Numerical Modeling of Hybrid Solar/Thermal Conversion Efficiency Enhanced by Metamaterial Light Scattering for Ultrathin PbS QDs-STPV Cell
Abstract
:1. Introduction
2. Materials and Methods
2.1. Numerical Method
2.2. Geometric Design
3. Results and Discussion
3.1. Absorbed Energy
3.2. Absorbed Power per Material
3.3. SPP, MP, and LMR Behaviors at Oblique Incidence
3.4. Electrical Performance of HSTPVC
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gupta, B.D.; Sharma, A.K.; Li, J. Plasmonics-Based Optical Sensors and Detectors; Jenny Stanford Publishing: New York, NY, USA, 2023. [Google Scholar] [CrossRef]
- Maier, S.A. Plasmonics: Fundamentals and Applications; Springer: New York, NY, USA, 2007. [Google Scholar] [CrossRef]
- Lin, J.-S.; Tian, X.-D.; Li, G.; Zhang, F.-L.; Wang, Y.; Li, J.-F. Advanced plasmonic technologies for multi-scale biomedical imaging. Chem. Soc. Rev. 2022, 51, 9445–9468. [Google Scholar] [CrossRef] [PubMed]
- Shaghouli, E.; Granpayeh, N.; Manavizadeh, N. Plasmonic enhanced ultra-thin solar cell: A combined approach using fractal and nano-antenna structure to maximize absorption. Results Phys. 2023, 50, 106600. [Google Scholar] [CrossRef]
- Gaur, D.S.; Purohit, A.; Mishra, S.K.; Mishra, A.K. An Interplay between Lossy Mode Resonance and Surface Plasmon Resonance and Their Sensing Applications. Biosensors 2022, 12, 721. [Google Scholar] [CrossRef] [PubMed]
- Paliwal, N.; John, J. Lossy Mode Resonance (LMR) Based Fiber Optic Sensors: A Review. IEEE Sens. J. 2015, 15, 5361–5371. [Google Scholar] [CrossRef]
- Naik, G.V.; Shalaev, V.M.; Boltasseva, A. Alternative Plasmonic Materials: Beyond Gold and Silver. Adv. Mater. 2013, 25, 3264–3294. [Google Scholar] [CrossRef]
- Wang, H.; Prasad Sivan, V.; Mitchell, A.; Rosengarten, G.; Phelan, P.; Wang, L. Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting. Sol. Energy Mater. Sol. Cells 2015, 137, 235–242. [Google Scholar] [CrossRef]
- Xu, Y.; Xuan, Y. Photon management of full-spectrum solar energy through integrated honeycomb/cone nanostructures. Opt. Commun. 2019, 430, 440–449. [Google Scholar] [CrossRef]
- Bendelala, F.; Cheknane, A.; Hilal, H. Enhanced low-gap thermophotovoltaic cell efficiency for a wide temperature range based on a selective meta-material emitter. Sol. Energy 2018, 174, 1053–1057. [Google Scholar] [CrossRef]
- Sakakibara, R.; Stelmakh, V.; Chan, W.R.; Ghebrebrhan, M.; Joannopoulos, J.D.; Soljacic, M.; Čelanović, I. Practical emitters for thermophotovoltaics: A review. JPE 2019, 9, 032713. [Google Scholar] [CrossRef]
- Arya, S.; Mahajan, P. Solar Cells: Types and Applications; Springer Nature: Singapore, 2023. [Google Scholar] [CrossRef]
- Bauer, T. Thermophotovoltaics: Basic Principles and Critical Aspects of System Design; Green Energy and Technology; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar] [CrossRef]
- Bermel, P.; Boriskina, S.V.; Yu, Z.; Joulain, K. Control of radiative processes for energy conversion and harvesting. Opt. Express OE 2015, 23, A1533–A1540. [Google Scholar] [CrossRef]
- Green, M.A.; Emery, K.; Hishikawa, Y.; Warta, W.; Dunlop, E.D. Solar cell efficiency tables (version 40). Prog. Photovolt. Res. Appl. 2012, 20, 606–614. [Google Scholar] [CrossRef]
- Mailoa, J.P.; Lee, M.; Peters, I.M.; Buonassisi, T.; Panchula, A.; Weiss, D.N. Energy-yield prediction for II–VI-based thin-film tandem solar cells. Energy Environ. Sci. 2016, 9, 2644–2653. [Google Scholar] [CrossRef]
- Gamel, M.M.A.; Lee, H.J.; Rashid, W.E.S.W.A.; Ker, P.J.; Yau, L.K.; Hannan, M.A.; Jamaludin, M.Z. A Review on Thermophotovoltaic Cell and Its Applications in Energy Conversion: Issues and Recommendations. Materials 2021, 14, 4944. [Google Scholar] [CrossRef]
- Lu, Q.; Zhou, X.; Krysa, A.; Marshall, A.; Carrington, P.; Tan, C.-H.; Krier, A. InAs thermophotovoltaic cells with high quantum efficiency for waste heat recovery applications below 1000 °C. Sol. Energy Mater. Sol. Cells 2018, 179, 334–338. [Google Scholar] [CrossRef]
- Rühle, S. Tabulated values of the Shockley–Queisser limit for single junction solar cells. Sol. Energy 2016, 130, 139–147. [Google Scholar] [CrossRef]
- Mamiyev, Z.; Balayeva, N.O. PbS nanostructures: A review of recent advances. Mater. Today Sustain. 2023, 21, 100305. [Google Scholar] [CrossRef]
- Yu, P.; Wang, Z.M. (Eds.) Quantum Dot Optoelectronic Devices; Lecture Notes in Nanoscale Science and Technology; Springer International Publishing: Cham, Switzerland, 2020; Volume 27. [Google Scholar] [CrossRef]
- Wang, H.; Kubo, T.; Nakazaki, J.; Segawa, H. Solution-Processed Short-Wave Infrared PbS Colloidal Quantum Dot/ZnO Nanowire Solar Cells Giving High Open-Circuit Voltage. ACS Energy Lett. 2017, 2, 2110–2117. [Google Scholar] [CrossRef]
- Fu, Y.; Dinku, A.G.; Hara, Y.; Miller, C.W.; Vrouwenvelder, K.T.; Lopez, R. Modeling photovoltaic performance in periodic patterned colloidal quantum dot solar cells. Opt. Express OE 2015, 23, A779–A790. [Google Scholar] [CrossRef]
- Burger, T.; Fan, D.; Lee, K.; Forrest, S.R.; Lenert, A. Thin-Film Architectures with High Spectral Selectivity for Thermophotovoltaic Cells. ACS Photonics 2018, 5, 2748–2754. [Google Scholar] [CrossRef]
- Ni, Q.; Alshehri, H.; Yang, Y.; Ye, H.; Wang, L. Plasmonic light trapping for enhanced light absorption in film-coupled ultrathin metamaterial thermophotovoltaic cells. Front. Energy 2018, 12, 185–194. [Google Scholar] [CrossRef]
- Saive, R. Light trapping in thin silicon solar cells: A review on fundamentals and technologies. Prog. Photovolt. Res. Appl. 2021, 29, 1125–1137. [Google Scholar] [CrossRef]
- Cho, C.; Song, J.H.; Kim, C.; Jeong, S.; Lee, J.-Y. Broadband light trapping strategies for quantum-dot photovoltaic cells (>10%) and their issues with the measurement of photovoltaic characteristics. Sci. Rep. 2017, 7, 17393. [Google Scholar] [CrossRef] [PubMed]
- Weiland, T. A discretization model for the solution of Maxwell’s equations for six-component fields. Arch. Elektron. Und Uebertragungstechnik 1977, 31, 116–120. [Google Scholar]
- Bendelala, F.; Cheknane, A.; Hilal, H.S.; Goumri-Said, S. Extremely Low-Loss Broadband Thermal Infrared Absorber Based on Tungsten Metamaterial. J. Electron. Mater. 2019, 48, 3304–3310. [Google Scholar] [CrossRef]
- Li, H.H. Refractive Index of ZnS, ZnSe, and ZnTe and Its Wavelength and Temperature Derivatives. J. Phys. Chem. Ref. Data 1984, 13, 103–150. [Google Scholar] [CrossRef]
- Yang, J.; Xu, C.; Qu, S.; Ma, H.; Wang, J.; Pang, Y. Optical transparent infrared high absorption metamaterial absorbers. J. Adv. Dielect. 2018, 8, 1850007. [Google Scholar] [CrossRef]
- Bi, Y.; Bertran, A.; Gupta, S.; Ramiro, I.; Pradhan, S.; Christodoulou, S.; Majji, S.-N.; Akgul, M.Z.; Konstantatos, G. Solution processed infrared- and thermo-photovoltaics based on 0.7 eV bandgap PbS colloidal quantum dots. Nanoscale 2019, 11, 838–843. [Google Scholar] [CrossRef]
- Grinolds, D.D.W.; Brown, P.R.; Harris, D.K.; Bulovic, V.; Bawendi, M.G. Quantum-Dot Size and Thin-Film Dielectric Constant: Precision Measurement and Disparity with Simple Models. Available online: https://pubs.acs.org/doi/pdf/10.1021/nl5024244 (accessed on 18 March 2023).
- Moreels, I.; Lambert, K.; Smeets, D.; De Muynck, D.; Nollet, T.; Martins, J.C.; Vanhaecke, F.; Vantomme, A.; Delerue, C.; Allan, G.; et al. Size-Dependent Optical Properties of Colloidal PbS Quantum Dots. ACS Nano 2009, 3, 3023–3030. [Google Scholar] [CrossRef]
- Rahimi, Z. The Finite Integration Technique (FIT) and the Application in Lithography Simulations; Friedrich-Alexander-Universitaet Erlangen-Nuernberg: Erlangen, Germany, 2011. [Google Scholar]
- Ordal, M.A.; Bell, R.J.; Alexander, R.W.; Long, L.L.; Querry, M.R. Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W. Appl. Opt. AO 1985, 24, 4493–4499. [Google Scholar] [CrossRef]
- Bendelala, F.; Cheknane, A.; Benatallah, M.; Nunzi, J.-M. Extending the absorption band from infrared to ultraviolet using the ITO transition from reflection to transparence. Eur. Phys. J. Appl. Phys. 2021, 96, 10501. [Google Scholar] [CrossRef]
- Kupresak, M.; Zheng, X.; Vandenbosch, G.A.E.; Moshchalkov, V.V. Benchmarking of software tools for the characterization of nanoparticles. Opt. Express OE 2017, 25, 26760–26780. [Google Scholar] [CrossRef]
- Lee, Y.P.; Rhee, J.Y.; Yoo, Y.J.; Kim, K.W. Metamaterials for Perfect Absorption; Springer Series in Materials Science; Springer: Singapore, 2016; Volume 236. [Google Scholar] [CrossRef]
- Silvester, P.P.; Ferrari, R.L. Finite Elements for Electrical Engineers; Cambridge University Press: Cambridge, UK, 1996. [Google Scholar] [CrossRef]
- Zainud-Deen, S.H.; El-Shalaby, N.A.; Awadalla, K.H. Hemispherical DRA Antennas Mounted on or Embedded in Circular Cylindrical Surface forProducing Omnidirectional Radiation Pattern. Int. J. Commun. Netw. Syst. Sci. 2011, 4, 601–608. [Google Scholar] [CrossRef]
- Fuentes, O.; Del Villar, I.; Dominguez, I.; Corres, J.M.; Matías, I.R. Simultaneous Generation of Surface Plasmon and Lossy Mode Resonances in the Same Planar Platform. Sensors 2022, 22, 1505. [Google Scholar] [CrossRef]
- Zhang, W.-W.; Qi, H.; Yin, Y.-M.; Ren, Y.-T. Tailoring radiative properties of a complex trapezoidal grating solar absorber by coupling between SPP and multi-order MP for solar energy harvesting. Opt. Commun. 2021, 479, 126416. [Google Scholar] [CrossRef]
- Wang, H.; Wang, L. Plasmonic light trapping in an ultrathin photovoltaic layer with film-coupled metamaterial structures. AIP Adv. 2015, 5, 027104. [Google Scholar] [CrossRef]
- Miller, C.W.; Fu, Y.; Lopez, R. Enhancing energy absorption in quantum dot solar cells via periodic light-trapping microstructures. J. Opt. 2016, 18, 094002. [Google Scholar] [CrossRef]
- Ganesan, A.A.; Houtepen, A.J.; Crisp, R.W. Quantum Dot Solar Cells: Small Beginnings Have Large Impacts. Appl. Sci. 2018, 8, 1867. [Google Scholar] [CrossRef]
- Zhang, Z.M. Nano/Microscale Heat Transfer; Mechanical Engineering Series; Springer International Publishing: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Ding, C.; Wang, D.; Liu, D.; Li, H.; Li, Y.; Hayase, S.; Sogabe, T.; Masuda, T.; Zhou, Y.; Yao, Y.; et al. Over 15% Efficiency PbS Quantum-Dot Solar Cells by Synergistic Effects of Three Interface Engineering: Reducing Nonradiative Recombination and Balancing Charge Carrier Extraction. Adv. Energy Mater. 2022, 12, 2201676. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baitiche, O.; Bendelala, F.; Cheknane, A.; Rabehi, A.; Comini, E. Numerical Modeling of Hybrid Solar/Thermal Conversion Efficiency Enhanced by Metamaterial Light Scattering for Ultrathin PbS QDs-STPV Cell. Crystals 2024, 14, 668. https://doi.org/10.3390/cryst14070668
Baitiche O, Bendelala F, Cheknane A, Rabehi A, Comini E. Numerical Modeling of Hybrid Solar/Thermal Conversion Efficiency Enhanced by Metamaterial Light Scattering for Ultrathin PbS QDs-STPV Cell. Crystals. 2024; 14(7):668. https://doi.org/10.3390/cryst14070668
Chicago/Turabian StyleBaitiche, Oussama, Fathi Bendelala, Ali Cheknane, Abdelaziz Rabehi, and Elisabetta Comini. 2024. "Numerical Modeling of Hybrid Solar/Thermal Conversion Efficiency Enhanced by Metamaterial Light Scattering for Ultrathin PbS QDs-STPV Cell" Crystals 14, no. 7: 668. https://doi.org/10.3390/cryst14070668
APA StyleBaitiche, O., Bendelala, F., Cheknane, A., Rabehi, A., & Comini, E. (2024). Numerical Modeling of Hybrid Solar/Thermal Conversion Efficiency Enhanced by Metamaterial Light Scattering for Ultrathin PbS QDs-STPV Cell. Crystals, 14(7), 668. https://doi.org/10.3390/cryst14070668