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Abstract: In the process of pharmaceutical crystallization, the automatic detection of crystal shapes
in images is important since controlling the morphology of the crystals improves the quality of
pharmaceutical crystals. In this paper, a novel image detection method called RECDet is proposed. It
leverages an automatically adapted binary image to bypass background regions, thereby reducing
the detection field. In addition, the method greatly reduces the training time while improving the
detection accuracy by using a specially designed detection box for the crystal shape. The performance
of our model is evaluated through experimental analysis on a publicly available glutamate crystal
dataset and a self-made entecavir pharmaceutical crystal dataset. Experimental results show that
RECDet improves the accuracy of prediction bounding boxes by more than 2% compared to other
popular models and achieves a classification accuracy of 98%. It can be used as a promising tool in
the application of pharmaceutical crystallization control.

Keywords: crystal detection; object detection; image segmentation

1. Introduction

Control of pharmaceutical crystallization is a pivotal step in pharmaceutical devel-
opment and manufacturing, involving the regulation of crystal size, shape, and purity to
ensure optimal pharmaceutical efficacy and bioavailability [1,2]. Traditional crystallization
control methods that rely on manual monitoring are time-consuming, labor-intensive, and
often unreliable. Recent advancements in deep learning have significantly enhanced image
analysis, fostering the development of models that improve the accuracy and efficiency of
object detection [3-5]. As image recognition technologies evolve, there is increasing interest
in automating the monitoring of crystallization processes [6-9]. Nevertheless, the extensive
application of image recognition in crystallography is still not fully explored [10-14]. In
contrast to specialized models used in medical image recognition, crystallography has
predominantly employed the general image processing frameworks [15,16].

For example, Gao et al. [17] applied Mask R-CNN in the field of crystal recognition
to record the transformation process of glutamate crystal morphology, including quantity;,
size, and surface area. Huo et al. [18] employed the UNet for crystal segmentation, which
allowed for a detailed analysis of the particle size distribution during the crystal growth
stages. Wu et al. [19] analyzed crystal images using S2A-Net in the field of aerial imaging
and measured the two-dimensional size of crystals using a minimum-fitting rectangle.
Manee et al. [20] utilized a single-stage segmentation model RetinaNet to segment crystals
for real-time detection of crystal size distribution.

Despite these successes, the general object detection frameworks applied to crystal
shape or type prediction still encounter numerous challenges, such as the limited dataset
and algorithmic accuracy. These frameworks often focus excessively on image details to
maintain detection effectiveness across various scenarios, leading to excessive attention to
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background impurities or water disturbances, which may hinder detection efficiency and
accuracy [21-23]. Consequently, extensive data are required to filter out these distractions
for model learning.

This study introduces a novel object detection framework named RECDet, which is
expressly crafted for crystal image detection by employing background region filtering.
It algorithmically generates a binary image to separate the foreground and background
regions, and then inputs this information into a neural network, bypassing the background
region detection to improve the crystal detection accuracy and processing speed. Addi-
tionally, considering that crystals typically exhibit uniform sizes, a specialized candidate
box has been designed inspired by a two-stage object detection process, which can boost
the model performance on small datasets [24]. To evaluate the effectiveness of RECDet,
a public dataset consisting of 140 training images and 60 validation images is used for
the test. Besides, a dataset with 180 training images, 40 validation images, and 20 test
images, compiled in the COCO annotation format [25], is constructed by our experiment.
The validation results of these datasets indicate that RECDet significantly improves the
detection and classification of crystals, providing an effective tool for further analysis of
crystal size distribution and crystallization quality.

2. Method

The detailed description of our RECDet is shown in Figure 1. We first collected crystal
images and manually annotated the position of the crystals on these images. After the
image acquisition, the original data was preprocessed and augmented. Then, we set the
threshold and applied the binary segmentation to segment crystal regions and obtain binary
images of crystals. Subsequently, a two-stage object detection model was used to modify
the candidate box prediction by combining the binary crystal image. The background
region can be directly skipped during the prediction process; this results in satisfactory
experimental results that guarantee the identification of the crystal type and its specific
position on the image.

[ Crystal Image capture ]
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Al =
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l [ Feature determination ]

\ 4
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| [ ]
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[ Image augmentation ]
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Figure 1. The flow chart of RECDet.

2.1. Threshold Segmentation

As images with varying crystal densities exhibit distinct brightness levels, determin-
ing a single threshold that can perfectly segment all images is infeasible. To minimize the
workload of subsequent processing steps, our RECDet model employs automatic threshold
segmentation. Otsu threshold segmentation [26] is an adaptive threshold image segmen-
tation method that uses a threshold to divide an image into foreground and background
regions. The crystal image is firstly converted into a grayscale image, with a gray level



Crystals 2024, 14, 709

30f12

v

interval set as [0, m]. The threshold t is then calculated and the image is divided according
to two parts of [0, t] and [t + 1, m]. The calculation of threshold ¢ is

F(t) = wo x (ug — u)? +wy x (ug —u)? 1)

where wy is the proportion of foreground in the image with a mean of ug, w; is the
proportion of background in the image with a mean of 1, and u is the overall mean of the
image calculated as u = wg X 1y + w1 X u;. When F(t) reaches its maximum value, The
threshold f is referred to as the optimal threshold. The image is finally divided into the
foreground and background regions using this threshold. The effect of the application of
the above method is shown in Figure 2. It can be seen that the binary image has a very
blurry division of the crystal, and the model needs to be further processed.

(a) Original (b) Processed (c) Binary

Figure 2. Segmentation results. (a) Original blurry crystal image. (b) The image after image
enhancement processing. (c) Binary image obtained through OTSU processing.

For crystal images under complex conditions, threshold segmentation cannot ac-
curately distinguish the crystal region, which is often affected by the brightness of the
background region and impurities in the solution. Our model is based on the results of
threshold segmentation, assisted by neural network image technology, to obtain more
accurate target detection results.

2.2. Network Model Structure

As shown in Figure 3, RECDet utilizes ResNet50 as its feature extraction backbone [27,28].
The input image (H x W) is divided into 5 stages. A feature map of 2048 channels is output
after 49 convolution layers, and the size is recorded as M x N. The convolution process is
shown in Table 1.

M Stage 1 M Stage 2 W Stage 3 W Stage 4 W Stage 5

/=N Cls_Pred

Backbone |~

W Conv_1x1,18

OTSU | _ B Conv_1x1,36
> ROI Pooling ] Flatten
{ =
v » V//

Figure 3. Network model structure diagram.
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Table 1. The specific operation process of convolution in feature extraction network.

Stage Method

1 7 x 7,64,5=2;3 x 3 max pooling, s =2
{[1x1,64];[3 x 3,64];[1 x 1,256]} x 3
{[1x1,128];[3 x 3,128];[1 x 1,512]} x 4
{[1 x1,256];[3 x 3,256]; [1 x 1,1024]} x 6
{[1 x1,512]; [3 x 3,512]; [1 x 1,2048]} x 3

Gk N

The convolution process involves the sliding of small, trainable convolutional kernels
over the input image, extracting features through the computation of the dot product
between the convolutional kernels and local regions of the input data. These kernels
are capable of capturing spatial and temporal patterns within the data, such as edges or
textures, to form feature maps. This process is illustrated in Figure 4.

x 0.36 x 0.25 x 0.23

F x-024  x 028  x 009
Eﬁ 06 | + + |o63| =

., |- cm W i e
1] i x -015 x 0.08

(a) Original (b) Processed (c) Conv kernel (d) Feature map

Figure 4. Processing of image feature extraction. (a) Original crystal image. (b) Image enhanced and
enlarged with details. (¢) An example of a 3 x 3 convolution kernel. (d) Example of feature map
obtained after convolution.

After each convolution layer, a batch normalization layer and a ReLU activation layer
are connected, and the gradient stability is kept by the residual connection. By the batch
normalization, the input X is distributed to a smaller range, which is conducive to the
iterative optimization of the function. Its output X; is expressed as

% = Xi—p
. Vo?4e
_ 1 E iy 2
o= B @
1 m
P‘—aigxi

After the batch normalization, ReLU introduces the nonlinear factors to enhance the
ability of neural networks to solve the linear fitting problem of neural networks. It is

expressed as
F(x) = Max(0, x) 3

For the feature maps derived from the backbone network of the raw image, 9 anchors
are set at each pixel point, the schematic of anchor generation is shown in Figure 5.
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Figure 5. Anchor generation, red arrows indicate anchor sliding on the feature map.

These anchors are designed with respect to length-to-width ratios of [1:1, 1:1.5, 1.5:1]
and the size scales of [8,12,16]. The aspect ratios and size scales can be adjusted according
to the specific shape of the target crystal, as we have found that the size and shape of
pharmaceutical crystals are always similar. Each anchor is assigned by a binary label flag
corresponding to the foreground and background regions, respectively. It is differentiated
using the binary images generated in Section 2.1, which is represented as

flag =true, b =1 @)
flag = false, b;=0

where b; is the value at the pixel position corresponding to the anchor in the binary image.
Thus, the crystal area is preliminarily determined by the binarization. Then it is judged
whether the anchor corresponding to the current pixel point needs to be fed into the neural
network for computation.

In the model training process, each anchor is convolved with a 1 x 1 convolution, with
a channel number of 2 x 9. Thus, each anchor obtains two corresponding values, which
are then used in a softmax function to perform a binary classification task, calculating
the probability of the anchor being either a foreground or background class. This is

represented as
Zc

Softmax(z;) = )

C ezf
c=1
where z, is the input data and c is set as 2 for a binary classification task. z; is the output
probability value, converting the output to 1 for the foreground and 0 for the background,
which is represented as

{Zi =1, z;>205 (6)

zi=0, z; <05

Then, a process is further refined by applying a weighted operation with the previously
approximated foreground and background values:

b; = Ab; + (1 — )\)Z,‘ (7)

where A is a variable, starting with an initial value of 1. During the training process, it
gradually decreases with each training epoch until it reaches 0 in the final epoch. Simul-
taneously, labels are continually assigned to the anchors using Equation (4) during the
training. For anchors that are set to true by Equation (4), they undergo a 1 x 1 convolution
with a channel number of 4 x 9. Consequently, each anchor obtains four values, which
are then utilized for the box regression to refine the anchor box, thereby forming a more
accurate bounding box. The calculation formula is represented as

{tx =14 |ty =log ;]—”ﬂ)

7y )
ty = yh,ly t, = log %)
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where x, and y, are the coordinates of the center point of the anchor box, and w,, h,
denote its width and height, respectively. x, y are the coordinates of the center point of
the prediction box generated by the neural network, and w, h refer to its width and height,
respectively. The obtained ty, t,, ty, tj, represent the offsets predicted by the neural network.
The corrected prediction box is expressed as x;, v, wy, h;, which is calculated as
{x,’; =x, +ty X Wy {w;‘ = wy X exp(tw) ©)

Yo =Ya+tyxhy " | by =hy xexp(ty)

If the intersection over union (IOU) between the predicted bounding box and the
ground truth box is greater than 0.7 [29], it is marked as a positive sample. Conversely, if
the IOU between the predicted bounding box and the ground truth box is less than 0.3, it is
marked as a negative sample. Any remaining predicted bounding boxes and those that
exceed the image boundaries do not participate in the final calculation. The formula for

calculating IOU is

ANB
IOU_A+B—(AmB) (10)

where A is the area of the predicted bounding box and B is the area of the ground truth box.

2.3. Loss Function

During the neural network training process, predicted bounding boxes are scaled
down by a factor of H/M to align with the feature map dimensions produced by the
convolutional neural network. These adjusted regions undergo the region of interest (ROI)
pooling [30], which involves the division with a 7 x 7 grid where max pooling is executed
on each grid cell. The pooled output is then directed through the fully connected layers,
leading to results for classification and regression tasks. The loss function for these tasks is
expressed as

1 1
L({Pi}/ {ti}) = N ZLCZS(pl" Pz*) + AWQ&' Zp?ng(tir tz*) (11)

cls

where the classification loss L uses the cross-entropy, p; is the true label and p; is the
predicted value. The regression loss p; applies the smooth L1 loss [31], where ¢] is the true
label for the bounding box parameters and ¢; is the predicted value.

3. Experimental and Discussion
3.1. Dataset

To validate the effectiveness of RECDet, a public dataset is first utilized, consisting
of 200 images of & and 3 glutamate crystals. This dataset is converted to the COCO label
standard for the model training and evaluation. And the dataset is shuffled and segmented
into training and validation sets with a 7:3 distribution.

In addition, a new specialized dataset is created by us based on microscopic pho-
tographs of entecavir pharmaceutical crystals obtained through cooling crystallization in
an ethanol-aqueous solution. Images of lower quality are excluded, leaving a collection of
240 high-resolution photographs (2304 x 1728 pixels) of entecavir crystals. Each crystal in
these images is meticulously labeled with dots and lines, following the annotation format
of the COCO dataset, with the details recorded in .json files. The labels distinguish between
single-crystal and polycrystalline forms. A total of 180 images were designated for training
and 40 for validation, and the dataset was randomly shuffled to ensure the robustness of
the evaluation.

3.2. Experiment Equipment

RECDet is implemented using the Pytorch deep learning framework (version 1.7.0).
The operating system is Windows 10. The CPU model is Intel Core i5 10th and the GPU
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model is Nvidia RTX3060. The images were captured using the OPLENIC microscope
photography system (CX23) (OPLENIC, located in Hangzhou, China).

3.3. Experiment Result

To demonstrate the effectiveness of RECDet, four general object detection models are
compared, including two-stage object detection [32,33], single-stage object detection [34],
and Transformer-based object detection [35]. The codes to run these models are obtained
from the OpenMMLab GitHub repository [36], the detailed list of hyperparameters is
shown in Table 2.

Table 2. Hyperparameters.

Parameters Values
Optimizer SGD
Learning rate 0.02—0.002
Weight decay 0.0001
Momentum 0.9
NMS 0.5

The accuracy of prediction boxes, category judgment precision, training duration,
and prediction speed (Fps) are compared. Among them, bbox mAP75 and classification
accuracy are commonly used as evaluation metrics. bbox mAP75 refers to the mAP value
(Mean Average Precision) at an IoU threshold of 0.75. For each predicted bounding box,
both precision and recall are computed. AP denotes the area under the Precision-Recall
curve, and its representation is

Precision = PT_fFP
_ T (12)
ReCﬂll = TPLIN

Considering the binary classification task in our experiment, the representation for
accuracy (acc) is detailed as

TP+TN
TP+TN+FP+FN

Accuracy = (13)

where TP represents True Positives, TN denotes True Negatives, FP indicates False Positives,

and FN means False Negatives. The detailed results of the comparison are presented in
Table 3.

Table 3. Comparison of experimental results with different methods.

Data Method bbox_mAp bbox_mAp75 Acc (%) Time/Epoch (s) Fps
RECDet 0.723 0.762 98.2 31 18

Entecavir Mask RCNN 0.691 0.739 97.2 75 11
pharmaceutical Faster RCNN 0.684 0.731 97.0 40 14
crystals YOLOF 0.677 0.686 94.3 26 17

DETR 0.667 0.699 96.3 80 8

RECDet 0.632 0.651 97.5 39 18

Glutamic acid Mask RCNN 0.593 0.636 96.2 80 11
crystals Faster RCNN 0.606 0.615 96.3 51 13
YOLOF 0.583 0.582 93.2 30 16

DETR 0.586 0.611 95.9 96 8

It can be seen from Table 3, RECDet achieves an approximate 2% improvement over
Mask R-CNN in the bbox mAP75 metric. Additionally, it not only improves the pre-
diction speed but also boosts the prediction accuracy by 1%, achieving 98%, which also
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surpasses other comparison models. Such enhancements are crucial in applications with
high-precision requirements [37]. Moreover, these enhancements can yield substantial
benefits when handling large volumes of data, which can reduce the overall false positive
rate and improve computational efficiency.

For the accuracy comparison shown in Figure 6, RECDet achieves a faster training
speed and higher training stability as well as better prediction accuracy. This is because
the features of the crystal are utilized to preprocess the image content, which enhances the
neural network’s learning effect on crystal images, ensuring better accuracy in the early
stages of training. When these processed crystal image features participate in the neural
network training process, they yield a stable learning curve, minimize the background
noise, and lead to fast learning and enhanced accuracy. The acc, bbox mAP75, and Fps
comparisons by our RECDet and other models are shown in Figure 7.

100
X
~ 90 |
>
(]
s
= 80 f
2 ——RECDet
= 70 | Faster RCNN
£ Mask RCNN
= 60 | YOLOF
2 ——DETR
[~
50 1 1 1 1 1 1
0 5 10 15 20 25 30

Training epoch

Figure 6. Comparison of accuracy during training on entecavir pharmaceutical dataset.

100 —— — 24
> 2
z 80 — — - 1 18 ‘o;:
-
< —
g 60 {112 &
5]
= =
S 2
B N
= 40 f 16 =
& =
A =¥
20 0
Acc (%) bbox_mAp75 (%) Fps (s)

ORECDet OFaster RCNN @®Mask RCNN OYOLOF @ODETR

Figure 7. Comparison of accuracy, box accuracy, and prediction speed among the four dominant
models in the entecavir pharmaceutical dataset.

In Figure §, it is evident that nearly all the crystals have been clearly annotated, with
the details of images further delineated in subsequent figures.
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Figure 8. The image depicts the detection results. On the left are the entecavir pharmaceutical crystals,
and on the right are the glutamate crystals. Green rectangles are crystals identified by RECDet.

In Figure 9, a magnified view of image details is presented. It is evident that the
prediction boxes are accurately annotated, and the crystal types are identified correctly.
Figure 10 displays the detection results in regions with dense crystal formations, which
also exhibit a satisfactory performance of our RECDet.

Figure 9. Detail of detection results in sparse crystal regions. The letter in the top left corner denotes
the type of crystal, followed by a number representing the predicted probability value. Green
rectangles are crystals identified by RECDet.

p|0.98 %,
?_5 ]p|1.00 i
Ve

Figure 10. Detection effect details in crystal-dense areas. Green rectangles are crystals identified by
RECDet.

3.4. Ablation Experiment

Ablation experiments evaluate how the binary maps for distinguishing background
from the foreground and especially the designed detection boxes impact the model perfor-
mance. The effects of removing the specially designed detection box (No box), removing the
binary map to aid training (No bin), and the experimental effect of simultaneous removal
(Null) are compared in the ablation experiment. As shown in Table 4, the observed decline
in accuracy across all scenarios underscores the effectiveness of our RECDet.
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Table 4. Comparative results of ablation experiments.

Data Method bbox_mAp75 Acc (%)
Entecavir RECDet 0.762 98.2
pharmaceutical No box 0.749 98.0
crvstals No bin 0.757 97.3
y Null 0.731 97.1
RECDet 0.651 97.1
Glutamic acid No box 0.629 96.6
crystals No bin 0.646 96.4
Null 0.615 96.3

3.5. Experimental Discussion

The biggest advantage of the RECDet model is that it eliminates background inter-
ference and saves computational resources. Traditional object detection models require
resource allocation for foreground and background regions. The RECDet model intention-
ally avoids detecting background regions, which can significantly reduce the computational
complexity and increase the prediction efficiency. As shown in Table 3, RECDet nearly
doubles the prediction speed compared to other models. Besides, background interferences
often introduce noise into the detection process, leading to false positives or missed de-
tections. RECDet ignores these background regions which can minimize the interferences.
In addition, the specially-designed detection box designed by RECDet further improves
the prediction accuracy. These superiorities of RECDet in crystal object detection are well
demonstrated according to the above experiments.

4. Conclusions

This paper introduces a novel method for crystal object detection. It utilizes a two-
stage detection process combined with the Otsu threshold segmentation algorithm to
adaptively distinguish between background and foreground regions in the crystal image,
which helps our neural network to accurately predict the crystal shape and reduce the
interference from impurities and background light intensity. Additionally, the background
region is omitted during the candidate box generation process, minimizing the use of
computational resources. Furthermore, the specially designed candidate box is well-suited
to the crystal size, allowing for faster adaptation by the model. Compared to the current
Mask RCNN model, the accuracy of the candidate box region is improved by more than 2%,
and our classification accuracy reaches 98%. Finally, a self-made entecavir pharmaceutical
crystals dataset is constructed for use in crystal object detection. The information including
RECDet and the crystal image dataset is available at https://github.com/Alxcial/RECDet
(accessed on 30 October 2023). The dataset will be made available for public use.

Certainly, there remains room for enhancement. The application of artificial intelli-
gence technology in the actual crystalline production process still faces many challenges.
These issues include blurred photos due to environmenal interference, uneven brightness
caused by water ripples, problems related to turbid solutions and crystal agglomeration,
and challenges associated with insufficient data. In our future work, we will continue
to refine the method proposed in this study to solve the problems encountered in real
production environments and mitigate the effects of these external factor disturbances.
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