Effect of Ca, Ba, Be, Mg, and Sr Substitution on Electronic and Optical Properties of XNb2Bi2O9 for Energy Conversion Application Using Generalized Gradient Approximation–Perdew–Burke–Ernzerhof
Abstract
:1. Introduction
2. Methodology
3. Results and Discussions
3.1. Structural Properties
3.2. Electronic Properties
3.2.1. Band Structure and Density of State
3.2.2. Partial Density of States (PDOS)
- (a)
- CaNb2Bi2O9
- (b)
- BaNb2Bi2O9
- (c)
- BeNb2Bi2O9
- (d)
- MgNb2Bi2O9
- (e)
- SrNb2Bi2O9
3.3. Optical Properties
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kehoe, A.B.; Scanlon, D.O.; Watson, G.W. Modelling potential photovoltaic absorbers Cu3MCh4 (M = V, Nb, Ta; Ch = S, Se, Te) using density functional theory. J. Phys. Condens. Matter 2016, 28, 175801. [Google Scholar] [CrossRef]
- Andreotti, A.; Del Pizzo, A.; Rizzo, R.; Tricoli, P. An efficient architecture of a PV plant for ancillary service supplying. In Proceedings of the SPEEDAM 2010, Pisa, Italy, 14–16 June 2010; pp. 678–682. [Google Scholar]
- Abubakr, M.; Fatima, K.; Abbas, Z.; Hussain, A.; Jabeen, N.; Raza, H.H.; Chaib, Y.; Muhammad, S.; Siddeeg, S.M.; Gorczyca, I. Effect of S, Se and Te replacement on structural, optoelectronic and transport properties of SrXO4 (X = S, Se, Te) for energy applications: A first principles study. J. Solid State Chem. 2022, 305, 122689. [Google Scholar] [CrossRef]
- Piegari, L.; Rizzo, R.; Tricoli, P. Sizing criteria for stand alone power plants supplied by photovoltaic arrays. ACTA Electroteh. 2008, 2008, 241–246. [Google Scholar]
- Glaser, P.E.; Maynard, O.E.; Mackovciak, J.J.R.; Ralph, E.I. Feasibility Study of a Satellite Solar Power Station; (No. ADL-C-74830); NASA: Washington, DC, USA, 1974. [Google Scholar]
- Herold, D.; Horstmann, V.; Neskakis, A.; Plettner-Marliani, J.; Piernavieja, G.; Calero, R. Small scale photovoltaic desalination for rural water supply-demonstration plant in Gran Canaria. Renew. Energy 1998, 14, 293–298. [Google Scholar] [CrossRef]
- Liu, M.; Johnston, M.B.; Snaith, H.J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 2013, 501, 395–398. [Google Scholar] [CrossRef] [PubMed]
- Carlson, D.E.; Wronski, C.R. Amorphous silicon solar cell. Appl. Phys. Lett. 1976, 28, 671–673. [Google Scholar] [CrossRef]
- McDonald, S.A.; Konstantatos, G.; Zhang, S.; Cyr, P.W.; Klem, E.J.; Levina, L.; Sargent, E.H. Solution-processed PbS quantum dot infrared photodetectors and photovoltaics. Nat. Mater. 2005, 4, 138–142. [Google Scholar] [CrossRef] [PubMed]
- Burschka, J.; Pellet, N.; Moon, S.J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M.K.; Grätzel, M. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 2013, 499, 316–319. [Google Scholar] [CrossRef]
- Panthani, M.G.; Akhavan, V.; Goodfellow, B.; Schmidtke, J.P.; Dunn, L.; Dodabalapur, A.; Barbara, P.F.; Korgel, B.A. Synthesis of CuInS2, CuInSe2, and Cu(InxGa1−x)Se2 (CIGS) nanocrystal “inks” for printable photovoltaics. J. Am. Chem. Soc. 2008, 130, 16770–16777. [Google Scholar] [CrossRef]
- Boeer, K.W. p-type emitters covered with a thin CdS layer show a substantial improvement of Voc and FF. Sol. Energy Mater. Sol. Cells 2011, 95, 786–790. [Google Scholar] [CrossRef]
- Tang, C.W. Two-layer organic photovoltaic cell. Appl. Phys. Lett. 1986, 48, 183–185. [Google Scholar] [CrossRef]
- Sun, S.; Wang, W.; Xu, H.; Zhou, L.; Shang, M.; Zhang, L. Bi5FeTi3O15 hierarchical microflowers: Hydrothermal synthesis, growth mechanism, and associated visible-light-driven photocatalysis. J. Phys. Chem. C 2008, 112, 17835–17843. [Google Scholar] [CrossRef]
- Tang, J.; Zou, Z.; Ye, J. Efficient photocatalytic decomposition of organic contaminants over CaBi2O4 under visible-light irradiation. Angew. Chem. Int. Ed. 2004, 43, 4463–4466. [Google Scholar] [CrossRef] [PubMed]
- Naresh, G.; Malik, J.; Meena, V.; Mandal, T.K. pH-mediated collective and selective solar photocatalysis by a series of layered Aurivillius perovskites. ACS Omega 2018, 3, 11104–11116. [Google Scholar] [CrossRef] [PubMed]
- Kudo, A.; Hijii, S. H2 or O2 evolution from aqueous solutions on layered oxide photocatalysts consisting of Bi3+ with 6s2 configuration and d0 transition metal ions. Chem. Lett. 1999, 28, 1103–1104. [Google Scholar] [CrossRef]
- Shimodaira, Y.; Kato, H.; Kobayashi, H.; Kudo, A. Photophysical properties and photocatalytic activities of bismuth molybdates under visible light irradiation. J. Phys. Chem. B 2006, 110, 17790–17797. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Yu, M.; Yang, J.; Wang, Y.; Yu, C. Nanosheet-based Bi2MoxW1−xO6 solid solutions with adjustable band gaps and enhanced visible-light-driven photocatalytic activities. J. Phys. Chem. C 2010, 114, 18812–18818. [Google Scholar] [CrossRef]
- Cui, R.; Zhao, X.; Ye, Y.; Deng, C. Layer-effects on electrical and photovoltaic properties of Aurivillius-type Srn-3Bi4TinO3n+3 (n = 3, 5) films grown by pulsed laser deposition. J. Mater. Sci. Mater. Electron. 2022, 33, 25318–25328. [Google Scholar] [CrossRef]
- Lardhi, S.; Noureldine, D.; Harb, M.; Ziani, A.; Cavallo, L.; Takanabe, K. Determination of the electronic, dielectric, and optical properties of sillenite Bi12TiO20 and perovskite-like Bi4Ti3O12 materials from hybrid first-principle calculations. J. Chem. Phys. 2016, 144, 134702. [Google Scholar] [CrossRef]
- Werner, V.; Aschauer, U.; Redhammer, G.J.; Schoiber, J.; Zickler, G.A.; Pokrant, S. Synthesis and Structure of the Double-Layered Sillén–Aurivillius Perovskite Oxychloride La2.1Bi2.9Ti2O11Cl as a Potential Photocatalyst for Stable Visible Light Solar Water Splitting. Inorg. Chem. 2023, 62, 6649–6660. [Google Scholar] [CrossRef]
- Liu, S.M.; Zhong, H.X.; Liang, J.J.; Zhang, M.; Zhu, Y.H.; Du, J.; Guo, W.H.; He, Y.; Wang, X.; Shi, J.J. Lead-free layered Aurivillius-type Sn-based halide perovskite Ba2X2[Csn−1SnnX3n+1] (X = I/Br/Cl) with an optimal band gap of ∼1.26 eV and theoretical efficiency beyond 27% for photovoltaics. J. Mater. Chem. A 2022, 10, 10682–10691. [Google Scholar] [CrossRef]
- Xu, B.; Li, X.; Sun, J.; Yi, L. Electronic structure, ferroelectricity and optical properties of CaBi2Ta2O9. Eur. Phys. J. B 2008, 66, 483–487. [Google Scholar] [CrossRef]
- Xu, B.; Yi, L. First-principle study of the ferroelectricity and optical properties of the BaBi2Ta2O9. J. Alloys Compd. 2007, 438, 25–29. [Google Scholar] [CrossRef]
- Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G.L.; Cococcioni, M.; Dabo, I.; et al. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 2009, 21, 395502. [Google Scholar] [CrossRef] [PubMed]
- Pela, R.R.; Hsiao, C.L.; Hultman, L.; Birch, J.; Gueorguiev, G.K. Electronic and optical properties of core–shell In AlN nanorods: A comparative study via LDA, LDA-1/2, mBJ, HSE06, G 0 W 0 and BSE methods. Phys. Chem. Chem. Phys. 2024, 26, 7504–7514. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, R.B.; Rivelino, R.; de Brito Mota, F.; Kakanakova-Georgieva, A.; Gueorguiev, G.K. Feasibility of novel (H3C)nX(SiH3)3−n compounds (X = B, Al, Ga, In): Structure, stability, reactivity, and Raman characterization from ab initio calculations. Dalton Trans. 2015, 44, 3356–3366. [Google Scholar] [CrossRef] [PubMed]
- Segall, M.D.; Lindan, P.J.; Probert, M.A.; Pickard, C.J.; Hasnip, P.J.; Clark, S.J.; Payne, M.C. First-principles simulation: Ideas, illustrations and the CASTEP code. J. Phys. Condens. Matter 2002, 14, 2717. [Google Scholar] [CrossRef]
- Haas, P.; Tran, F.; Blaha, P.; Schwarz, K.; Laskowski, R. Insight into the performance of GGA functionals for solid-state calculations. Phys. Rev. B—Condens. Matter Mater. Phys. 2009, 80, 195109. [Google Scholar] [CrossRef]
- Clark, S.J.; Segall, M.D.; Pickard, C.J.; Hasnip, P.J.; Probert, M.I.; Refson, K.; Payne, M.C. First principles methods using CASTEP. Z. Für Krist-Cryst. Mater. 2005, 220, 567–570. [Google Scholar] [CrossRef]
- Ziesche, P.; Kurth, S.; Perdew, J.P. Density functionals from LDA to GGA. Comput. Mater. Sci. 1998, 11, 122–127. [Google Scholar] [CrossRef]
- Mattsson, A.E.; Armiento, R.; Schultz, P.A.; Mattsson, T.R. Nonequivalence of the generalized gradient approximations PBE and PW91. Phys. Rev. B Condens. Matter Mater. Phys. 2006, 73, 195123. [Google Scholar] [CrossRef]
- Hilal, M.; Rashid, B.; Khan, S.H.; Khan, A. Investigation of electro-optical properties of InSb under the influence of spin-orbit interaction at room temperature. Mater. Chem. Phys. 2016, 184, 41–48. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kainat, F.; Jabeen, N.; Yaqoob, A.; Hassan, N.U.; Hussain, A.; Khalifa, M.E. Effect of Ca, Ba, Be, Mg, and Sr Substitution on Electronic and Optical Properties of XNb2Bi2O9 for Energy Conversion Application Using Generalized Gradient Approximation–Perdew–Burke–Ernzerhof. Crystals 2024, 14, 710. https://doi.org/10.3390/cryst14080710
Kainat F, Jabeen N, Yaqoob A, Hassan NU, Hussain A, Khalifa ME. Effect of Ca, Ba, Be, Mg, and Sr Substitution on Electronic and Optical Properties of XNb2Bi2O9 for Energy Conversion Application Using Generalized Gradient Approximation–Perdew–Burke–Ernzerhof. Crystals. 2024; 14(8):710. https://doi.org/10.3390/cryst14080710
Chicago/Turabian StyleKainat, Fatima, Nawishta Jabeen, Ali Yaqoob, Najam Ul Hassan, Ahmad Hussain, and Mohamed E. Khalifa. 2024. "Effect of Ca, Ba, Be, Mg, and Sr Substitution on Electronic and Optical Properties of XNb2Bi2O9 for Energy Conversion Application Using Generalized Gradient Approximation–Perdew–Burke–Ernzerhof" Crystals 14, no. 8: 710. https://doi.org/10.3390/cryst14080710
APA StyleKainat, F., Jabeen, N., Yaqoob, A., Hassan, N. U., Hussain, A., & Khalifa, M. E. (2024). Effect of Ca, Ba, Be, Mg, and Sr Substitution on Electronic and Optical Properties of XNb2Bi2O9 for Energy Conversion Application Using Generalized Gradient Approximation–Perdew–Burke–Ernzerhof. Crystals, 14(8), 710. https://doi.org/10.3390/cryst14080710