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Abstract: Phononic crystals (PnCs) have garnered significant attention due to their unique ability to
control elastic waves in unconventional ways. One area of research focuses on utilizing defects within
PnCs. Defects create new pass bands within band gaps, leading to concentrated wave energy within
the defects. However, defect-mode-enabled wave localization is effective only at specific frequencies,
limiting its usefulness when the frequencies of incident waves vary. Existing methods to mechani-
cally tune defect bands involve changing the geometries of unit cells or defects or attaching elastic
foundations, which necessitates the detachment and reattachment of certain structures depending
on the engineering situation. Considering these challenges, this study introduces a novel approach
that utilizes the reconfigurable PnC design, incorporating permanent magnets and ferromagnetic
materials. The case study involves a one-dimensional PnC consisting of a long metal beam with
rectangular block-shaped permanent magnets periodically arranged and attached to the beam by
magnetic forces. A defect is created by shifting a subset of these block-shaped permanent magnets
in parallel. The extent of this parallel movement alters the vibrating characteristics of the defect,
facilitating the mechanical control of the defect bands in the defective PnC. The effectiveness of this
approach is experimentally validated.
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1. Introduction

Interest in phononic crystal (PnC) structures is rapidly increasing [1,2]. PnCs are
characterized by their periodic arrays of engineered unit cells, which uniquely control
elastic waves in unconventional ways. A significant area of research focuses on exploiting
imperfections, known as defects, within PnCs to achieve spatial localization of elastic
waves and enhance mechanical energy density [3]. In the absence of defects, PnCs exhibit
phononic band gaps due to Bragg scattering [4,5]. However, the introduction of defects
creates new pass bands, termed defect bands, within the phononic band gaps [6,7]. This
phenomenon, known as the defect-mode shape, facilitates a substantial concentration of
elastic wave energy in the vicinity of the defect [8,9]. The remarkable wave localization
within a narrow frequency range has inspired the development of various applications for
defective PnCs, including narrowband pass filters [10], piezoelectric energy harvesters [11],
ultrasonic sensors [12], and actuators [13]. Here and hereafter, a PnC containing a defect is
referred to as a ‘defective PnC’.

Research on defective PnCs has been approached from multiple perspectives. Ad-
vances in modeling have led to the development of analytical models for the rapid computa-
tion of defect bands and wave localization performances in one-dimensional structures [14].
Furthermore, numerical models, such as the finite element method, have been constructed
to predict similar outcomes in two-dimensional structures [15]. Leveraging these mod-
eling techniques, several innovative designs have been heuristically devised to improve
wave localization performance [16–18]. Additionally, structural optimization techniques
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have been integrated into the design process. These techniques aim to produce optimal
designs that maximize or minimize specific objective functions while satisfying design
constraints [19–21]. Recently, with the rapid advancement of hardware and the availability
of open-source codes, artificial intelligence has begun to be incorporated into this field.
This incorporation allows for the automatic generation of various defective PnC designs tai-
lored to distinct design optimization problems, significantly reducing the need for human
intervention [22].

However, there are notable drawbacks associated with defect modes in PnCs. Wave
localization is effective only at specific frequencies. If incident waves enter defective PnCs
at a frequency slightly different from the designated defect band, the defective PnCs will
merely exhibit band-gap performance, resulting in no energy confinement [23–25]. This
nullifies the effectiveness of defective PnCs. For instance, consider an engineer utilizing
defective PnCs positioned on rotating machinery for piezoelectric energy harvesting to
power wireless sensors [26,27] or for bandpass filters in structural health monitoring [28,29].
As the rotational speed of machinery, such as gears [30], motors [31], and bearings [32]
varies, the frequency spectrum of the resulting vibrations and waves naturally shifts. If a
defective PnC is optimized for only an initial frequency, it becomes highly susceptible to
these fluctuating operating conditions. This limitation presents a significant challenge in
industrial applications where the excitation frequency is not fixed.

Therefore, it is imperative to devise a design methodology that enables the adjustment
of defect bands. Research in this area can be categorized into three main approaches. The
first approach involves incorporating temperature-dependent materials in the design phase
of defective PnCs [33–35]. These materials exhibit properties that change significantly with
variations in the external temperature. However, intentionally controlling the external
temperature is challenging, and even with the use of heat patches, there is a notable
disadvantage due to their inherently slow response to temperature changes.

To address this issue, the second approach leverages intelligent materials that are
additionally attached to defects. For instance, previous studies have explored the use of
piezoelectric materials with inductors [36] and synthetic negative capacitors [37]. Inductors
create electrical resonance, generating new defect bands and enabling their frequencies to
be electrically controlled over the entire band-gap region by adjusting the inductance values.
Alternatively, synthetic negative capacitors can significantly manipulate pre-existing defect
bands under short-circuit conditions by widely adjusting the equivalent elastic constant of
the piezoelectric materials. In addition to piezoelectric materials, dielectric elastomers [38]
and magnetostrictive materials [39] are also utilized.

The aforementioned methods involve adjusting defect bands by altering the external
environment through changes in temperature, electric field, electric circuit, magnetic field,
and similar factors. While these methods are straightforward, they necessitate additional
equipment and devices to modify the external environment, which inevitably introduces
complexities and inconveniences in the installation and operation of defective PnCs. An
alternative, as well as last, approach involves mechanically controlling defect bands.

In previously reported cases, one method involves altering the material or geometry
of the unit cell or defect. Li et al. discovered that defect bands changed for a variety
of materials, including rubber, steel, lead, copper, aluminum, epoxy, and PMMA [40].
However, since material properties are discrete values, selecting materials based on specific
frequencies is impractical. To address this issue, Ma et al. aimed to control defect-band
frequencies by modifying the geometric dimensions of defects [41]. Similarly, Jiang et al.
adopted a multi-stub design, where the defect itself comprised four structures, and adjusted
the defect-band frequencies by altering the arrangement of these structures [42]. Given
that geometric dimensions are continuous values, defect bands can be tuned to specific
frequencies in a continuous manner. More recently, an elastic foundation has been placed
on the exterior of defective PnCs in order not to affect the original PnC design [43]. By
adjusting the stiffness of this elastic foundation, the defect-band frequencies can vary
along within the band gap. However, these geometry-manipulating design approaches



Crystals 2024, 14, 701 3 of 16

share a common limitation in controlling elastic waves and vibrations: they are not easily
reconfigurable. This necessitates the detachment and reattachment of certain structures
depending on the engineering situation. For example, this process may involve melting
metal for removal, welding metal for attachment, or utilizing tools such as hammers, nails,
and screws. Consequently, this can make the operation of defective PnCs cumbersome.

Inspired by the challenges highlighted in previous research, we propose an intuitive
approach to mechanically tune defect bands using only the originally designed defective
PnCs and eliminating the need for detaching and reattaching structural components. The
proposed reconfigurable defective PnCs are constructed from permanent magnets and
ferromagnetic materials. The base beam is composed of ferromagnetic materials, with
block-shaped permanent magnets arranged periodically and bonded magnetically through
the attraction between the two materials. By altering the relative positioning of designated
permanent magnets, we can control the formation and adjustment of defect bands. To
validate the effectiveness of this design concept, we conduct a series of experiments. The
results demonstrate that our approach allows for the mechanical adjustment of defect
bands, thereby confirming the practical applicability of our reconfigurable design. This
reconfigurable design reduces operational complexity and provides a more efficient solution
for applications requiring simplified dynamic tuning of defect bands. Additionally, easy
replacements can be promptly prepared in the event of structural issues, such as fractures
in the beam or magnets, thereby restoring the original functionality of the defective PnCs.

The remainder of this paper is organized as follows: Section 2 presents the configura-
tion and specification of the proposed design. Section 3 delineates the numerical results
in terms of defect-band frequencies and defect-mode shapes. Section 4 delineates the
experimental setup and procedure. Section 5 presents the experimental results and offers
an in-depth discussion of mechanically tunable defect bands. Finally, Section 6 provides a
summary of the findings and conclusions drawn from this study.

2. Proposed Design

Recall that this proposed design concept is intended to address the limitations of cur-
rent tuning methods for mechanically tuning defect bands in PnCs. The existing methods
require complex geometric alterations or the attachment of elastic foundations, making the
adjustment process quite cumbersome. Our novel design leverages reconfigurable PnCs
with permanent magnets and ferromagnetic materials, simplifying the tuning process and
enhancing the usability of wave-localization phenomena.

Figure 1 illustrates each configuration modeled in COMSOL Multiphysics for the unit
cell and the one-dimensional defective PnC that are used in the experiment. In Figure 1a, a
rectangular block-shaped permanent magnet (colored in dark blue) is magnetically attached
to a metal beam (colored in gray). The metal beam is made of steel, while the permanent
magnet block is composed of ferrite. According to the COMSOL Multiphysics data sheet,
the steel has a mass density of 7850 kg/m3, a Young’s modulus of 200 GPa, and a Poisson’s
ratio of 0.3. For the ferrite magnets, these properties are specified as 5000 kg/m3, 200 GPa,
and 0.33, respectively, based on data provided by domestic suppliers in the Republic of
Korea. The steel beam dimensions are 40 mm in length, 25 mm in width, and 1 mm in
thickness. It implies that a lattice constant is 40 mm. The ferrite magnet block is 10 mm in
length, 40 mm in width, and 25 mm in thickness, positioned such that the geometric center
of its lower surface aligns with the geometric center of the upper surface of the steel beam.

Figure 1b depicts a defective PnC comprising five ferrite magnet blocks. In the case
of the defect-free PnC, the periodically arranged ferrite magnet blocks are spaced 40 mm
apart. These blocks are securely attached to the top of a long steel beam measuring 300 mm
in length. The periodicity is locally disrupted by moving the second through fifth blocks
in parallel, altering the length of the steel beam between the first and second blocks, thus
creating a defect. The defect length depends on the degree to which the four blocks are
moved in parallel, changing the vibrating characteristics of the defect. To avoid confusion,



Crystals 2024, 14, 701 4 of 16

it should be noted that the defect length refers to the distance between the centers of the
first and second ferrite magnet blocks when the defect occurs.
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Figure 1. A schematic view of the proposed design concept of defective PnCs: (a) a unit-cell configu-
ration consisting of a steel beam and a ferrite magnet block and (b) a defective PnC configuration
consisting of five ferrite magnet blocks attached to the long steel beam.

Adjusting the defect bands of these defective PnCs is both intuitive and straightfor-
ward. The magnet positions can be tailored to increase or decrease the defect length. This
approach is worth comparing to previously reported designs, where the geometries of
defects were changed by substituting several prefabricated prototypes. For elastic waves
composed of solid materials, this process involves significant hassle due to repeated as-
sembly and disassembly. In contrast, the current method employs magnetic attachment,
allowing for easy adjustment of the mechanical position, similar to magnets on a refriger-
ator surface. Various types of defects can be designed in real-time and even eliminated
without requiring any additional attachments.

At this juncture, two questions may arise at this point: (i) why are ferrite magnets
used instead of neodymium magnets, which are the most widely used; and (ii) why is
the lattice constant set to 40 mm? The primary objective of this research is to attach a set
of permanent magnets to a steel beam and alter their positions. Thus, any magnet with
sufficient magnetic force to adhere to the steel beam is adequate. Neodymium magnets ex-
hibit excessively strong magnetic forces, unfortunately resulting in significant interactions
between neighboring neodymium magnets. To minimize these interactions, ferrite magnets
are selected due to their comparatively weaker magnetic force and cost-effectiveness. In a
similar manner, the lattice constant is set to 40 mm because this distance is the minimum at
which the magnetic force between adjacent ferrite magnets becomes negligible. Addition-
ally, since each magnet has north and south poles, it is important to arrange the magnets
so that one magnet experiences both attractive (or repulsive) forces from two neighboring
magnets and finally falls in linear momentum balance. Although this arrangement is not
strictly necessary due to the inherent magnetic force between the steel beam and the ferrite
magnets, it helps to reduce unwanted disturbances in the experiment. In summary, the
selection of the magnet type and the lattice constant is determined by the magnetic flux
density (unit: Gauss) of the commercial permanent magnets.

3. Numerical Analysis and Result

Before presenting the experimental results, a preliminary investigation of the numeri-
cal analysis and results is conducted. A commercially available finite element analysis tool,
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COMSOL Multiphysics 6.1, is employed for all the simulations. The governing equation
for elastic wave propagation in solids is as follows:

ρ
∂2u
∂t2 = (λ + 2µ)∇∇× u−µ∇×∇× u (1)

where ρ represents the mass density, λ and µ are the first and second Lamé constants
of the solids, respectively. The vector u denotes the particle displacement fields; t is the
time. To determine the band structures of the unit cell or the defective PnC, the following
Floquet–Bloch theorem is taken into account [44]:

u(r + r) = u(r) exp(ik·r) (2)

where r is a spatial vector, expressed as x1e1 + x2e2 + x3e3, and
-
r is a lattice vector. A

reciprocal wave vector k is included in the first irreducible Brillouin zone, ranging from
0 to π/a, where a represents the spatial length of the unit cell or defective PnC. Under
the assumption of time-harmonic motions, an eigenvalue problem can be stipulated by
inserting Equation (2) into Equation (1) as:(

[K(k)]− ω2[M]
)
{q}= 0 (3)

where [K(k)], [M], and {q} represent the stiffness matrix (as a function of the reciprocal wave
vector k), the mass matrix, and the displacement vector of the targeted structure, respec-
tively. Band structures can be determined by numerically calculating the eigenfrequencies
for the given reciprocal wave vector k within the first irreducible Brillouin zone.

In COMSOL, the physics of solid mechanics and the study of eigenfrequency are acti-
vated. The process begins by defining a three-dimensional spatial domain and constructing
the unit cell or defective PnC using the block function in the geometry part. The interfaces
of different materials automatically incorporate the continuity conditions of displacements
and forces. Simultaneously, all surfaces of each structure are configured for traction-free
conditions. The Floquet periodicity setting is then applied to both ends of the structures.
After testing for convergence, the maximum mesh size is set to 2 mm, utilizing a free
tetrahedral mesh type.

First, the phononic band-gap range needs to be identified. Figure 2 displays the
numerical results for band structures at the unit-cell level, presenting three different graphs
to illustrate the concept of the polarization factor. The polarization factor determines which
mode (longitudinal, flexural, and torsional waves) is dominant at a given frequency. This
factor is mathematically expressed as follows [45,46]:

Polarization Factor =

∫
V

uiu∗
i dV∫

V
u1u∗

1 + u2u∗
2 + u3u∗

3dV
(i ∈ {1, 2, 3}) (4)

where V represents the total volumetric domain of the unit cell. u1, u2, and u3 denote the
displacements in the x-, y-, and z-axes, respectively. The conjugate of a physical quantity p
is denoted as p*. In this study, the flexural waves are targeted, which are predominantly
polarized in the z-axis. The closer the polarization factor is to 1 (indicated by red), the
more dominant the mode in that direction. Even though all wave types are coupled due
to the asymmetrical geometric configuration of the present unit cell [47,48], a comparison
of the three graphs reveals that the phononic band gap corresponding to flexural waves
spans approximately from 0.78 Hz to (at least) 15 kHz. Note that the graph on the right in
Figure 2a shows three flat pass bands, which represent the resonance frequencies of 5.80,
7.23, and 13.85 kHz at the unit-cell level. The resonant mode shapes for these frequencies
are depicted in Figure 2b.
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At this juncture, one might question why the band-gap analysis is limited to frequen-
cies down to 15 kHz. This limitation is due to the performance constraints of the shaker
used in the experiments, as will be discussed in the subsequent section. The shaker is
capable of producing normal oscillations only up to 14 kHz, beyond which it becomes
overloaded. In practical experiments, the focus is on the frequency range of 1 kHz to
12 kHz to ensure the safe operation of the equipment. Consequently, the band-gap analysis
is conducted with this instrumental limitation in mind, focusing solely on the starting
frequency of the band gap. Therefore, keeping the specification of the shaker in mind, the
unit-cell design is properly structured to perform the defect-band analysis.

Figure 3 presents an example of the calculated defect-band frequencies and defect-
mode shapes within the frequency range from 1 to 12 kHz for the defect length of 70 mm,
tailored to the testbed setting. The defect-mode shapes are referred to as the overall
displacement field of defective PnCs (referred to as solid.disp in COMSOL). A total of
seven defect bands are observed, which are categorized into three types based on their
characteristics. Given the thinness of the beam, it can be assumed that there is no change in
displacement field along the z-axis within the defect.
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Figure 3. An example of the results from defect-band analysis for a defect length of 70 mm that
includes the defect-band frequencies and defect-mode shapes.

Type I are characterized by constant displacement fields along the y-axis, with total
displacement within the defect dominated by the x-coordinate. Viewed from the front,
the defect-mode shapes in the x-axial direction exhibit a half-period cosine function at
1.57 kHz, a one-period sine function at 4.07 kHz, and a 1.5-period cosine function at
7.82 kHz relative to the center of the defect. Type II has displacement fields that are point-
symmetric with respect to the xy-plane, meaning the total displacement fields within the
defect are influenced by both x- and y-coordinates. For displacement fields at the edge
of the beam, when viewed from the front, the defect-mode shapes in the x-axial direction
show a half-period cosine function at 2.68 kHz, a one-period sine function at 5.79 kHz, and
a 1.5-period cosine function at 10.04 kHz. Type III exhibits displacement fields that are
line-symmetric with respect to the xy-plane. For displacement fields at the edge of the beam,
when viewed from the front, the defect modes in the x-axial direction are observed with
a half-period cosine function at 9.89 kHz. Type I refers to the energy-localized behaviors
observed in typical beams, while Types I and II describe the energy-localized behaviors
observed in plates.

In the last paragraph of the previous section, we mentioned that the required minimum
length of a lattice constant is 40 mm from the perspective of magnetic forces. Given that
the metal beam used in the experiment is 300 mm long, the lattice constant of 40 mm was
chosen. At this point, one may wonder how defect-band frequencies change in terms of the
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lattice constant. To answer this question, Figure 4 varies the lattice constant from 20 mm to
60 mm in 5 mm increments, while keeping the defect length fixed at 70 mm. The bottom
light gray area in the figure represents the region outside the band gap where passbands are
observed. The top dark gray area indicates where vibrations cannot be excited by the shaker.
Therefore, the results within the white background are of primary interest. The solid lines
in red, blue, and green correspond to Types I, II, and III in Figure 3, respectively. There are
two key observations to note. First, as the lattice constant increases, the lower edge of the
band-gap range decreases. This is a typical phenomenon for band gaps induced by Bragg
scattering. Second, the defect bands show little change as the lattice constant is varied. One
recent theoretical study demonstrates that evanescent waves, which characterize phononic
band gaps, can induce virtual fixed-end boundary conditions in unit cells adjacent to a
defect [49]. This induces resonating motion near the defect at each defect-band frequency. In
this design, the difference between the mechanical impedances of the defect, corresponding
to the thin metal beam, and the thick ferrite magnets on either side is considerably large,
causing the adjacent two magnets to directly create the fixed-like boundary condition. For
this reason, the defect-band frequencies remain constant regardless of the spacing of the
unit cells outside the defect. Furthermore, Figure 3 visually demonstrates that there is
almost no mechanical motion in the structures outside of the defect.
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4. Experimental Setup and Procedure

Figure 5a presents a front view of the experimental testbed, which comprises the fol-
lowing equipment and/or components: a function generator (Keysight, EDU33212A, Santa
Rosa, CA, USA), a set of a miniature shaker (Brüel and Kjær, Type 4810, Nærum, Denmark)
and power amplifier (Brüel and Kjær, Type 2718, Nærum, Denmark), an accelerometer
(PCB Piezotronics, 333B40 SN 59572, Depew, NY, USA), a conditioning amplifier (Dytran,
4103C, Chatsworth, CA, USA), an oscilloscope (Keysight, DSOX1204A, Santa Rosa, CA,
USA), and a support. Several components are labeled in this figure. Referring to previous
studies that validate the effectiveness of PnCs through experiments, this setup is considered
typical [50–52].
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Figure 5. Experimental setup and procedure: (a) several equipment and components to measure the
acceleration responses at the center of the defect and (b) a schematic diagram of the experimental
setup from inputting excitation signals to saving acceleration responses.

Figure 5b depicts a schematic diagram of the experimental setup. An excitation signal
generated by the function generator is input into the miniature shaker using the power
amplifier. The top of the shaker is physically connected to the left end of the 300 mm steel
beam, ensuring synchronized vertical (bending) movements between the shaker and the
steel beam. The right end of the steel beam is secured by the support, maintaining a fixed
position. This setup is designed to eliminate unwanted factors caused by the deflection
of the steel beam due to the self-weight of the beam and magnets. In low frequencies, the
same setup was employed in one previous study where experimental measurements of
energy-localization performance were conducted on beam-type elastic metamaterials [53].
Furthermore, it was previously demonstrated through numerical analyses that the gen-
eration of defect modes was independent of the boundary condition settings (e.g., free
and fixed conditions) of defective PnCs [54]. Subsequently, an accelerometer is bonded
to the center of the defect with the help of epoxy to measure vibration signals over time.
After amplification and simple signal processing using the conditioning amplifier, the
oscilloscope is utilized not only to visualize the measured acceleration but also to store
the data.

Figure 6 visualizes the excitation condition employed in the experiment. Specifically,
it displays the screen observed by the user when operating the function generator. In
this study, the linear sine sweep function is utilized to observe the frequency response
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function (FRF) for the acceleration measured at the center of the defect. The linear sine
sweep function, with frequency proportional to time, is characterized by Equation (5):

v(t) = sin
(

2π

(
fstart t +

fstop − fstart

2T
t2
))

(5)

where f start and f stop denote the start frequency and stop frequency, respectively. T rep-
resents the sweep time, and t indicates time. v stands for the input voltage. The start
frequency f start is set at 1 kHz, and the stop frequency f stop is set at 12 kHz. It is noteworthy
that the maximum frequency allowed by the shaker is 14 kHz, rendering this frequency
range appropriate. The sweep time is 2 s, with both the hold time and return time set to
0 s. A visual representation of this function is provided in the right corner of Figure 6.
Utilizing this sine sweep function, the measured acceleration may encompass frequencies
ranging from 1 to 12 kHz over a duration of 2 s. The existing literature has experimentally
measured defect-band frequencies and wave-localization performance using sine waves
with single frequencies (called monochromatic waves) and passively varying the excitation
frequency. However, since this study specifically focuses on the variation in defect-band
frequencies, this kind of excitation setting is adopted.
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Note that vibration test equipment and sensors should be calibrated regularly. In
this experiment, calibration was performed by a specialized company in the Republic of
Korea at the beginning of 2024, ensuring reliable experimental results. It is also necessary
to account for measurement errors. For example, is a similar time-series profile consistently
obtained under identical vibration conditions? To address this, we conducted 100 repeated
measurements for each scenario to confirm that similar data are achieved and saved after
applying ensemble techniques. Although there may be differences in the data depending
on the method (e.g., point-joint or line-joint) of joining the metal beam and shaker, the
consistent joining of the metal beam and shaker yields reproducible results. Indeed, when
the magnets were removed and the same experiment for the same defect length was
performed on a different day, similar data were repeatedly measured.
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5. Experiment Results and Discussion

Before presenting and analyzing the experimental data, it is important to mention a
key detail. In Figure 3, seven distinct defect-mode shapes are displayed, but our focus is
specifically on Defect Mode Type I. Moreover, within Defect Mode Type I, we only observe
the first and third defect-mode shapes. There are two possible explanations for this selective
observation. First, since the accelerometer is placed at the center of the defect, the remaining
five defect-mode shapes exhibit almost zero displacement at this location. Consequently,
even if these modes were present, the acceleration measured at the center of the defect
would be difficult to detect. This raises the question: why measure acceleration at the
center of the defect? This leads to the second reason. Previous studies have shown that for
applications such as energy harvesters and ultrasonic devices (e.g., sensors and actuators),
displacement fields with both positive and negative strains reduce output performance
due to voltage cancelation within piezoelectric material [55–57]. Consequently, these five
defect-mode shapes are excluded from the present experimental results.

Figure 7a illustrates one example of the experimentally measured acceleration signal in
a time series when the defect length is approximately 70 mm. The x-axis represents the time
domain from 0 to 2 s, while the y-axis indicates the acceleration ranging from −5 V to 5 V.
Although the signal appears somewhat complex, it is possible to observe a pattern where
the measured value increases at certain time points, decelerates sharply, and then increases
again. As previously mentioned, in a linear sine sweep, time is linearly proportional to
frequency, implying that the acceleration may be highly amplified or reduced at specific
frequency ranges. To confirm this conjecture, a fast Fourier transform (FFT) technique is
applied. This function is already stored in the oscilloscope. The acceleration amplitude in
the frequency domain is presented in Figure 7b. The x-axis spans the frequency domain
from 0 to 12 kHz, and the y-axis displays the normalized acceleration amplitude from
0 to 1. It should be noted that normalization is achieved by dividing the FFT results by
their maximum value. As anticipated, this figure reveals peaks in acceleration values at
several specific frequencies. The defect-band frequencies of the corresponding defective
PnC are highlighted with red circles in Figure 7b. These measurement and post-processing
procedures have been used in Ref. [58].
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Figure 7. One example of obtaining the information of defect-band frequencies in the experiment;
(a) the measured acceleration signal in the time domain and (b) the normalized acceleration amplitude
in the frequency domain transformed through FFT techniques.

At this point, one may be wondering why these highlighted frequencies are identified
as defect-band frequencies despite observing multiple peaks. There are three possible
explanations for this phenomenon. First, the geometric deviation between the steel beam
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and the ferrite magnets is significant. Given the substantial mass, volume, and mechanical
impedances of the ferrite magnets, they exhibit their own mechanical resonances, as shown
in Figure 2b. These motions can contribute to the appearance of resonance-related peaks.
Second, due to the finite length of the present PnC structure, multiple reflections inevitably
occur at both ends of the steel beam. Furthermore, finite boundary conditions imply that
the defective PnC can exhibit various structural resonance frequencies, irrespective of
the defect’s nature. These effects of reflections and resonant behaviors can bring about
additional peaks. Last, uncertainty regarding the accelerometer position may have led
to the observation of the five defect-mode shapes in Figure 3 that were not intended for
observation. Therefore, a parametric study of defect bands along each defect length is
preliminarily conducted, and the appropriate peak frequencies in the vicinity of the target
defect-band frequencies are selected.

Figure 8 illustrates the variation in defect-band frequencies as the defect length is
mechanically adjusted. The red line represents the numerically calculated results using
COMSOL Multiphysics, while the blue line denotes the experimentally measured results.
The x-axis represents the defect length, which increases from 50 to 90 mm in 5 mm in-
crements, and the y-axis represents the frequency range from 0 to 12 kHz. A notable
observation is that the numerically calculated defect bands are approximately three, while
the experimentally measured defect bands are two. This investigation aligns with the
statement at the beginning of this section.
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Figure 8. A comparison between the numerical and experimental results of defect-band frequencies
across several defect lengths.

Two key observations can be made. First, the numerically predicted and experimen-
tally measured results exhibit similar trends within a comparable range. To analyze this
accuracy more quantitatively, we use the coefficient of determination (called R-square) as
an evaluation metric. Referring to Figure 3, the R-square value is 0.93 for the low-frequency
defect-band corresponding to the first defect-mode shape and 0.84 for the high-frequency
defect-band corresponding to the third defect-mode shape. This indicates a good statistical
fit between the experimental and numerical results. The primary sources of error can
be attributed to physical uncertainties. The material properties used in the analysis are
obtained from the data sheets built into COMSOL or provided by the suppliers. As such,
they do not represent the true values for the materials used in the present experiment, in-
troducing inaccuracies. Additionally, there is a margin of error in the magnet positions due
to manual manipulation. Lastly, during the experiment, it is observed that the connection
between the shaker and the metal beam is slightly loosened, which may contribute to small
errors. Second, both defect-band frequencies decrease as a fractional function as the defect
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length increases. As mentioned in the Introduction, defect-mode-based energy localization
is directly related to the mechanical resonance of the defect, and it is well established
that the mechanical resonance frequency decreases with increasing structural length. Our
experimental findings corroborate this relationship both numerically and experimentally.
These considerations collectively suggest that the methodology for designing defective
PnCs using permanent magnets and ferromagnetic materials, along with mechanically
controlling the defect band, has been successfully validated.

6. Conclusions

In conclusion, this study successfully demonstrated the efficacy of mechanically tun-
able defect bands in one-dimensional reconfigurable phononic crystals (PnCs) utilizing
permanent magnets and ferromagnetic materials. The case study involved attaching five
ferrite magnet blocks to a long steel beam through magnetic forces. By altering the relative
positioning of selected ferrite magnet blocks, a defect was readily created, enabling the
formation and adjustment of defect bands. This method provided a robust mechanism for
the mechanical tuning of defect bands. The significant magnetic forces ensured the struc-
tural stability of the defective PnC during oscillatory excitation, preventing detachment
even when the defective PnC was subjected to gravitational forces. Experimental results,
consistent with numerical predictions, confirmed that defect-band frequencies decreased
with increasing defect length, corroborating the relationship between mechanical resonance
frequency and structural length.

The proposed design significantly enhances the practicality of defective PnCs by elim-
inating the need for complex geometric alterations or the attachment of elastic foundations,
which often complicates the adjustment process. Several future research directions are
recommended. First, it is essential to investigate the long-term durability and maintenance
requirements of PnCs in harsh environments. Second, in the presence of magnetic materials
within the surrounding environment of the targeted systems, mechanisms must be devised
to ensure the robust operation of the proposed design, along with techniques for compact
embedding. Lastly, further miniaturization of the proposed design is necessary to facilitate
its application at much higher frequencies. By pursuing these future research directions,
the functionality, efficiency, and practical applicability of reconfigurable defective PnCs can
be further enhanced in a wide range of technological domains.

Leveraging the adjustable defect-band properties of reconfigurable defective PnCs
offers significant potential for the development of complex mechanical logic circuits, such as
demultiplexers and multiplexers. Furthermore, advancements in tunable ultrasonic sensors
and transducers can substantially expand the applications of defective PnCs in fields such
as medical imaging, prognostics and health management, and structural health monitoring.
For instance, in Refs. [28,29], defect modes are employed to amplify frequencies associated
with faulty modes of rotating machinery. By further advancing the proposed design concept
and embedding it in a compact hardware device, reconfigurable defective PnCs can be
utilized to detect various fault signal frequencies in different mechanical systems.
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