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Abstract: Benzotrifuroxan (BTF) is a powerful energetic material (EM) with high density that can
be used both as a primary and a secondary explosive. However, high mechanical sensitivity limits
its application prospects. To actualize its potential, cocrystallization was introduced into BTF-based
EMs for insensitivity improvement in the current work. A novel cocrystal explosive composed of
BTF and a non-energetic molecule (2-Nitroaniline (ONA)) was prepared with a molar ratio of 1:1.
The possible mechanism of cocrystal formation was studied by the analysis and characterization
of its crystal structure, and the crystal structure, thermal decomposition, and energetic properties
were investigated. The results indicate that the formation of the BTF/ONA cocrystal is mainly
attributed to the strong interactions of the hydrogen bonds formed between the hydrogen on the
amino group in the ONA molecule and the oxygen and nitrogen atoms in BTF. The impact sensitivity
of BTF/ONA is obviously reduced, with the drop height of 50% explosion probability (H50) increasing
from 56.0 to 90.0 cm. The calculated detonation velocity and detonation pressure of the BTF/ONA
cocrystal are 7115.26 m/s and 20.51 GPa, respectively. The decomposition peak temperature of the
BTF/ONA cocrystal (191.1 ◦C) decreases by about 90.9 ◦C compared to BTF (282.0 ◦C). This suggests
that cocrystallization could effectively reduce its impact sensitivity and produce an explosive with
excellent comprehensive properties.

Keywords: benzotrifuroxan; cocrystallization; energetic materials; mechanical sensitivity

1. Introduction

An explosive is a reactive substance that contains a great deal of energy that can
instantly release heat and a large amount of gas when appropriately stimulated [1]. It
is widely used as a source of energy for weapons and spacecraft [2,3]. With the pursuit
of miniaturization, higher rates of fire, and high destructive capabilities in advanced
weapons, the development and application of high-energy-density materials (HEDMs)
have become key research areas in the field of energetic materials (EMs) [4–7]. Still, there is
usually a contradictory relationship between energy density and the safety of explosives.
Research on the desensitization of HEDMs is particularly important [8]. Currently, the main
methods of insensitive improvement include the surface coating of insensitive materials,
sphericalization, nanosizing, and cocrystallization [9–13]. Among them, cocrystallization is
a strategy that modifies the properties of EMs at the molecular level without altering the
molecular structure of explosives. It involves stabilizing explosive molecules with other
compounds through non-covalent bonds like hydrogen bonds, van der Waals forces, or π-π
interactions within the same crystal lattice [14]. Therefore, cocrystallization creates a unique
crystal structure and achieves more comprehensive and balanced properties [15,16]. By
adjusting the components and proportions of the cocrystal formers, it is possible to control
the mechanical sensitivity precisely, optimizing their explosive performance and achieving
a high degree of suitability for specific applications. In 2011, the CL-20/TNT cocrystal
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yielded a significant reduction in impact sensitivity compared to any polymorph of CL-
20 [17]. In 2012, Adam J. Matzger et al. [18] prepared a 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-
hexaazaisowurtzitane (CL-20)/1,3,5,7tetranitro-1,3,5,7-tetrazocane (HMX) cocrystal, which
reduced the mechanical sensitivity of CL-20 without significantly lowering its denotation
performance. These indicate that cocrystallization is an effective method for reducing the
mechanical sensitivity of HEDMs.

Benzotrifuroxan (BTF) is an ideal oxygen-balanced hydrogen-free explosive with
three furoxan rings and no nitro groups [19]. It exhibits excellent detonation performance
and can be used both as a primary explosive and a secondary explosive [20]. Its density
is nearly 1.9 g/cm3, and its thermal stability and detonation performance are compara-
ble to HMX [21,22]. However, BTF’s high mechanical sensitivity limits its application
prospects [20,23]. Interestingly, BTF shows the potential to form cocrystals with other
compounds because the strong polarizing effects of the oxygen and nitrogen atoms in the
BTF molecule cause interactions with compounds relatively rich in electron density due to
nitro groups [15]. According to the report, many novel BTF cocrystals were prepared, in-
cluding BTF/3,4-Dinitrofurazanfuroxan (DNTF) [24], BTF/2,4,6-trinitrotoluene (TNT) [25],
BTF/1,3,5-trinitrobenzene (TNB), BTF/2,4,6-trinitroaniline (TNA), BTF/2,4,6-trinitrobenzene
methylamine (MATNB), 1,3,3-trinitroazetidine (TNAZ), and BTF/CL-20 [26]. Among them,
the energetic cocrystal constructed by BTF and aromatic nitro compounds such as TNT and
TNB can more effectively reduce its mechanical sensitivity. The six-membered ring of BTF
consists of an electron-poor π-system, so theoretically, BTF could have a higher chance of
obtaining cocrystals with partner compounds containing a higher number of electron-rich
groups, such as nitrobenzene [27].

The increase in molecular stability enables the realization of their insensitivity enhance-
ment. Here, aromatic nitro compounds and nitramine were considered to be ideal energetic
materials that could offer predictable hydrogen-bonding and π-stacking interactions for
HEDMs. The molecular stability increases with the increase in the NH2 group, which offers
more conjugated π-electrons and intermolecular and intramolecular hydrogen bonds [8].
In the current work, the aromatic nitro and nitramine compound 2-Nitroaniline (ONA) was
screened as the conformer molecule of BTF, and a BTF/ONA cocrystal with a molecular
ratio of 1:1 was successfully prepared by solvent volatilization. This study introduces
the cocrystal structure, thermal properties, and denotation performance of the BTF/ONA
cocrystal. It aims to produce an explosive with excellent comprehensive properties and
provide insights for the design of BTF cocrystals.

2. Experimental Section
2.1. Materials and Sample Preparation

BTF (C6N6O6) was synthesized using 5,7-dichloro-4,6-dinitrobenzofuran and sodium
azide. The reaction of 5,7-dichloro-4,6-dinitrobenzofuran with sodium azide in a 1:2 ratio
was carried out at low temperatures in an acetone/water mixture [28]. ONA (C6H6N2O2)
and acetone (C3H6O) were provided by Shanghai Meirui Biochemical Technology Co.,
Ltd. The BTF sample was characterized using High-Performance Liquid Chromatography
(HPLC), and the results are shown in SI 1. HPLC assay results show that the purity of
BTF in the synthesized sample is 99.73%. Figure 1 shows the molecular structures of BTF
and ONA.

In a typical process of cocrystallization, BTF (25.21 mg, 0.1 mmol) and ONA (13.81 mg,
0.1 mmol) were completely dissolved in a 10 mL acetone solvent under stirring. The
mixture was then left to crystallize in a Thermo Scientific oven (Waltham, MA, USA) for
72 h. Temperature was constantly 25~30 ◦C, and relative humidity was 60~70%. The solvent
slowly evaporated at room temperature, resulting in the formation of a new 1:1-molar-ratio
BTF/ONA cocrystal explosive.
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Figure 1. Molecular structures of BTF and ONA.

2.2. Characterization

The cocrystal of BTF and ONA was characterized using several techniques to deter-
mine its structure and properties.

A SuperNova Dual, Cu at zero, AtlasS2 diffractometer (Palo Alto, CA, USA) was used
for Single-Crystal X-ray Diffraction (SXRD) with Cu Kα X-ray source (λ = 1.54184 Å) and
ω-scans. A single crystal of suitable quality was chosen and purged with a cooled nitrogen
gas stream at 100.00 K throughout the data collection. Collected data were integrated
with CrysAlis Pro software (1.171.38.43f; Rigaku Oxford Diffraction 2015). CrysAlisPro
1.171.38.43f was used for the empirical absorption correction, which was implemented
using spherical harmonics in the SCALE3 ABSPACK scaling algorithm.The structures
were solved using ShelXT software (Sheldrick, 2015), and the solutions were refined using
ShelXL software (Sheldrick, 2015). The analyses of SXRD data were carried out using the
OLEX2 program.

A PANalytical Empyrean intelligent diffractometer (Almelo, Netherlands) was used
for Powder X-ray Diffraction (PXRD) at room temperature, utilizing Cu-Kα radiation
(λ = 1.54056 Å, I = 30 mA, U = 40 kV). The sample was placed onto a glass circular sample
holder and aligned with a glass slide. Scans were conducted according to the following
parameters: 2θ = 5◦ to 60◦, step size = 0.033◦, and step speed = 0.2 s.

A Fourier−transform infrared spectrometer (Shimadzu FTIR 8400s, Kyoto, Japan) was
used for Infrared Spectroscopy (IR). Approximately 1–2 mg of the sample was mixed with
180 mg of KBr particles. The mixture was triturated in an agate mortar and pressed into a
slice of KBr with the sample in a mole. The infrared spectra were collected in the range of
500 to 4000 cm−1 with a resolution of 2 cm−1.

The thermal properties of the cocrystalline compound were measured by Differen-
tial Scanning Calorimetry (DSC) using a METTLER TOLEDO TGA/DSC 3+ instrument
(Nänikon, Switzerland). The BTF/ONA cocrystal explosive samples were manually ground
into a fine powder. Approximately 1–2 mg of the sample was placed in an alumina crucible
(Beijing, China). The sample was heated from 30 ◦C to 450 ◦C at a rate of 20 K/min under a
pure nitrogen atmosphere (50 mL/min).

The sensitivity was measured using a WL-1-type impact sensitivity instrument with a
2.5 kg drop weight, according to the Chinese GJB-772A-97 standard method 601.2 [29].

3. Results and Discussion
3.1. Single−Crystal X-ray Diffraction of BTF/ONA

The crystallographic data and structure refinement parameters are listed in Table S1.
They show that BTF/ONA belongs to a monoclinic crystal system and the P21/n space
group with lattice parameters of Z = 4 and a = 13.6285 (4) Å, b = 13.8193 (3) Å, c = 16.0688
(4) Å, α = 90.00◦, β = 101.786 (3)◦, γ = 90.00◦, and V = 2962.53 (13) Å3. Figure 2a is a
simulated packing of the BTF/ONA cocrystal. Figure 2b shows the geometry of molecules
in anisotropic ellipsoids.
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Figure 2. (a) Simulated packing of the BTF/ONA cocrystal; (b) OPTEP diagram for BTF/ONA
cocrystal with 50% probability ellipsoids; (c) hydrogen-bonding interactions between BTF and ONA.
The green numbers are hydrogen bond distances for BTF-ONA and the blue number is hydrogen
bond distances for ONA-ONA.

Its asymmetric unit consists of one BTF molecule and one ONA molecule. The struc-
ture of the BTF cocrystals is stabilized mainly through hydrogen-bonding and π-stacking
interactions [25]. By analyzing the relative contributions of various intermolecular inter-
actions, it is found that the hydrogen bond may play a very important role in the crystal
structure of the BTF/ONA cocrystal. The possible hydrogen bond distances and angles are
shown in Figure 2c and listed in Table 1. They imply that a large number of intermolecular
hydrogen bonds are distributed between the BTF and its conformer molecules. Figure 2c
shows that three strong interactions of N16–H16B···O11 (2.231 Å, 146.92◦), N16–H16B···O11
(2.311 Å, 155.16◦), and N14–H14A···O6 (2.315 Å, 146.61◦) were formed between the hydrogen
on the amino group in the ONA molecule and the oxygen and nitrogen atoms in BTF. In
addition, a weaker hydrogen bond appears between adjacent ONA molecules. For example,
the hydrogen bond of N18–H18···O16 (2.703 Å, 152.56◦) occurred between two adjacent
ONA molecules. These hydrogen bonds were considered to be the main driving force for
the formation and stabilization of the BTF/ONA cocrystal.
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Table 1. Hydrogen bonding of BTF−ONA cocrystal.

D–H···A D (H···A)/Å ∠DHA/◦

BTF–ONA

C17–H17···N2 2.872 166.61
C23–H23···N6 2.583 137.32

N14–H14A···O6 2.315 146.41
C16–H16···N4 2.699 141.99
C16–H16···O5 2.743 217.10

N14–H14B···O8 2.311 155.16
C15–H15···O7 2.791 153.07
C21–H21···O11 2.696 128.67

N16–H16B···O11 2.231 146.92

ONA–ONA N18–H18···O16 2.703 152.56

3.2. Cocrystal Structure and Characteristics of BTF/ONA

To examine the crystalline phase and purity of the cocrystal, PXRD and IR analyses
were carried out. The corresponding PXRD patterns are shown in Figure 3, and the
observed results from PXRD at room temperature are summarized in Table S2. The PXRD
pattern of the BTF/ONA cocrystal is distinctly different from those of the individual
components, BTF and ONA. The characteristic peaks of BTF/ONA are observed at 10.88◦,
16.50◦, 25.55◦, 26.49◦, and 30.94◦. The experimental pattern was nicely comparable to
simulated PXRD patterns, which were calculated from crystal structures using Mercury
software (22.01.8). The small differences in intensity were due to the preferred orientation
of crystalline particles [30]. Moreover, it showed small temperature-dependent shifts in the
peak positions (PXRD at RT and SXRD crystal data at 100 K) [31]. The lower temperatures
at which SXRD was measured caused the lattice to shrink and the characteristic peaks
to be shifted toward higher degree numbers. The characteristic peaks of BTF appeared
at 19.17◦, 23.11◦, 26.06◦, and 29.50◦, and the characteristic peaks of ONA appeared at
12.02◦, 14.90◦, 25.52◦, 27.26◦, and 29.96◦. Overall, the BTF/ONA cocrystal showed different
crystalline phases with the appearance of new characteristic peaks in the PXRD patterns.
The above results indicate that a new crystalline phase composed of BTF and ONA was
successfully formed.
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Figure 3. PXRD patterns for BTF, ONA, and the BTF/ONA cocrystal.

The IR spectra of BTF, ONA, and the BTF/ONA cocrystal are shown in Figure 4,
and their related data are summarized in Table S3. BTF is a furoxan compound, while
ONA is a nitroaniline compound. The characteristic absorption peak due to the C–H
stretching vibration in ONA appears at 3102.9 cm−1, and the corresponding characteristic
absorption peaks of the amine groups in BTF/ONA appear at 3491.0 cm−1 and 3384.5 cm−1.
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However, compared to both, the hydroxyl group position of BTF/ONA has changed. A
strong bond attributed to the C=N stretching vibration in the furan structure is observed
at about 1656 cm−1. BTF has a peak at 1657.3 cm−1, and the BTF/ONA cocrystal has a
peak at 1649.8 cm−1, indicating a shift in the peak of the BTF/ONA cocrystal. The above
absorption peaks are consistent with the results reported in previous works [32]. In the
low wavenumber range, Figure 4 shows that some peaks of the individual components
disappear or shift significantly in the cocrystal infrared spectrum, such as the peak of BTF
at 961.8 cm−1 and the peak of ONA at 1341.7 cm−1. The changes in peak positions and
intensities in the spectra for BTF, ONA, and the BTF/ONA cocrystals indicate interactions
between the two individual components, leading to the formation of a new crystal structure.
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3.3. Detonation Performances and Sensitivity of BTA/ONA

A summary of the data and results of the detonation performances and the impact
sensitivity study of BTF and the BTF/ONA cocrystal is shown in Table 2. For a detailed
evaluation of the influence of cocrystallization on the detonation properties, the enthalpy of
formation was calculated. The detonation properties for the BTF/ONA cocrystal and BTF,
including detonation velocity and detonation pressure at theoretical maximum density
(TMD), were calculated using Explo5. Cocrystallization can produce some changes in
important physical properties of energetic materials, such as density, which is a decisive
factor for detonation properties [33]. The detonation velocity of the BTF/ONA cocrystal is
7115.26 m/s, and the detonation pressure is 20.51 GPa, which is lower than that of BTF. This
is probably attributed to the cocrystallization of BTF with the non-energetic ONA molecule,
which decreases the density and increases the heat of formation, thereby lowering the
energy density [22]. Cocrystallization enhances the intermolecular binding force, decreases
the molecular packing density, reduces the density, and deteriorates the oxygen balance,
leading to a reduction in the detonation performance [34]. The 50% drop height reflecting
the impact sensitivity of the BTF/ONA cocrystal is 90 cm, which is significantly higher
than that of pure BTF (56 cm). The measured impact sensitivity is greatly reduced. The
sensitivity and explosion performance greatly depend on the intermolecular interactions,
chemical composition, and molecular spatial packing density of the explosive [30]. All in all,
BTF/ONA has a significantly higher drop height and slightly lower detonation velocity and
detonation pressure than BTF. This indicates that forming a cocrystal with non-energetic
molecules can effectively alter impact sensitivity and further enhance the safety of sensitive
energetic materials. In order to balance safety and energy, non-energetic nitrobenzenes are
a better option to synthesize BTF cocrystals for a wider range of applications.
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Table 2. Energetic properties for BTF, ONA, and the BTF/ONA cocrystal.

BTF/ONA BTF

Formula C12N8O12H6 C6N6O6
Oxygen balance −77.9% −38.1%
MW [g mol−1] 390.263 252.103

Density [g·cm−3] 1.656 1.87
Enthalpy of formation [kJ mol−1] 721.21 671.78

Detonation velocity [m s−1] 7115.26 8959.98
Detonation pressure [GPa] 20.51 36.35

H50% [cm] 90 54

3.4. Thermal Properties of BTF/ONA

To make a comparison of thermal properties, the BTF/ONA cocrystal and the pure
individual components were analyzed using DSC, and the data are shown in Figure 5.
A clear endothermic peak at 195.1 ◦C in the BTF crystal corresponds to the solid–liquid
phase transition of the melting process before thermal decomposition [33]. The melting
point of ONA is near 73.7 ◦C. Meanwhile, the melting point of the BTF/ONA cocrystal
is 139.2 ◦C, which is between those of BTF and ONA. The DSC curves of BTF/ONA and
BTF have exothermic peaks. Both the initial decomposition temperature (176 ◦C) and
the exothermic peak temperature (191.1 ◦C) of the cocrystal shift to lower temperatures
compared to BTF. Meanwhile, the curve of BTF/ONA shows a subsequent main exothermic
peak and a shoulder exothermic peak at a higher temperature. The above results imply
that the thermal stability of the cocrystal under the same heating conditions is between
BTF and ONA. The melting points of ONA and TNT are similar, as are those of BTF/ONA
and BTF/TNT (132.6 ◦C) [25]. The differing thermal behavior may have resulted from the
changing lattice energies of the cocrystals and coformers [35]. Moreover, the curve of ONA
does not have a completed decomposition peak, mainly attributed to sublimation after
melting under heating. The lower melting point and the absorption of heat by non-energy-
containing molecules could be the reason for the decrease in the detonation performances
of the BTF/ONA cocrystal.
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4. Conclusions

Here, a novel cocrystal explosive composed of BTF and the non-energetic molecule
ONA in a molar ratio of 1:1 is presented, demonstrating the application of cocrystalliza-
tion as a strategy for realizing enhanced insensitivity of explosives. The formation of
the BTF/ONA cocrystal is mainly attributed to the strong interactions of the hydrogen
bonds formed between the hydrogen on the amino group in the ONA molecule and the
oxygen and nitrogen atoms in BTF. The cocrystal structure, thermal stability, detonation
performances, and mechanical sensitivity of BTF/ONA were investigated. A comparison of
the PXRD patterns and IR spectra of the cocrystal with those of the individual components
indicates significant changes in cocrystal structure. These results suggest the formation of
a new molecular cocrystal. Meanwhile, this is also evidenced by a significant shift in the
endothermic peak of the decomposition of the cocrystal (191.1 ◦C) to the low–temperature
region in comparison with the BTF (282.0 ◦C). The calculated detonation velocity of the
BTF/ONA cocrystal is 7115.26 m/s, and the detonation pressure is 20.51 GPa. The cocrys-
tallization of BTF with ONA changes thermal properties and slightly reduces detonation
performance. The BTF/ONA cocrystal has a 50% drop height of 90 cm, decreased by about
60%. It affords a tremendous reduction in impact sensitivity in comparison to pure BTF.
The viability of BTF in explosive applications is potentially improved. This paper poses
an important consideration in the design of future BTF and other explosive cocrystals,
especially with non-energetic molecules such as nitroaniline.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/cryst14080722/s1: Figure S1: Chromatogram; Table S1. Accumulated
points of chromatogram; Table S2: Crystallographic data and refinement parameters for BTF/ONA
cocrystal; Table S3: Characteristic peaks in XRD patterns of BTF/ONA, BTF, and ONA; Figure S3.
XRD patterns of other BTF cocrystals; Table S4: Experimental IR peak positions and transmittance (%)
for BTF/ONA, BTF, and ONA; Figure S5: DSC curves of BTF/CL-20 cocrystal.
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