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Abstract: The linear combination of atomic orbitals (LCAO) method is advantageous for calculating
important bulk and surface properties of crystals and defects in/on them. Compared to plane wave
calculations and contrary to common assumptions, hybrid density functional theory (DFT) functionals
are actually less costly and easier to implement in LCAO codes. However, choosing the proper basis set
(BS) for the LCAO calculations representing Guassian-type functions is crucial, as the results depend
heavily on its quality. In this study, we introduce a new basis set (BS) visual representation, which helps
us (1) analyze the collective behavior of individual atoms’ shell exponents (s, p, and d), (2) better compare
different BSs, (3) identify atom-type invariant relationships, and (4) suggest a robust method for building
a local all-electron BS (denoted as BS1) from scratch for each atom type. To compare our BS1 with the
others existing in the literature, we calculate the basic bulk properties of SrTiO3 (STO) in cubic and
tetragonal phases using several hybrid DFT functionals (B3LYP, PBE0, and HSE06). After adjusting the
exact Hartree–Fock (HF) exchange of PBEx, HSEx, and the state-of-the-art meta-GGA hybrid r2SCANx
functionals, we find the r2SCAN15 and HSE27 for BS1, with the amount of exact HF exchange of 0.15 and
0.27, respectively, perform equally well for reproducing several most relevant STO properties. The
proposed robust BS construction scheme has the advantage that all parameters of the obtained BS can be
reoptimized for each new material, thus increasing the quality of DFT calculation predictions.

Keywords: basis set; optimization; DFT; LCAO; hybrid functional; HSE; r2SCAN; SrTiO3

1. Introduction

Strontium titanate (STO) is a prototypical material in the perovskite family and is a
principal focus for technology and research. Its unique electronic and lattice dynamics
properties [1] have established it as a model material in various applications for many
years (e.g., [2–5]). Understanding these properties on an atomistic level requires the best
available methods. Virtually every up-to-date density functional theory (DFT) method is
used to study STO’s challenging and fascinating properties, a trend likely to continue into
the foreseeable future.

We choose STO as a model material for basis set (BS) testing for two main reasons.
Firstly, it is a d0 transition metal oxide, making the bandgap problem relevant here. Sec-
ondly, it exhibits a specific phonon frequency behavior at the Γ-point and a high dielectric
constant. Below about 105 K, STO undergoes a structural phase transition from cubic Pm3m
(space group (SG) 221) to tetragonal I4/mcm (SG 140) phase [6]. The phase transformation
is associated with antiferrodistortive (AFD) displacements when oxygen octahedra rotate
in antiphase around the [001] direction. According to a group-theoretical analysis, the
transition from cubic to tetragonal phase occurs due to the softening of the R+

4 phonon
mode [7]. Nevertheless, STO is also known as incipient ferroelectric, in which quantum
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fluctuations suppress the ferroelectric (FE) mode [8] related to the phonon frequency at
the Γ-point.

Spectroscopic ellipsometry experiments suggest that the direct gap of the STO increases
from 3.7 to 3.8 eV with temperature without any noticeable effect at the structural phase
transition temperature [9–11]. The indirect gap in the cubic phase, determined from the
comparatively weaker signal, decreases from 3.23 eV with temperature [9,11].

Thus, the theoretical STO model has to account for many geometric and electronic
properties in the unified approach. There exist numerous DFT studies of perfect bulk
STO [7,12–17], employing different DFT methods and, thus, different degrees of accuracy.
We distinguish three different paradigms in applications of DFT to the studies on STO:
Hubbard-model-based approaches, GW calculations, and hybrid density functionals.

The ONETEP code with a linear scaling approach to the DFT calculations, atom-
centered BS (Wannier functions), and DFT + Ud,p + Jd,p method (which means the ap-
plication of U- and J-parameters to both Ti-3d and O-2p electrons) as used by Win-
szewski et al. [15] suggest significant improvements in the description of cubic STO elec-
tronic and structural properties and of defects behavior therein. Even though the method
implies a ’reasonable’ band gap value for the oxygen vacancy and hydrogen interstitial
behavior, the direct/indirect band gap is still smaller by 0.53/0.33 eV compared with the
experimental value. A better agreement with the experimental indirect band gap was
achieved by applying three different U-values to Sr-4d, O-2p, and Ti-3d electrons in a very
recent study of Derkaoui et al. [17]. Alternatively, in the DFT + U + V calculations of
Ricca et al. [16] extended for the intersite interactions, the Hubbard U- and V-parameters
are obtained self-consistently within the density functional perturbation theory, resulting in
a band gap close, albeit with slightly smaller lattice parameters, to the experimental value
(see our analysis in Section 5).

Contrary to standard GGA and DFT + U (with the application of only one U-parameter
for Ti 3d electrons) calculations [15,16], earlier GW calculations tend to significantly overes-
timate the band gap [18–20] with some exceptions [21–23]. For example, Sponza et al. [22]
showed the direct band gap of 3.76 eV calculated with the G0W0 approximation, whereas
Hamann and Vanderbilt [23] obtained the indirect band gap of 3.32 eV from the QSGW
calculations with the maximally localized Wannier functions for quasiparticles of the cubic
STO. However, we would also like to mention a more recent study by Bhandari et al. [24]
based on the extended quasiparticle self-consistent GW (i.e., QSGW + LPC + 0.8Σ), which
showed the calculated band gap values for cubic and tetragonal STO consistent with the ex-
periments. They also emphasized including Sr-4p and Ti-3p states as the valence electrons.

Even though all the calculation methods discussed above suggest essential contribu-
tions to the studies of STO, the hybrid DFT functionals within the framework of LCAO still
represent the most effective approach in terms of calculation time and accuracy. First, such
calculations allow for the simultaneous treatment of several material properties. Second, the
point defects require large unit cells and low symmetries, which makes their calculations
demanding. However, the hybrid functionals can be efficiently implemented using LCAO,
which significantly reduces the calculation time compared to the plane wave calculations
without imposing additional parameters. We usually do not experience problems with the
LCAO calculations with the hybrid DFT functionals and large supercells. Therefore, the
LCAO approach is worthy of study and development as an important alternative and/or
complement to more popular plane-wave calculations. Our team at the Institute of Solid
State Physics of the University of Latvia [25] has significantly contributed to applying the
LCAO approach to solids since the 1980s. Nevertheless, it needs to be recognized that
finding an optimal BS for the LCAO calculations for crystals is a challenge.

In the present study, we discuss the basic BS properties overlooked so far in the
literature and, based on that, suggest a practical method for all-electron BS construction
from scratch. We will show that our approach to the local BS construction and optimization
is robust and easy to follow. In addition, we will make proper comparisons with the
other BSs for STO existing in the literature. We will apply the state-of-the-art meta-GGA
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hybrid r2SCANx [26,27] functional available in the CRYSTAT23 code for the first time to
the calculation of STO properties in the cubic and tetragonal phases. We will compare
four different hybrid density functionals with and without non-local terms and adjusted
amounts of Hartree–Fock exact exchange, giving the best agreement with the experimental
values of several STO properties.

2. Local Basis Set Selection

In the LCAO approach, a set of Gaussian-type functions is selected from a database
(e.g., CRYSTAL website [28] or BSE library [29]). Notably, all-electron BS of triple-zeta
valence with polarization quality, known as pob-TZVP [30,31] and pob-TZVP-rev2 (an
improved version with reduced BSSE error) [32,33], have recently been developed. In our
experience, the pob-TZVP BSs have been effective for NASICON-structured compounds
Na1+2xMnxTi2−x(PO4)3 [34] and for H impurities in (La,Sr)FeO3−δ [35] without needing a
preliminary optimization of their Gaussian-type functions. In this study, the pob-TZVP-rev2
BS is also used for comparison.

There is, however, a clear distinction between the local BSs for atoms in crystals and
molecules. Atomic or molecular BSs usually contain diffuse exponents with values smaller
than 0.1 Bohr−2. As a rule of thumb, in the case of crystals, they are often removed [30]
without a complete BS re-optimization. In particular, the contracted exponents, which
describe the inner-core electrons, are left unchanged or are replaced by pseudopotentials.
However, many DFT studies show that even optimization of the valence exponents consid-
erably improves agreement with the experimental results, especially for bulk materials. The
optimization of the BS is carried out in the following papers [32,36–41]. Furthermore, the
discussion of the role of local BS optimization and comparison between the BSs is discussed
in [7,42,43]. The main criterion for BS optimization in these studies is the system’s total
energy. BS optimizer recently introduced in CRYSTAL23 additionally uses the penalty
function to avoid linear dependency problem [44].

Using identic BS for the same atom in different compounds is convenient. Nevertheless,
such BSs, particularly those made for one system (such as an atom, molecule, or crystal),
must be used cautiously for a different system. It needs to be said that we stand for the
material-specific approach for the local BS optimization and not for the local BS transferabil-
ity between the materials. These considerations have been discussed previously [39,45,46],
while these works significantly contributed to the field, we aim to complement them with a
more detailed analysis of such local BS properties as the ratios of Gaussian-type functions
exponents and contraction coefficients. Based on this, we suggest a robust scheme for
obtaining new BS or reoptimizing existing ones for each material-specific case.

3. Methodology
3.1. DFT Functionals

The first-principles calculations are performed using the CRYSTAL23 [44,47] computer
code within the DFT formalism. The single-particle wave functions are expanded as a linear
combination of Bloch functions, which, in turn, are a linear combination of atomic orbitals
(Gaussian-type functions). A comparison between the exchange-correlation functionals and
BSs lies at the heart of the present study. As is well known, the hybrid density functionals
remain an essential tool to reproduce the bandgap values in perovskite oxides [48–50]. In
its turn, the hybrid density functionals can be expressed in the general form suggested by
Becke in [51,52], and, thus, re-written as [44]

Exc = EL(S)DA
x + A (EHF

x − EL(S)DA
x ) + (1 − A)B (EDFA

x − EL(S)DA
x ) + EL(S)DA

c + C (EDFA
c − EL(S)DA

c ), (1)

where EL(S)DA
x,c the local density functional exchange and correlation contributions and

EDFA
x,c the semi-local density functional exchange and correlation contributions (such as

DFA = GGA). The non-local density functional exchange and correlation contributions are
given by B and C parameters, respectively, whereas A finds the amount of exact Hartree–



Crystals 2024, 14, 671 4 of 18

Fock exchange EHF
x . So, the one parameter (A) global density functional PBEx is defined

from Equation (1) using B = 1 and C = 1 and, thus, reads for the exchange-correlation part

EPBEx, r2SCANx
xc = A EHF

x + (1 − A) EDFA
x + EDFA

c , (2)

where DFA = PBE or r2SCAN [26] in the present study. A successor of PBEx, range-
separated hybrid DFT functional, has demonstrated very good results in many cases even
in its reduced form HSEx [53]:

EHSEx
xc = A EHF,SR

x (ω) + (1 − A) EPBE,SR
x (ω) + EPBE,LR

x (ω) + EPBE
c , (3)

where SR and LR mean short and long-range components, respectively. As the Coloumb
operator is attenuated by the complementary error function for the short-range component
and by the error function for the long-range component [54,55], there is also an additional
range separation parameter ω due to erf(ωr). A very popular HSE06 functional is often
defined when A = 0.25 and ω = 0.11 Bohr−1 [44,53].

We begin our analysis of STO properties with the more standard and widely used
hybrid functionals to effectively compare with the literature data in Section 5.1. For this,
we have chosen the three-parameter global B3LYP (B = 0.90, C = 0.81, and A = 0.20 in
Equation (1)) functional, one-parameter global PBE0 functional (A = 0.25 in Equation (2))
and range-separated HSE06 functional based on the global PBE0 functional (A = 0.25 in
Equation (3)). It turned out that the hybrid B3LYP, HSE06, and PBE0 functionals are among
the most popular hybrid functionals for calculating perovskite systems [56,57]. In more
recent DFT studies, it has been demonstrated that the next category (rung) of functionals
on the Jacob’s ladder [55,58], i.e., strongly constrained and normed meta-GGA SCAN
functional [59], combined with the hybrid functional idealogy provides us with certain
improvements in oxides properties and calculation efficiency. Therefore, the present study
intends to compare the three hybrid density functionals in Sections 5.2 and 5.3, namely meta-
GGA r2SCANx functional [27], range-separated HSEx functional, and PBEx functional. In
the present study, all three functionals (i.e., r2SCANx, PBEx, and HSEx) suppose adjusting
the exact exchange A amount to the indirect band gap value STO of 3.40 eV in the cubic
phase. Notice also that variations in the exact HF exchange were considered in previous
studies in the literature for perovskites [48,49,56] and other materials [27]. In the present
study, however, such an approach gave us consistent lattice parameters and band gaps
with the experiments even though the value of 3.40 eV for the indirect band gap is slightly
increased compared to the experiments (see discussion in Section 5.2).

3.2. DFT Calculation Input Parameters

We consider STO in the cubic Pm3m (SG 221) and tetragonal I4/mcm (SG 140) phases
that have been experimentally and theoretically well studied. In the Pm3m model, the
atoms occupy the following Wyckoff position (WP)

Sr: 1b (1/2, 1/2, 1/2), (4)

Ti: 1a (0, 0, 0), (5)

O: 3d (1/2, 0, 0). (6)

The tetragonal I4/mcm model is obtained by the transformation
( 1 1 0

1̄ 1 0
0 0 2

)
of cubic lattice

parameters without coordinate translation. In the I4/mcm the WP of atoms split into [60]

Sr: 4b (0, 1/2, 1/4), (7)

Ti: 4c (0, 0, 0), (8)

O: 4a (0, 0, 1/4), (9)

O: 8h (0.25+δ, 0.25−δ, 0). (10)
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The oxygen 8 h WP is described by a single free parameter δ, which is connected with the
antiphase rotation of oxygen octahedra, θz, i.e., AFD mode,

θz = arctan(4δ). (11)

In the absence of rotation, δ = 0, the tetragonal model coincides with the cubic one.
For the calculations with SGs Pm3m and I4/mcm, we use SH12 = 12 × 12 × 12 and

SH8 = 8 × 8 × 8 Monkhorst–Pack k-point mesh [61], respectively. The chosen k-point mesh
for the tetragonal phase is related to the fact that its primitive unit cell is given by the equal
lattice parameters in all three directions. On the contrary, the primitive and conventional
unit cells coincide in the cubic STO. The SCF convergence threshold for the total energy is
set to 10−10 Hartree [44]. Integration is performed on a predefined pruned grid consisting
of 99 radial and a maximum of 1454 angular points (XXLGRID) (to achieve accurate
convergence of geometry); DFT density and DFT grid weight tolerances are kept as 8 and
16, respectively, [44]. Such highly accurate calculations are important for the calculations
of forces and consequent phonon calculations, as STO obeys a non-trivial competition
between the AFD and ferroelectric instabilities. Even though we do not aim at explaining
the ferroelectric instability often predicted by DFT calculations (e.g., [14,43] and references
therein), the comparison of BSs enforces us to obtain very accurate phonon frequencies.

Complete geometry optimization is performed until the energy difference between the
two steps is less than the threshold (TOLDEE) 10−10 Hartree, root-mean-square of the gra-
dient (TOLDEG) and displacement (TOLDEX) are 0.00003 Hartree/Bohr and 0.00012 Bohr,
respectively, using no trust radius to limit displacement (NOTRUSTR). For an accurate
comparison of system energy, we use the FIXINDEX option [44].

Tight tolerance set T16 (16 16 16 16 32) for Coulomb and exchange sums (five TOLIN-
TEG parameters) is selected as a default in our calculations. This allows us to achieve the
R+

4 mode frequency saturation, see Table 1. The phonon calculations are performed using
the supercell (direct) method implemented in CRYSTAL23 [44]. To perform the phonon

calculations at the Γ and R points of the cubic STO, we use the supercell due to
( 1 1 0

1 0 1
0 1 1

)
transformation [7].

Notice that the bulk modulus was calculated according to a Voigt–Reuss–Hill scheme
as implemented in CRYSTAL23 [44].

Table 1. SrTiO3 soft mode R+
4 (calculated phonon frequency in cm−1) dependence on TOLINTEG and

SHRINK calculation parameters for the r2SCAN15 (15%HF) functional and BS1 in the Pm3m model. Due
to the used supercell, the Monkhorst–Pack k-point mesh setting corresponds to I4/mcm model.

TOLLINTEG Set SH08 SH10 SH12 SH14

T12 (12:12:12:12:24) 1 2i 1i 0
T14 (14:14:14:14:28) 5i 3i 5i 5i
T16 (16:16:16:16:32) 11i 11i 11i 11i
T18 (18:18:18:18:36) 10i 9i 9i 9i

4. Visual Representation and the Local Basis Set Construction Method

The atomic orbitals, φ, in CRYSTAL23, consist of shells, λ (not to be confused with
the principal quantum number), that are defined as normalized linear combinations of
normalized real solid harmonic, Xm

l (r), Gaussian-type functions, G(αλ
i ; r) = exp(−αλ

i r2),

φlm
λ = Nλ ∑

i
dλ

i clm
i Xm

l (r)G(αλ
i ; r), where (12)

l = 0(s), 1(p), 2(d), 3( f ), (13)

m = −l . . . l, (14)
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and clm
i and Nλ are normalisation coefficients, dλ

i are contraction coefficients, and index i
runs over primitive functions of contractions [44].

We will construct the all-electron BSs for the Sr, Ti, and O atoms (denoted as BS1)
for STO in the cubic Pm3m model from scratch. The steps are outlined in Figure 1. To
start, we select a trial number of shells, λ, for each orbital type l (refer to Equation (13)) for
each atom type. We construct an initial set of uncontracted nonredundant exponents, αλ

1 ,
with a consecutive exponent ratio of approximately 2.5 for a clean start. (A more accurate
starting guess for αλ

1 can be obtained by noting similar patterns for each orbital type
independently on atom type in ratio plots displayed in Figure 2 (middle) or Supplementary
Figure S1 (middle)). These exponent values are then adjusted to minimize the total system
energy using the r2SCANx functional with the amount of exact exchange A = 0.15. For
uncontracted exponents (i = 1), the contraction coefficients dλ

1 are inconsequential due to
the normalization coefficient Nλ (see Equation (12)). This straightforward approach allows
us to obtain optimized exponent values that depend solely on the number of selected
exponents and are independent of their initial values.

Start

Input trial set of nonredun-
dant uncontracted αi for s,p, d,
f -type exponents for all atoms

Optimize all αi

Is linear dependence observed
in visual representation?

Remove con-
flicting αi

Test if a new expo-
nent αi can be added

Group αi in contrac-
tions for s,p, d, f -type

exponents for all atoms

Optimize all dλ
i

Test if adding/removing αi
to a contraction decreases

the total system energy

End

Yes

No

Yes

No

Yes

No

Figure 1. Flow chart of robust basis set (BS) construction and optimization method.

During the optimization process, we reduce the number of exponents if linear depen-
dence is observed (i.e., the exponent ratio becomes smaller than 2). We also check if adding
new exponents could reduce the total system energy (Figure 1). Optimally, all types of
uncontracted exponents for all atoms should be determined simultaneously to prevent
potential instabilities. For instance, an overestimated number of O s-type exponents might
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destabilize the Sr and Ti exponents. However, it is important to note the CRYSTAL23
limitations, allowing for a maximum of 31 shells (uncontracted exponents) per atom in
bulk calculations (this limit is absent in molecule calculations). If the number of exponents
exceeds this threshold, self-consistent procedures may need to be implemented.

2

4

6

,
i=
,

i+
1

2 4 6 8 10 12 14 16 18

i

150

200

?
i

0

2

4

jd
6 i
=
d
6 i+

1
j 1

2
3

2 4 6 8 10 12

i

8
9
10

2 4 6 8

i

13(a) (b) (c)

Figure 2. Visual representation for BS1 of Sr in SrTiO3 for (a) s-type (l = 0), (b) p-type (l = 1), and
(c) d-type (l = 2) coefficients (Equation (12)). It consists of: modulus of consecutive contraction
coefficients ratios |dλ

i /dλ
i+1| (top), where shell index, λ, is provided in the legend, the ratio of suc-

cessive nonredundant exponents, αi/αi+1 (middle), and angle, ϕi (bottom), between ratios (αi−1/αi,
αi/αi+1,αi+1/αi+2) where the dashed line denotes ϕi = 180◦. In the same way, the method of visual
representation is used for BS1 of Ti and O (Supplementary Figure S1).

Once uncontracted nonredundant exponent number and their optimized values αλ
1

are obtained, we keep them unchanged. We also do not reoptimise them after creating
contractions, as discussed below. Visual representation comes into play during and after the
optimization process to analyze the obtained exponents conveniently and simultaneously
for all three atoms. However, let us consider all nonredundant (due to contractions) Sr
s-type exponents as an example, see Supplementary Table S1, and abbreviate them as
αλ

1 = αi, where here index i ≡ λ and it runs over all uncontracted shells λ, Equation (12).
Then the consecutive exponent ratio plot α1/α2, α2/α3, . . . demonstrates a smooth decrease
up to i = 11, see middle graph in Figure 2a. Further, at i = 12, 15, 17, indexes exponent
ratio values have small maximums. These changes for i > 11 are better seen when plotting
the angle ϕi. Here ϕi is defined as the angle among each of three consecutive points
(αi−1/αi, αi/αi+1,αi+1/αi+2) to identify maximums in the middle graph of Figure 2a if any.
So, the angle behavior changes smoothly in the absence of maximums (bottom graph in
Figure 2a) and shows pronounced jumps at the maximum points. Therefore, the angle
calculation appeared to bring in helpful information for further BS optimization. In a first
approximation, it could be assumed that these maximums separate the exponent groups
describing 1s, 2s, 3s, and 4s electrons. However, the actual situation is more complicated
since all uncontracted exponents could contribute to all electron descriptions.

There are numerous ways to create contractions of exponents αi. We follow Occam’s
razor principle and retain only the most relevant exponents in contractions. Thus, groups
of exponents with contraction coefficients dλ

i are formed to describe, e.g., 1s, 2s and partly
3s Sr electrons and only the contraction coefficients are optimized (Figure 1). Their ratios
are shown in the top Figure 2a. As discussed earlier, the same exponent could contribute
to the description of several electrons and, therefore, appear in several contractions with



Crystals 2024, 14, 671 8 of 18

different contraction coefficients, e.g., Sr αi exponents with the indexes i = 7 . . . 12 appear
in both shells λ = 1 and λ = 2. The Mulliken charge of each shell qλ=1 = 2.0, qλ=2 = 2.0,
and qλ=2 = 1.1 e− allows us to assess the contribution of each shell in the description of the
corresponding electrons. Shells λ = 1 and 2 carry full charges of 1s and 2s orbitals, while
λ = 3 shell contains only a fraction of the expected 3s shell charge. Similarly, we create and
analyze the Sr p- (Figure 2b), d- (Figure 2c), f -type functions. Exponents and contraction
coefficients for Ti and O ions are given in Supplementary Figure S1. Furthermore, we give
full BS1 in Supplementary Table S1 for ease of reference.

Although the total number of exponents and contractions could be selected slightly
differently, we find that the

Sr: 29s23p10d1 f /7s5p4d1 f [20s14p10d1 f ], (15)

Ti: 25s14p8d1 f /5s4p4d1 f [17s10p8d1 f ], (16)

O: 16s7p1d/4s4p1d [12s7p1d] (17)

combinations accurately describe STO properties, where on the left side of the slash, we
give the total number of Gaussian-type functions, while on the right side, we give the
number of shells, λ, for each shell type, l. The nonredundant exponent number for each shell
type is given in square brackets. For example, Sr basis contains 29 s-type basis functions
(from which 20 are nonredundant) that are arranged in three contractions, see Figure 2a,
and four uncontracted exponents leading to a total of 7 s-shells, Equation (15).

For a different model system, the BS reoptimization is straightforward. First, the
contractions are removed, and then all nonredundant exponents are reoptimized. Second,
the contractions are created with new exponents. Finally, only contraction coefficients
are reoptimized.

The basis set BS1 is compared with three more BSs taken from the literature. Firstly, for
the Ti and Sr atoms, we use the BS built on CRENBL small-core relativistic effective core
potentials [62,63] and the all-electron O BS that is abbreviated as PBE0 optimized BS + Srd in
Ref. [7] (denoted here as BS2, we give BS2 in Supplementary Table S1 for ease of reference).

Secondly, we consider the BS proposed for STO by Piskunov et al. [12] with the Hay-
Wadt effective small core [64] potential-based BSs for Sr and Ti, and all electron BS for O
(denoted as BS3, additional information on it can be found in Supplementary Table S1). The
extension of oxygen (from BS3) set added for two Gaussian d-exponents could be found
in [65–67] where the same oxygen BS is considered for the two limiting cases of the O2
molecule and SrTiO3 bulk crystal.

Thirdly, we use the pob-TZVP-rev2 BS for Sr that is built using the full-relativistic
effective core potential taken from the ECP pseudopotential database [33,68], while for Ti
and O, we use all-electron pob-TZVP-rev2 BSs [32] (denoted as BS4, additional information
on it can be found in Supplementary Table S1).

It is instructive to apply the visual representation to analyze different BSs. For a com-
parison with BS1, we select oxygen p- and titanium d-type exponents from BS2-4 since they
contain only a single contraction and, thus, closely resemble the BS1 construction method
(Figure 3). Despite being of different lengths and obtained with different optimization
procedures, the BSs exponents’ ratios demonstrate remarkable similarity. At the same time,
their absolute values depend on the number of exponents and might differ considerably.
Thus, the ratio of O p-type exponents at i = 1 is α1/α2 ≈ 4.6 for BS1, where α1 and α2 values
are 165.29 and 35.729 Bohr−2, respectively, while for BS3 they are 49.43 and 10.47 Bohr−2,
respectively. Moreso, we find that this p-type exponents ratio is almost independent of the
type of BS optimization (BS1-4 in Figure 3a) and weakly dependent on atom type, since for
BS1 Sr p-type exponents, we obtain ≈4.2 (Figure 2b) and for Ti p-type exponents we obtain
≈4.3 (Supplementary Figure S1b). We also note that the smallest p-type value saturates
at ≈0.17 Bohr−2 for BS1 and BS3, which indicates that the optimal number of O p-type
exponents is reached.
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Figure 3. The visual representation of the ratio of successive exponents, αi/αi+1 for (a) O p-type and
(b) Ti d-type BS coefficients for the comparison of four BSs: BS1 (present study), BS2 [7], BS3 [12],
BS4 [32]. The smallest exponent value in Bohr−2 of p- and d-types for each BS are given in the legends
of (a,b), respectively.

Titanium d-type exponents at i = 1 cluster around α1/α2 ≈ 3.6 for BS1 with exponent
values of 249.06 and 68.579 Bohr−2, while for BS3, those are 21.429541 and 6.08722431 Bohr−2,
respectively, (Figure 3b). Similarly to the p-type exponents case, the ratio of d-type at i = 1 for
titanium is close to that of strontium α1/α2 ≈ 3.3 (Figure 2c). The tail part of the exponents’
ratios curve of BS1 and BS2 have a similar shape (Figure 3b); they have local maximums at
i = 6 and 3, respectively. For BS4, we find that at i = 4, the ratio is α4/α5 ≈ 1.6, formed by
the last exponent in the contraction α4 = 1.35885903030 and the first uncontracted exponent
α5 = 0.86367514000 Bohr−2. In case of problems, these exponents should be crosschecked
since their ratio is less than the recommended safe threshold of 2 to avoid linear dependence.

The visual representation thus has several advantages. It allows us to (i) detect the
possible linear dependency problems if the exponent ratio, αi/αi+1, becomes smaller than
2, (ii) inspect and compare BS with a different number of exponents, and (iii) identify
invariant relations between BS exponents. Additionally, it could facilitate the development
of robust methods for constructing self-consistent BS, allowing complete BS optimization
for each particular material, functional, or calculation accuracy.

5. Simulation Results and Discussion

Our analysis of the main results is divided into three Subsections. Before discussing
the exact exchange adjustment A for each BS1-4 and different chosen hybrid functional
combinations, we calculate the basic STO properties with these BSs and more popular
functionals in Section 5.1. We use three different well-known hybrid functionals, namely
B3LYP, PBE0, and HES06, to evaluate the structural and electronic properties of STO in two
experimentally established cubic, Pm3m, and tetragonal, I4/mcm (AFD), phases (Table 2).
From numerous STO properties, we have chosen the most relevant and important ones
for our present “DFT method” + “BS” analysis and comparison with the experiments.
We aimed to present an analysis of several STO properties simultaneously, including the
pseudocubic lattice constant, a0, in-/direct band gaps, Ei

g/Ed
g, tetragonality ratio, c0/a0−1,

and, correlated with it, angle of rotation of the O octahedra around the z-axis, θz. In
Section 5.2, the same properties are then re-evaluated due to the adjusted A-values for
PBEx (Equation (2)), HSEx (Equation (3)), and r2SCANx (Equation (2)). Section 5.3 also
analyzes the most relevant phonon frequencies at the cubic phase’s Γ- and R-points and
Γ-point only of the tetragonal phase.
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Table 2. SrTiO3 pseudo-cubic lattice constants, a0, b0, c0, tetragonality ratio, c0/a0 − 1, rotation angle
of the oxygen octahedra around the z axis, θz, and in-/direct band gaps, Ei

g/Ed
g. Energy difference,

∆ESTO, relative to the cubic Pm3m model per formula unit. All the properties are calculated for BS1-4
and the standard hybrid DFT functionals.

Parameters
B3LYP (20%HF) PBE0 (25%HF) HSE06 (25%HF)

BS1 BS2 BS3 BS4 BS1 BS2 BS3 BS4 BS1 BS2 BS3 BS4

Pm3m(SG 221)
a0, Å 3.935 3.937 3.938 3.925 3.899 3.902 3.901 3.891 3.900 3.903 3.903 3.892
Ei

g, eV 3.48 3.45 3.72 3.53 3.97 3.92 4.22 4.03 3.27 3.22 3.50 3.32
Ed

g, eV 3.84 3.77 4.05 3.90 4.32 4.24 4.54 4.39 3.66 3.57 3.86 3.72

I4/mcm(SG 140)
a0, Å 3.931 3.931 3.936 3.925 3.898 3.898 3.901 3.891 3.899 3.900 3.903 3.892
(c0/a0 − 1)103 2.6 3.2 1.1 0.3 0.6 2.2 0.2 0.1 0.8 2.2 0.3 0.1
θz, ◦ 3.6 4.2 2.4 0.9 1.7 3.3 0.9 0.0 2.0 3.3 1.2 0.0
Ed

g, eV 3.53 3.51 3.74 3.54 3.98 3.96 4.22 4.03 3.28 3.26 3.50 3.32
∆ESTO, meV −0.90 −2.98 −0.43 −13.90 −0.13 −1.22 −0.04 −0.00 −0.15 −1.26 −0.05 −0.00

5.1. Basic STO Properties Calculated with B3LYP, PBE0, HSE06

As was expected, the obtained results are scattered, as shown in Table 2, and general
trends are hardly observable. In other words, each combination of functional and BS
provides different values for the structural properties chosen. Notice that the experimental
values for the comparison are given in Table 3. It may be said that if one parameter agrees
well with the experiment, the others deviate. This contradictory behavior may be due to the
poor quality of the BS. Therefore, the BS optimization needed to be reconsidered and done
in a more sophisticated manner, as is already pointed out above, and is the main subject of
the present study.

Our initial analysis already demonstrates a significant trend. Specifically, the B3LYP
functional noticeably overestimates the lattice constant and band gap values for both
phases. This finding aligns with previous LCAO calculations on STO using the B3LYP
functional [12]. In contrast, the PBE0 and HSE06 functionals provide more accurate lattice
parameters. Additionally, the HSE06 functional yields good band gap values, while the
PBE0 functional significantly overestimates them in both phases. The oxygen octahedra
rotation angle (θz in Table 2) in the SG I4/mcm also demonstrates differences between
the HSE06 and PBE0 functionals. Notably, the lattice parameters calculated using the
HSE06 functional closely match those obtained from plane wave calculations using the HSE
functional with the screening parameter ω = 0.15 Bohr−1 and A = 0.25 [14]. Furthermore, the
hybrid functionals better describe the rotation angle θz equal to 1.2–3.3◦ for in the present
LCAO calculations depending on the BS and 2.63◦ in the plane wave calculations [14] with
the HSE-like functionals compared to 6.47◦ in the DFT + U + V calculations Ref. [16].

Various effects can be observed due to differences in the BSs. The “tetragonality”
quantities characterize the degree of tetragonality and stabilization of the AFD phase for
different calculation methods. It would be particularly beneficial to estimate them to
analyze the effect of BS and functional. So, the tetragonality ratio c0/a0 − 1 and rotation
angle θz appeared to be sensitive to the choice of BS. Moreover, the stabilization energy
of the AFD phase (∆ESTO in Table 2) depends on the BS and functional used, resulting in
variations from almost 0.00 to 1.26 meV/f.u. in the LCAO calculations. Comparatively, our
calculated values for ∆ESTO are slightly smaller than in the plane wave calculations with
the HSE functional (2 meV in [14]; however, it is not indicated directly in [14] whether the
energy difference is given per f.u.). Notably, BS4 does not correctly reproduce the AFD
phase with PBE0 and HSE06 functionals. Another significant finding is that the band gap
of the AFD phase, calculated with the HSE06 functional, is underestimated by 0.08–0.14 eV
for BS1-2 and BS4. Only calculations using BS3 with the HSE06 functional resulted in an
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overestimation of the band gap of the AFD phase by 0.10 eV compared to the experimental
data. Moreover, it is seen from the results in Table 2 that the calculated standard STO
properties do not allow the selection of an optimal BS and functional combination since
each functional gives slightly different predictions and transferability (invariance of the
results for different functionals) is absent. Therefore, to highlight the differences, we refine
our calculations by adjusting the exact HF exchange amount in Section 5.2 and considering
vibrational properties in Section 5.3.

Overall, we exclude the B3LYP functional from further considerations in Section 5.2
and utilize the PBEx and HSEx functionals in subsequent calculations together with the
meta-GGA hybrid r2SCAN-type functional and adjusted A-values.

5.2. Basic STO Properties Calculated with Adjusted Exact HF Exchange and r2SCANx Functionals

As mentioned in Section 3.1, we adjust the exact Hartree-Fock exchange contribution,
A, in the selected three functionals (r2SCANx, PBEx, and HSEx) so that the indirect gap
in the Pm3m model matches the Ei

g = 3.40 eV for better functional comparison. This
adjustment is mainly influenced by the fact that the band gap is more responsive to the
changes of A-value than the lattice parameters. The adjusted A-value is similar for BS1-2
and BS4 within the same functional. However, for BS3 we find systematically lower A
values compared to the other three functionals: A ≈ 0.11 (BS3) vs. 0.14–0.15 (BS1-2, BS4)
for r2SCANx, ≈0.16 (BS3) vs. 0.18–0.19 (BS1-2, BS4) for PBEx, and ≈0.24 (BS3) vs. 0.26–0.27
(BS1-2, BS4) for HSEx (Table 3). This difference can be attributed to the fact that BS3 was
optimized in pure HF calculations with A = 1 (Equation (2)) [12].

The lattice parameters and other properties for the two STO phases, as shown in
Table 3, are calculated using the adjusted A for each functional and BS. Indeed, we did not
observe a significant impact of A on the lattice parameters for either the standard hybrid
functionals (PBE0 and HSE06) in Table 2 or for the hybrid functionals with the adjusted A
(PBEx and HSEx) in Table 3. Typically, the DFT + U-like calculations tend to overestimate
the lattice constant (e.g., 3.96 Åin the DFT + Ud,p + Jd,p [15] for the cubic phase) when the
Hubbard parameters are adjusted to match the band gap. However, the current hybrid
DFT calculations suggest a much better agreement between the lattice constant and the
experiments. Nonetheless, the bulk modulus B for the cubic phase is slightly overestimated
with the hybrid functionals (see also Table 1 in [15]) regardless of LCAO or plane wave
basis. Additionally, it is evident that PBEx results in a smaller B (and somewhat larger a0)
regardless of BS, though it still overestimates the experimental value.

The “tetragonality” quantities, i.e., ∆ESTO, c0/a0−1 and θz, increase for the PBEx
functional after the adjusted-A value is applied compared with PBE0. Conversely, these
quantities decrease for the HSEx functional except θz-value for BS2. It is likely due to
a reduced exact exchange for PBEx (A ≈ 0.19 (BS1)) and the opposite effect for HSEx
(A ≈ 0.27 (BS1)). Notice that HSE06 and PBE0 are characterized by A = 0.25. The basis
set BS4 did not show significant improvements with the adjusted A-value regarding
the stabilization of the AFD phase; all the corresponding “tetragonality” quantities are
underestimated. The shortcomings of BS4 are well understood and explained in Section 4
and Figure 3 with the help of the visualization technique as proposed in the present work.

The most striking result is the almost insensitivity of STO properties to the functional
change from r2SCANx to HSEx for BS1-3 despite significantly different amounts of exact
exchange. Our approach with the adjusted A-value improves the transferability of BS1-3
between the two functionals Table 3, which was not the case for the standard functionals in
Table 2. However, the obtained picture could be completed only with the inclusion of calculated
phonon properties. Below, we present the analysis of the phonon frequencies calculated at the Γ-
and R-points for BS1-4 with PBEx, HSEx, and r2SCANx and adjusted A-values.
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5.3. Vibrational Properties of STO

We focus on the phonon modes and frequencies below approximately 100 cm−1,
which are the most challenging to calculate. In Table 3, we provide different notations of
irreducible representations for the phonon frequencies to make it clearer for the reader and
simplify the comparison with the literature. Thus, we use the form Bethe (Mulliken) [69]
for the notations for the tetragonal I4/mcm model. For the symmorphic SG Pm3m, we also
include the corresponding Bouckaert-Smoluchowski-Wigner (BSW) notations [69,70] in
addition in the form Bethe (Mulliken, BSW).

According to the group-theoretical analysis, the cubic-tetragonal phase transition
occurs due to the unstable mode R+

4 (T1g, R′
15) [71] in the cubic phase [7]. It is a three-fold

degenerate mode (due to the x, y, and z directions) associated with the oxygen octahe-
dra rotations around those axes. The unstable (imaginary frequency) phonon mode R+

4
is obtained consistently with BS1 in combination with all three considered functionals
(r2SCANx, PBEx, and HSEx) (Table 3), and that agrees well with plane wave calculation
results [7]. However, for other BSs, the mode stability depends on the selected functional.
For example, the unstable mode R+

4 is obtained with BS2 only with the r2SCANx and
PBEx functionals. Albeit the phonon calculations with HSEx predict marginal stability of
R+

4 for BS2-4, the relaxation in the tetragonal I4/mcm model leads to the appearance of
tetragonality and rotated oxygen octahedra structure with a non-zero θz for BS2-BS3 and a
zero θz for BS4 (Table 3). Similarly, the phonon calculations with BS3 predict unstable mode
R+

4 only with r2SCANx, but a geometry relaxation with HSEx and PBEx in I4/mcm leads
to oxygen octahedra rotations. All the functionals predict stable mode R+

4 with BS4, but
only r2SCANx gives rotated oxygen octahedra geometry.

Relaxing the unstable mode R+
4 in the order parameter direction (a,0,0) leads to the

tetragonal I4/mcm phase, where R+
4 splits into two Raman active modes, R+

4 →A1g + Eg [72].
The non-degenerate A1g mode (associated with O ion displacements) and the double-
degenerate Eg mode (connected with O-Sr displacements) are stable in all our calculations.
Their frequencies relation due to fA1g > fEg agrees with the experiments for BS1-3 with all
considered functionals (Table 3). Experimental results demonstrate that below the phase
transition temperature, both A1g and Eg modes gain intensity on cooling and finally harden
in the low-temperature limit [73,74], while quantitative comparison with DFT calculations is
challenging due to scattered experimental results, we note that BS1 and BS3 (with r2SCANx
and HSEx) align well with the experiments [73].

Let us consider the triple degenerate mode Γ−
4 (T1u, Γ15) in the cubic phase that corre-

sponds to ferrodistortive (FD) displacements of both Sr and Ti and all O ions in opposite
directions along x, y, and z directions. According to the group-theoretical analysis [7,72]
the infrared active Γ−

4 mode splits into two active infrared modes in the tetragonal I4/mcm
phase Γ−

4 →A2u + Eu. The double degenerate Eu mode corresponds to FE displacements
when all Sr and Ti and all O ions move in opposite directions along x and y axes. However,
the non-degenerate A2u mode corresponds to FE displacements along the z axis. Exper-
iments show that temperature lowering decreases intensities of A2u and Eu modes and
increases deviation from the Curie-Weiss law below the phase transition, which predicts
the condensation out of those modes and thus the appearance of a new FE phase. Instead,
the low-temperature experiments demonstrate the saturation of these two modes due to
quantum fluctuations [74,75].

Contrary to the unstable mode R+
4 that leads to the I4/mcm model, the expected nature

of mode Γ−
4 in the DFT calculations still needs to be clarified since quantum fluctuations

of ions are not included in the DFT calculations. As we focus on the BS construction and
optimization in the present study, we leave this question out for future studies. However,
we do analyze a consistency between the calculated phonon frequencies for Γ−

4 in the cubic
phase and A2u, Eu in the tetragonal phase to compare the calculation methods. We expect
the sign conservation for accurate BS for these modes since FE mode is suppressed in both
Pm3m and I4/mcm models. Indeed, we have observed this behavior in the present study
for all three functionals only for BS1 predicting unstable Γ−

4 . Such behavior coincides with
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our earlier study using the standard PBE functional in the plane wave calculations [7]. BS2
demonstrated consistency with r2SCANx and HSEx (except PBEx) functionals predicting
stable Γ−

4 mode. BS3 showed consistency for all functionals; however, it predicted different
natures of Γ−

4 —stable with r2SCANx, but unstable with HSEx and PBEx.
Overall, from the analysis of calculated STO properties, which included the basic

structure properties, electronic band gaps, and phonon frequencies, we propose using BS1
combined with the functionals r2SCAN15 or HSE27 for accurate STO calculations within
the LCAO formalism. Notice that the reduced amount of HF exchange of 15% is very much
in line with the r2SCANh (amount of the HF exact exchange 10%) functional suggested
earlier in [27].

Table 3. Comparison of SrTiO3 characteristic parameters obtained with the parametrized r2SCANx,
HSEx, and PBEx functionals with other DFT calculations and experiments. Adjusted HF exact
exchange, A, for each BS and functional, providing an indirect gap of ∼3.40 eV for the T16 set in the
SG Pm3m. SrTiO3 pseudo-cubic lattice constants, a0, b0, c0, tetragonality ratio, c0/a0 − 1, rotation
angle of the oxygen octahedra around the z axis, θz, bulk modulus, B, and in-/direct band gaps,
Ei

g/Ed
g. In the cubic Pm3m model we consider the Γ−

4 (T1u) and R+
4 (T1g) phonon modes at Γ and R

points, respectively. In the tetragonal I4/mcm model we consider two Raman modes Γ+
5 (Eg), Γ+

1
(A1g), and two infrared modes Γ−

5 (Eu), Γ−
2 (A2u). We provide Bethe (Mulliken and for Pm3m also

BSW) notations of irreducible representations [69]. Energy difference, ∆ESTO, relative to the cubic
Pm3m model per formula unit.

Parameters
r2SCANx (A) HSEx (A) PBEx (A)

Exp
BS1 BS2 BS3 BS4 BS1 BS2 BS3 BS4 BS1 BS2 BS3 BS4

A, % 14.7 13.9 10.8 14.1 27.1 27.8 23.5 26.2 18.9 19.3 16.2 18.3

Pm3m (SG 221)
a0, Å 3.895 3.901 3.901 3.888 3.897 3.899 3.905 3.890 3.908 3.910 3.915 3.901 3.895 a

B, GPa 202 203 200 207 198 202 196 204 191 196 191 198 179 b

Γ−
4 (T1u, Γ15), cm−1 101i 112 64 44 121i 88 48i 48 142i 32 83i 56i soft c

R+
4 (T1g, R′

15), cm−1 12i 50i 35i 24 22i 10 61 79 41i 29i 53 72 soft c

Ei
g, eV 3.40 3.40 3.40 3.40 3.40 3.40 3.40 3.40 3.40 3.40 3.40 3.40 3.2 . . . 3.3 d

Ed
g, eV 3.77 3.75 3.76 3.78 3.79 3.75 3.76 3.80 3.76 3.71 3.74 3.77 3.7 . . . 3.8 d

I4/mcm (SG 140)
a0, Å 3.894 3.897 3.900 3.888 3.896 3.896 3.904 3.890 3.906 3.905 3.913 3.901 3.895 a

c0, Å 3.896 3.904 3.902 3.889 3.898 3.904 3.906 3.891 3.911 3.916 3.917 3.901 3.899 a

(c0/a0−1)103 0.5 1.8 0.4 0.1 0.6 1.9 0.5 0.1 1.5 2.7 1.1 0.1 0.6, 0.3 e

θz, ◦ 1.6 3.2 1.7 0.9 1.6 3.1 1.7 0.0 2.7 3.7 2.4 0.0 2.1, 1.4 e

Γ+
5 (Eg), cm−1 16 17 33 44 18 10 22 49 29 7 14 35 40 c, 15 f

Γ+
1 (A1g), cm−1 40 88 55 33 39 78 42 47 64 90 56 31 52 c, 48 f

Γ−
5 (Eu), cm−1 89i 114 81 59 124i 74 76i 31i 143i 32i 101i 80i 8 g

Γ−
2 (A2u), cm−1 100i 121 85 68 121i 76 78i 33i 141i 25i 102i 80i 17 g

Ed
g, eV 3.41 3.43 3.41 3.41 3.41 3.43 3.41 3.40 3.43 3.45 3.42 3.40 3.4 d

∆ESTO, meV −0.10 −1.40 −0.24 −0.01 −0.07 −0.98 −0.07 −0.00 −0.54 −1.90 −0.38 −0.00
a Data from Ref. [76] extrapolated to 0 K. b Ref. [77]. c Two soft, temperature-dependent modes split below phase
transition as Γ−

4 (T1u)→A2u + Eu and R+
4 (T1g)→A1g + Eg. They could be approximated as f (T1u) = 5.6(T − 31)1/2

and f (A1g) = 11.2(132 − T)1/3, respectively, see Ref. [74]. d Refs. [6,11,78–80]. e Ref. [81] at 4.2 and 77 K,
respectively. f Ref. [73]. g Ref. [75].

6. Conclusions

Optimizing or at least double-checking all the exponents and contraction coefficients
of Gaussian-type functions for each new material is essential. However, this is rarely
done because of the lengthy and cumbersome BS optimization process and the resultant
value dependence on many subjective choices made during optimization. Based on the
invariant exponent ratio relationships established through BS visual representation, the
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proposed robust local BS construction method in LCAO calculations has significant practical
implications. This method is demonstrated for STO due to its challenging properties for
DFT calculations, making it an exciting subject of study. Thus, the obtained local BS1 and
three other well-known local BSs are used to calculate the properties of STO in its cubic
and tetragonal phases.

The calculated STO properties include basic structure properties: the so-called “tetrag-
onality” properties, i.e., the tetragonality ratio and rotation angle, electronic band gaps and
phonon frequencies at Γ- and R-points of cubic STO phase, and only Γ-point of tetragonal
STO phase. The present study also thoroughly addresses the band gap problem using
several hybrid DFT functionals (PBEx, HSEx, and r2SCANx) with the adjusted amount of
exact exchange. By comparing all these properties for four BSs with the existing theoretical
and experimental literature, we show that all electron BS1 - made with the suggested BS
construction method - demonstrates results comparable with the experiments for several
properties simultaneously as chosen and is transferable between the functionals HSEx and
r2SCANx. The suggested amount of HF exact exchange for BS1 is 15% for r2SCANx and
27% for HSEx.

Notice that we have recently used a more elaborated BS construction and optimization
method that included simultaneous all BS exponent and contraction coefficient optimiza-
tion for Sr2FeO4 [40] and LiYF4 [41]. However, here we demonstrate that a more robust
scheme provides accurate and consistent results for STO that are comparable with other
state-of-the-art BSs. The advantage of the proposed robust BS construction scheme is that
obtained BS can be easily decontracted (retaining only nonredundant exponents), nonre-
dundant exponents optimized, and then back-contracted (with only contraction coefficient
optimization) for each new material. Such a method allows users to verify all BS parameters
for transferability to new materials (and also different functionals, calculation parameters)
and thus increase the accuracy of DFT calculations.
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www.mdpi.com/article/10.3390/cryst14070671/s1, Table S1: Four basis sets for SrTiO3; Figure S1:
Visual representation of Ti: (a) s-type, (b) p-type, and (c) d-type and O: (d) s-type and (e) p-type basis
coefficients from BS1.
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Abbreviations
The following abbreviations are used in this manuscript:

AFD Antiferrodistortive
BS Basis set
DFT Density functional theory
FE Ferroelectric
HF Hartree–Fock
LCAO Linear combination of atomic orbitals
SG Space group
STO SrTiO3
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