterostructures [75]. As shown in Figure 9, the appearance of a new crystal phase
in the spectra is usually detected by the shift of peaks in the case of a low concentration of
detectable phases and by the appearance/disappearance of some peaks.
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The Raman spectroscopy spectra of black titania Magneli phases highly depend on
the excitation wavelength, and while the most common excitation is 785 nm, in some cases,
different lasers might be used during the analysis. The band at ~143 cm−1 blueshift is
an indisputable indication of Magneli phase black TiO2 formation reported by several
deep analyses of Magneli phases where Raman spectroscopy was employed [19,72,73]. It
is important to mention that in all these studies, the XRD patterns were not informative
and gave the same information; the Raman spectroscopy was the primary method for
identifying the internal structural changes of black titania Magneli phases.

4.3. Identification through Electron Paramagnetic Resonance (EPR)

Another essential identification method for black titania Magneli phases is the EPR
analysis, as showed in the Figure 10, which can give information about the electronic
structure of elements in the structure [77]. Specifically, for Magneli phases, EPR is focused
on two effects: (1) the existence of Ti3+ and (2) the oxygen vacancies in the samples, which
is secondary evidence of the presence of Ti3+ [16]. The detection of Ti3+ is crucial evidence
of non-stoichiometric titania formation, and this analysis is essential in supporting XRD or
Raman spectroscopy analysis data.

Crystals 2024, 14, x FOR PEER REVIEW 10 of 20 
 

 

 
Figure 10. Typical EPR spectra of white TiO2 (W-TiO2) and Ti3+ rich Magneli phase black titania (B-
TiO2). Reprinted from [76]. 

The Ti3+ presence is determined by EPR spectra, where at g = 2.003, the characteristic 
peak is seen. However, depending on the crystal phase and preparation method, the sec-
ond peak associated with oxygen vacancy formation might appear at g = 1.961 [16]. The 
Ti3+ presence in the structures is linked to the unique optical properties of Magneli phases. 
The narrow bandgap, up to lower than 1 eV, has been reported, and the diffuse reflectance 
measurements are crucial for characterising this property [78]. 

4.4. Identification through X-ray Photoelectron Spectroscopy (XPS) 
XPS can obtain precise information about black titania Magneli phases, which is a 

suitable method for surface evaluation [70]. However, modern types of this equipment 
can also etch the sample and analyse its internal structure. If performed carefully, the XPS 
analysis can provide essential insights into the samples, as shown in Figures 11 and 12. As 
shown in the XPS spectra depicted in Figure 11, the analysis of the peak in the 453 to 463 
eV range is essential to detect and separate the Ti4+, Ti3+, and Ti2+ species [71]. 

 
Figure 11. XPS Ti-2p3/2 peaks of pristine (A) and black (B) TiO2 sample. Reprinted from [71]. 

Figure 10. Typical EPR spectra of white TiO2 (W-TiO2) and Ti3+ rich Magneli phase black titania
(B-TiO2). Reprinted from [76].

The Ti3+ presence is determined by EPR spectra, where at g = 2.003, the characteristic
peak is seen. However, depending on the crystal phase and preparation method, the second
peak associated with oxygen vacancy formation might appear at g = 1.961 [16]. The Ti3+

presence in the structures is linked to the unique optical properties of Magneli phases. The
narrow bandgap, up to lower than 1 eV, has been reported, and the diffuse reflectance
measurements are crucial for characterising this property [78].

4.4. Identification through X-ray Photoelectron Spectroscopy (XPS)

XPS can obtain precise information about black titania Magneli phases, which is a
suitable method for surface evaluation [70]. However, modern types of this equipment
can also etch the sample and analyse its internal structure. If performed carefully, the XPS
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analysis can provide essential insights into the samples, as shown in Figures 11 and 12. As
shown in the XPS spectra depicted in Figure 11, the analysis of the peak in the 453 to 463 eV
range is essential to detect and separate the Ti4+, Ti3+, and Ti2+ species [71].

Crystals 2024, 14, x FOR PEER REVIEW 10 of 20 
 

 

 
Figure 10. Typical EPR spectra of white TiO2 (W-TiO2) and Ti3+ rich Magneli phase black titania (B-
TiO2). Reprinted from [76]. 

The Ti3+ presence is determined by EPR spectra, where at g = 2.003, the characteristic 
peak is seen. However, depending on the crystal phase and preparation method, the sec-
ond peak associated with oxygen vacancy formation might appear at g = 1.961 [16]. The 
Ti3+ presence in the structures is linked to the unique optical properties of Magneli phases. 
The narrow bandgap, up to lower than 1 eV, has been reported, and the diffuse reflectance 
measurements are crucial for characterising this property [78]. 

4.4. Identification through X-ray Photoelectron Spectroscopy (XPS) 
XPS can obtain precise information about black titania Magneli phases, which is a 

suitable method for surface evaluation [70]. However, modern types of this equipment 
can also etch the sample and analyse its internal structure. If performed carefully, the XPS 
analysis can provide essential insights into the samples, as shown in Figures 11 and 12. As 
shown in the XPS spectra depicted in Figure 11, the analysis of the peak in the 453 to 463 
eV range is essential to detect and separate the Ti4+, Ti3+, and Ti2+ species [71]. 

 
Figure 11. XPS Ti-2p3/2 peaks of pristine (A) and black (B) TiO2 sample. Reprinted from [71]. Figure 11. XPS Ti-2p3/2 peaks of pristine (A) and black (B) TiO2 sample. Reprinted from [71].

Crystals 2024, 14, x FOR PEER REVIEW 11 of 20 
 

 

Moreover, the XPS data of low energies in the range of 0 to 12 eV is also essential, as 
these spectra give information about the occupied density of the state. This spectra range 
gives information about oxygen vacancies and explains the sample’s electronic structure 
[55]. Marcin Janczarek et al. employed the XPS for deep sample analysis in their study 
[53].  

 
Figure 12. Pristine and black TiO2 sample electronic structure (A) and XPS Ti-2p3/2 peaks (B). Re-
printed from [71]. 

Despite XPS being a suitable method for analysing Magneli phase black titania’s in-
ternal structure, it has some limitations, mainly because it is employed for thin films. 
Moreover, XPS alone is not sufficient to prove the formation of Magneli phase black tita-
nia, as it is a technique for analysis of the surfaces and can not provide enough data to 
prove the formation of Magneli phases. The supporting information from XRD, EPR, and 
Raman spectroscopy is necessary for the correct analysis of XPS data. 

5. Applications 
The Magneli phases of titania possess two main advantages compared to regular ti-

tania: (1) a narrow bandgap and (2) some phases with close to metallic conductivity [26]. 
Most Magneli phase black titania applications are based on these properties and focus on 
photocatalysis [79–81], supercapacitor electrodes [17,82], gas sensors [27,83], fuel cells [84–
86], and surface-enhanced Raman spectroscopy substrates [87,88]. In recent years, Mag-
neli phase black Titania has contributed significantly to these application areas and ex-
tended practical application possibilities. Below are several application fields where Mag-
neli phase black titania significantly improved. 

5.1. Supercapacitors 
Electrochemical energy storage has become a substantial practical problem nowa-

days, as renewable power sources have greatly improved and are integrated widely into 
the electrical grids. However, the storage of electrochemical energy does not improve as 
fast as production, and there is a massive gap in this field, which is one of the main limit-
ing factors for the further development of renewable power sources [89]. The technologies 
for efficient supercapacitors are developing fast; however, new materials are required for 
performance improvements, and Magneli phase black titania perfectly fits this application 
[90,91]. 

Tomas Sabirovas et al. demonstrated that, specifically, titanium monoxide (TiO) in 
the composition with polyaniline (PANI) can form an electrode possessing enhanced con-
ductivity together with electron-transfer kinetics and near-ideal supercapacitive proper-
ties, which is shown in [17]. It was also reported that the hydrogen-reduced TiO2 nanotube 
arrays, in combination with graphene, formed a high-performance supercapacitor elec-

Figure 12. Pristine and black TiO2 sample electronic structure (A) and XPS Ti-2p3/2 peaks (B).
Reprinted from [71].

Moreover, the XPS data of low energies in the range of 0 to 12 eV is also essential,
as these spectra give information about the occupied density of the state. This spectra
range gives information about oxygen vacancies and explains the sample’s electronic
structure [55]. Marcin Janczarek et al. employed the XPS for deep sample analysis in their
study [53].

Despite XPS being a suitable method for analysing Magneli phase black titania’s
internal structure, it has some limitations, mainly because it is employed for thin films.
Moreover, XPS alone is not sufficient to prove the formation of Magneli phase black titania,
as it is a technique for analysis of the surfaces and can not provide enough data to prove
the formation of Magneli phases. The supporting information from XRD, EPR, and Raman
spectroscopy is necessary for the correct analysis of XPS data.

5. Applications

The Magneli phases of titania possess two main advantages compared to regular
titania: (1) a narrow bandgap and (2) some phases with close to metallic conductiv-
ity [26]. Most Magneli phase black titania applications are based on these properties and
focus on photocatalysis [79–81], supercapacitor electrodes [17,82], gas sensors [27,83], fuel
cells [84–86], and surface-enhanced Raman spectroscopy substrates [87,88]. In recent years,
Magneli phase black Titania has contributed significantly to these application areas and
extended practical application possibilities. Below are several application fields where
Magneli phase black titania significantly improved.
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5.1. Supercapacitors

Electrochemical energy storage has become a substantial practical problem nowadays,
as renewable power sources have greatly improved and are integrated widely into the
electrical grids. However, the storage of electrochemical energy does not improve as fast as
production, and there is a massive gap in this field, which is one of the main limiting factors
for the further development of renewable power sources [89]. The technologies for efficient
supercapacitors are developing fast; however, new materials are required for performance
improvements, and Magneli phase black titania perfectly fits this application [90,91].

Tomas Sabirovas et al. demonstrated that, specifically, titanium monoxide (TiO) in the
composition with polyaniline (PANI) can form an electrode possessing enhanced conductiv-
ity together with electron-transfer kinetics and near-ideal supercapacitive properties, which
is shown in [17]. It was also reported that the hydrogen-reduced TiO2 nanotube arrays, in
combination with graphene, formed a high-performance supercapacitor electrode [82]. The
impressive performance of these electrodes is associated with a high specific surface area
and outstanding conductivity due to the formation of Magneli phase black titania. Recently,
an investigation of Magneli phase black TiO2 nanotubes decorated biomass-derived spongy
carbon as an electrode material was published, with promising capacitance results [92].

The application of Magneli phase black titania in supercapacitors has not been fully
studied, and many fundamental questions remain open, such as what Magneli phase
black titania phase would be the most favourable for such applications. Moreover, little
information exists on how the Magneli phase black titania-based heterostructures perform
as electrodes. As Magneli phase black titania-based electrodes show promising results
for application in the field of supercapacitors, these fundamental issues are expected to
be answered.

5.2. Self-Heating Gas Sensors

Self-heating gas sensors are a novel fast developing research direction. The main
advantage of such a design of sensors is an extremely low energy consumption, which
extends the potential application cases and makes it possible to use with low-energy power
sources. In most cases, these sensors are designed by many steps, and the self-heating
effect is triggered by a metal/metal oxide/metal structure [93]. At the same time, there
are several reports about Magneli phase black titania’s application in gas sensing [28,94].
However, in most cases, these sensors have a relatively low working temperature while
still showing good sensitivity [83]. Despite this fact, there are reports about self-heating
Magneli phase-based gas sensors; however, this type of sensor can be highly applicable in
various alcohol sensing applications, as depicted in Figure 13.
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The explanation of the self-heating Magneli phase black titania-based gas sensors phe-
nomenon is not very clear; however, it is expected that the heterostructure of TiO2−x/TiO2
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is responsible for the heating. Moreover, it was discovered that such sensors are applicable
for the detection of various alcohols with good sensitivity and high selectivity. The sen-
sitivity to particular alcohol vapours depends on the operating temperature, and while,
at room temperature, the surface was blocked by adsorbed humidity, at the elevated tem-
peratures starting from 72 ◦C, the sensitivity increased. The sensors were operating in the
temperature range from 72 to 180 ◦C, and it was discovered that the highest sensitivity was
reached for methanol and ethanol. Moreover, the operating temperatures controlled these
sensors’ selectivity [27,28].

5.3. Fuel Cells

Magneli phase black titania shows advancements in the design of various types of
fuel cells, and there have been several applications in this field. The Magneli phase black
TiO2 is usually decorated in noble metals to enhance performance. Keerti M. Naik et al.
demonstrated palladium decorated defect-rich Magneli phase black titania application in
the design of fuel cells for oxygen reduction and glycerol oxidation [84]. Aikaterini Touni
et al. reported the application of platinum-coated Magneli phase black titanium nanotubes
for methanol oxidation. In this study, the high mass specific activity towards MOR (ca
700 mA mgPt−1 at the voltammetric peak of 5 mVs−1 in 0.5 M MeOH) makes the material
ideal as a MOR catalyst in DMFCs and electrolysers [85]. These studies show promising
results for Magneli phase black titania application in developing direct alcohol fuel cells.

Luiz Felipe Placa et al. demonstrated a novel Magneli phase black titania-based
photocatalytic fuel cells (PFCs) design, which can harvest solar energy through relatively
low-cost semiconductor material to convert the chemical energy of renewable fuels and
oxidants directly into electricity. [86]. The noble metal free fuel cell employing chemically
reduced Magneli phase black titania performance for methanol oxidation and oxygen
reduction was ∼2000% higher in comparison to the regular titania. This investigation
shows promising results for constructing a PFC without noble metals for the methanol
conversion under sunlight.

5.4. Surface-Enhanced Raman Spectroscopy

Surface-enhanced Raman spectroscopy (SERS) is a novel sensing technique with a
sensitivity up to a single molecule. One of the main challenges preventing this technique’s
practical application is the requirement of noble metal substrates for the analysis. Many
studies have been done to change the substrates to be cheaper and more suitable for mass
application; however, up to now, there has been no breakthrough. The Magneli phase
black titania has several favourable properties applicable to the substrates for SERS, such
as a sensitivity that is similar to noble metals [87,88,95] and a photocatalytic self-cleaning
ability [88,96,97], making the substrates highly reusable.

Lili Yang et al. reported a study comparing the regular and Magneli phase black
titania nanowires SERS enhancement factors for Rhodamine 6G dyes. It was discovered
that Magneli phase black TiO2 has an enhancement factor of up to 1.2 × 106, comparable to
the results of silver substrate. Moreover, the Magneli phase black titania substrate photo-
catalytically decomposes organic dyes, making substrates reusable. The high enhancement
factor also shows that Magneli phase black titania-based substrates overcome one of the
main challenges using semiconductors for SER; as in most cases, the enhancement factor
mechanisms are based on chemical enhancement mechanisms, leading to an enhancement
factor in the power of 102. However, the Magneli phase black titania experiments show
that these substrates possess electromagnetic enhancement mechanisms [87].

Similarly, Y. Shan et al. introduced substrates constituted of Magneli phase black
titania nanowires decorated with silver nanoparticles for the enhanced SERS technique.
The substrates showed an improved enhancement factor comparable to that of a pure, noble
metal substrate for Rhodamine 6G dyes while maintaining self-cleaning properties [88].
Magneli phase black titania’s self-cleaning properties and high reusability distinguishes
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it from other substrates while showing its promising sensitivity for broader application
in SERS.

5.5. Visible Light Photocatalytic Applications

Visible light-induced photocatalysis is a novel application area under the experimen-
tal development phase; however, it shows great potential to solve many problems that
humankind is facing nowadays [98]. This technology is primarily applicable to the photo-
catalytic decomposition of wastewater pollutants. For several decades, similar applications
have been investigated with TiO2 under UV light [99]; however, the use of Magneli phase
black titania and visible light extends the applications and shows great potential for broad
practical application [38].

The main Magneli phase black titania application is the visible-light-induced pho-
tocatalytic decomposition of various organic pollutants [73]. This application is highly
novel, and there are many reports about Magneli phase black titania with tunable bandgap
decomposition results [100]. There are reports of Magneli phase black titania being used
to decompose organic molecules such as organic dyes [21] and antibiotics [79], and other
drugs such as paracetamol [80] and aspirin [81]. The most advanced applications of Mag-
neli phase black titania-based photocatalysts are for the decomposition of antibiotics [79],
which highly affect human health and are relatively stable under natural conditions [47].

5.6. Medicine

Several Magneli phase black titania cytotoxicity studies reveal that these structures are
not hazardous and are compatible with humans [101,102]. These studies open the avenue
for Magneli phase black titania application for implant coatings [103,104], photothermal
therapy [18,105], and antimicrobial coatings [106,107]. Medical devices and implants coated
with Magneli phase black titania exhibit antibacterial solid properties due to photocatalytic
activity. Under light exposure, the material generates reactive oxygen species, which
destroys bacterial cell walls [106,107]. This capability is crucial in reducing the risk of
infections associated with surgical implants and other medical devices [107,108]. Another
notable application of Magneli phase black titania is photothermal therapy [109,110]. This
method employed the Magneli phase black titania-generated reactive oxygen species to
treat cancerous tumours. Despite its promising applications, Magneli phase black titania’s
safety and its long-term effects in medical applications need thorough investigation. While
initial studies indicate that Magneli phase black titania is biocompatible and less toxic
than other nanoparticles, comprehensive in vivo studies and clinical trials are essential to
confirm its safety profile.

5.7. Microwave Absorption

The rapid evolution of telecommunications, radar systems, and electronic devices has
increased the demand for materials capable of absorbing microwaves to mitigate electromag-
netic interference (EMI) and enhance stealth technology. Several reports show the application
of Magneli phase black titania for efficient microwave absorption [111–116]. For instance,
Ti4O7 [112,113], Ti2O3 [114], TiO [117], and Ti3O5 [115,116] have shown remarkable per-
formance as microwave absorbers due to their ability to maintain high conductivity and
stability under electromagnetic fields. The efficiency of these materials is explained by the
defects introduced, which create localised states within the bandgap, facilitating the dissi-
pation of electromagnetic energy as heat, thus reducing the reflection and transmission of
microwaves [111,114,117]. This effect is particularly applicable in stealth technology, where
reducing radar cross-sections is crucial for making objects less detectable by radar systems.
As the demand for high-performance microwave-absorbing materials continues to rise,
Magneli phase black titania is a promising candidate to meet these technological challenges.
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5.8. Commercial Applications

A titanium Magneli phase materials brand, Ebonex®, is marketed mainly by Atraverda [35],
Atranova, and Vector Corrosion Technologies [43]. Ebonex® has several applications, such
as electrodes for electrochemical processes, fuel cell components, and corrosion-resistant
coatings [43,118]. The high conductivity and chemical stability of Magneli phases improve
the efficiency of electrochemical processes such as electrochlorination [119]. Moreover,
Ebonex® is utilised in the gas diffusion layers and electrodes of fuel cells, contributing to
better performance and longevity due to its excellent electrical conductivity and resistance
to corrosion. These layers facilitate the distribution of gases to the catalyst sites and improve
the fuel cell’s overall efficiency [43]. The significant stability of Ebonex® under harsh
conditions is one of the main advantages of challenging precious metal electrodes [119,120].

6. Conclusions and Future Outlook

Although the first Magneli phase black titania was reported in 1957, interest in this
material started to rise after Xiaobo Chen’s work was reported in 2011 and the term
“Black TiO2” was introduced. Since then, the formation methods improved significantly,
encouraging the broader application of these unique materials. A few unique Magneli phase
black titania applications were reported, such as self-heating gas sensors, supercapacitors,
fuel cells, medicine, photocatalysis, microwave absorption, and SERS substrates. Moreover,
several commercial Mangeli-phase black titania products under the product brand Ebonex®

are widely applicable in various electrochemical applications.
The synthesis of Magneli phase black titania with a precisely controllable crystal

phase composition and tunable properties on a large scale is challenging. However, the
rising need for these materials for broader applications is pushing the development of new
synthesis methods. The synthesis methods and characterisation discussed in the article will
guide researchers in identifying Magneli phase black titania more precisely.
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98. Djurišić, A.B.; He, Y.; Ng, A.M.C. Visible-Light Photocatalysts: Prospects and Challenges. APL Mater. 2020, 8, 030903. [CrossRef]
99. Chen, D.; Cheng, Y.; Zhou, N.; Chen, P.; Wang, Y.; Li, K.; Huo, S.; Cheng, P.; Peng, P.; Zhang, R.; et al. Photocatalytic Degradation

of Organic Pollutants Using TiO2-Based Photocatalysts: A Review. J. Clean. Prod. 2020, 268, 121725. [CrossRef]
100. Bi, Q.; Huang, X.; Dong, Y.; Huang, F. Conductive Black Titania Nanomaterials for Efficient Photocatalytic Degradation of Organic

Pollutants. Catal. Lett. 2020, 150, 1346–1354. [CrossRef]
101. Kononenko, V.; Drobne, D. In Vitro Cytotoxicity Evaluation of the Magnéli Phase Titanium Suboxides (TixO2x−1) on A549 Human

Lung Cells. Int. J. Mol. Sci. 2019, 20, 196. [CrossRef] [PubMed]
102. Jemec Kokalj, A.; Novak, S.; Talaber, I.; Kononenko, V.; Bizjak Mali, L.; Vodovnik, M.; Žegura, B.; Eleršek, T.; Kalčikova, G.;
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