Terahertz Modulation Properties Based on ReS2/Si Heterojunction Films
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
- (1)
- The ReS2/Si heterojunction film modulator can achieve stable and efficient broadband modulation. When the illumination power is 1.55 W/cm2, the ReS2/Si heterojunction film can achieve a modulation depth of 31%, and the modulation bandwidth is between 0.3 and 1.5 THz.
- (2)
- The modulation effect of the ReS2/Si heterojunction film can be directly improved by increasing the laser pump intensity. When the pump power density increases from 155 mW/cm2 to 1555 mW/cm2, the conductivity of the ReS2/Si heterojunction film gradually increases from 0.5 Ω−1m−1 to about 3.8 Ω−1m−1 at 0.5 THz, an increase of nearly eight times. The ReS2/Si heterojunction film generates photogenerated carriers under the irradiation of the laser. As the laser intensity increases, the more photogenerated carriers are generated, and the greater the conductivity. The higher conductivity, the more terahertz waves can be absorbed. Therefore, the greater the transmittance of terahertz waves, the better the modulation effect.
- (3)
- The preparation process of ReS2/Si heterojunction films can be further optimized by reducing the crystallize sizes and increasing the consistence for a more reliable and effective modulation.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Beigang, R.; Biedron, S.G.; Dyjak, S.; Ellrich, F.; Haakestad, M.W.; Hübsch, D.; Kartaloglu, T.; Ozbay, E.; Ospald, F.; Palka, N.; et al. Comparison of terahertz technologies for detection and identification of explosives. In Terahertz Physics, Devices, & Systems VIII: Advanced Applications in Industry & Defense; International Society for Optics and Photonics: Bellingham, WA, USA, 2014. [Google Scholar]
- Grigorev, R.; Kuzikova, A.; Demchenko, P.; Senyuk, A.; Svechkova, A.; Khamid, A.; Zakharenko, A.; Khodzitskiy, M. Investigation of Fresh Gastric Normal and Cancer Tissues Using Terahertz Time-Domain Spectroscopy. Materials 2019, 13, 85. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Zhong, S.; Zhang, J.; Ding, J.; Liu, Z.; Huang, Y.; Zhou, N. Application of Terahertz Spectroscopy and Imaging in the Diagnosis of Prostate Cancer. J. Opt. Soc. Korea 2020, 4, 31–43. [Google Scholar]
- Jepsen, P.; Cooke, D.; Koch, M. Terahertz spectroscopy and imaging—Modern techniques and applications. Laser Photonics Rev. 2011, 5, 124–166. [Google Scholar] [CrossRef]
- Koenig, S.; Lopez-Diaz, D.; Antes, J.; Boes, F.; Henneberger, R.; Leuther, A.; Tessmann, A.; Schmogrow, R.; Hillerkuss, D.; Palmer, R.; et al. Wireless sub-THz communication system with high data rate. Nat. Photonics 2013, 7, 977–981. [Google Scholar] [CrossRef]
- Han, C.; Wu, Y.; Chen, Z.; Wang, X. Terahertz Communications (TeraCom): Challenges and Impact on 6G Wireless Systems. arXiv 2019, arXiv:1912.06040. [Google Scholar]
- Chen, X.Y.; Tian, Z. Recent progress in terahertz dynamic modulation based on graphene. Chin. Opt. 2017, 10, 86–97. [Google Scholar] [CrossRef]
- Ono, M.; Hata, M.; Tsunekawa, M.; Nozaki, K.; Sumikura, H.; Chiba, H.; Notomi, M. Ultrafast and energy-efficient all-optical switching with graphene-loaded deep-subwavelength plasmonic waveguides. Nat. Photonics 2019, 14, 37–43. [Google Scholar] [CrossRef]
- Chen, H.T.; Padilla, W.J.; Zide, J.; Gossard, A.C.; Taylor, A.J.; Averitt, R.D. Active terahertz metamaterial devices. Nature 2006, 444, 597–600. [Google Scholar] [CrossRef]
- Gu, J.; Singh, R.; Tian, Z.; Cao, W.; Xing, Q.; He, M.; Zhang, J.W.; Han, J.; Chen, H.-T.; Zhang, W. Terahertz superconductor metamaterial. Appl. Phys. Lett. 2010, 97, 071102. [Google Scholar] [CrossRef]
- Chikhi, N.; Lisitskiy, M.; Papari, G.; Tkachenko, V.; Andreone, A. A hybrid tunable THz metadevice using a high birefringence liquid crystal. Sci. Rep. 2016, 6, 34536. [Google Scholar] [CrossRef]
- Bărar, A.; Dănilă, O. Spectral Response and Wavefront Control of a C-Shaped Fractal Cadmium Telluride/Silicon Carbide Metasurface in the THz Bandgap. Materials 2022, 15, 5944. [Google Scholar] [CrossRef]
- Danila, O.; Gross, B.M. Towards Highly Efficient Nitrogen Dioxide Gas Sensors in Humid and Wet Environments Using Triggerable-Polymer Metasurfaces. Polymers 2023, 15, 545. [Google Scholar] [CrossRef]
- Estakhri, N.M.; Edwards, B.; Engheta, N. Inverse-designed metastructures that solve equations. Science 2019, 363, 1333–1338. [Google Scholar] [CrossRef] [PubMed]
- Lalegani, Z.; Ebrahimi, S.S.; Hamawandi, B.; La Spada, L.; Batili, H.; Toprak, M. Targeted dielectric coating of silver nanoparticles with silica to manipulate optical properties for metasurface applications. Mater. Chem. Phys. 2022, 287, 126250. [Google Scholar] [CrossRef]
- Lincoln, R.L.; Scarpa, F.; Ting, V.P.; Trask, R.S. Multifunctional composites: A metamaterial perspective. Multifunct. Mater. 2019, 2, 043001. [Google Scholar] [CrossRef]
- Akbari, M.; Shahbazzadeh, M.J.; La Spada, L.; Khajehzadeh, A. The Graphene Field Effect Transistor Modeling Based on an Optimized Ambipolar Virtual Source Model for DNA Detection. Appl. Sci. 2021, 11, 8114. [Google Scholar] [CrossRef]
- Li, W.; Chen, B.G.; Meng, C.; Fang, W.; Xiao, Y.; Li, X.Y.; Hu, Z.F.; Xu, Y.X.; Tong, L.M.; Wang, H.Q.; et al. Ultrafast All-Optical Graphene Modulator. Nano Lett. 2014, 14, 955–959. [Google Scholar] [CrossRef]
- Low, T.; Rodin, A.S.; Carvalho, A.; Jiang, Y.; Wang, H.; Xia, F.; Neto, A.H.C. Tunable optical properties of multilayer black phosphorus thin films. Phys. Rev. B Condens. Matter Mater. Phys. 2014, 90, 075434. [Google Scholar] [CrossRef]
- Zheng, W.; Fan, F.; Chen, M.; Chen, S.; Chang, S.J. Optically pumped terahertz wave modulation in MoS2-Si heterostructure metasurface. AIP Adv. 2016, 6, 075105-1–075105-8. [Google Scholar] [CrossRef]
- Yang, D.S.; Tian, J.; Cheng, X.A. Optically controlled terahertz modulator by liquid-exfoliated multilayer WS2 nanosheets. Opt. Express 2017, 25, 16364. [Google Scholar] [CrossRef]
- Jakhar, A.; Kumar, P.; Husain, S.; Dhyani, V.; Das, S. Integration of Nanometer-Thick 1T-TaS2 Films with Silicon for an Optically Driven Wide-Band Terahertz Modulator. ACS Appl. Nano Mater. 2020, 3, 10767–10777. [Google Scholar] [CrossRef]
- Jakhar, A.; Kumar, P.; Moudgil, A.; Dhyani, V.; Das, S. Optically Pumped Broadband Terahertz Modulator Based on Nanostructured PtSe2 Thin Films. Adv. Opt. Mater. 2020, 8, 1901714. [Google Scholar] [CrossRef]
- Xia, F.; Wang, H.; Xiao, D.; Dubey, M.; Ramasubramaniam, A. Two-Dimensional Material Nanophotonics. Nat. Photonics 2014, 8, 899–907. [Google Scholar] [CrossRef]
- Eda, G.; Maier, S.A. Two-Dimensional Crystals: Managing Light for Optoelectronics. ACS Nano 2013, 7, 5660–5665. [Google Scholar] [CrossRef]
- Geim, A.K.; Grigorieva, I.V. Van der Waals heterostructures. Nature 2013, 499, 419–425. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Yin, L.; Wang, Z.; Xu, K.; Wang, F.; Shifa, T.A.; Huang, Y.; Wen, Y.; Jiang, C.; He, J. Strong electrically tunable MoTe2/graphene van der Waals heterostructures for high-performance electronic and optoelectronic devices. Appl. Phys. Lett. 2016, 109, 193111. [Google Scholar] [CrossRef]
- Chen, K.; Wan, X.; Wen, J.; Xie, W.; Kang, Z.; Zeng, X.; Chen, H.; Xu, J.B. Electronic properties of MoS2–WS2 heterostructures synthesized with two-step lateral epitaxial strategy. ACS Nano 2015, 9, 9868–9876. [Google Scholar] [CrossRef]
- Huo, N.; Kang, J.; Wei, Z.; Li, S.S.; Li, J.; Wei, S.H. Novel and enhanced optoelectronic performances of multilayer MoS2–WS2 heterostructure transistors. Adv. Funct. Mater. 2014, 24, 7025–7031. [Google Scholar] [CrossRef]
- Mak, K.F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T.F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805. [Google Scholar] [CrossRef]
- Tan, C.; Zhang, H. Two-dimensional transition metal dichalcogenide nanosheet-based composites. Chem. Soc. Rev. 2015, 44, 2713–2731. [Google Scholar] [CrossRef]
- Cao, Y.; Gan, S.; Geng, Z.; Liu, J.; Yang, Y.; Bao, Q.; Chen, H. Optically tuned terahertz modulator based on annealed multilayer MoS2. Sci. Rep. 2016, 6, 22899. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Tong, M.; Cheng, X.; Zhang, J.; Hao, H.; You, J.; Zheng, X.; Jiang, T. Bi2Se3-Functionalized Metasurfaces for Ultrafast All-Optical Switching and Efficient Modulation of Terahertz Waves. ACS Photonics 2021, 8, 771–780. [Google Scholar] [CrossRef]
- Lin, M.; Peng, Q.; Hou, W.; Fan, X.; Liu, J. 1.3 lm Q-switched solid-state laser based on few-layer ReS2 saturable absorber. Opt. Laser Technol. 2019, 109, 90–93. [Google Scholar] [CrossRef]
- Tongay, S.; Sahin, H.; Ko, C.; Luce, A.; Fan, W.; Liu, K.; Zhou, J.; Huang, Y.-S.; Ho, C.-H.; Yan, J.; et al. Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling. Nat. Commun. 2014, 5, 3252. [Google Scholar] [CrossRef] [PubMed]
- Zhang, E.; Jin, Y.; Yuan, X.; Wang, W.; Zhang, C.; Tang, L.; Liu, S.; Zhou, P.; Hu, W.; Xiu, F. ReS2-based field-effect transistors and photodetectors. Adv. Funct. Mater. 2015, 25, 4076–4082. [Google Scholar] [CrossRef]
- McCreary, A.; Simpson, J.R.; Wang, Y.; Rhodes, D.; Fujisawa, K.; Balicas, L.; Dubey, M.; Crespi, V.H.; Terrones, M.; Walker, A.R.H. Intricate Resonant Raman Response in Anisotropic ReS2. Nano Lett. 2017, 17, 5897–5907. [Google Scholar] [CrossRef]
- Nagler, P.; Plechinger, G.; Schüller, C.; Korn, T. Observation of anisotropic interlayer Raman modes in few-layer ReS2. Phys. Status Solidi. Rapid Res. Lett. 2016, 10, 185–189. [Google Scholar] [CrossRef]
- Chenet, D.A.; Aslan, B.; Huang, P.Y.; Fan, C.; van der Zande, A.M.; Heinz, T.F.; Hone, J.C. In-Plane Anisotropy in Mono- and Few-Layer ReS2 Probed by Raman Spectroscopy and Scanning Transmission Electron Microscopy. Nano Lett. 2015, 15, 5667–5672. [Google Scholar] [CrossRef]
Instrument | Model | Manufacturer |
---|---|---|
Raman | INVIA | Renishaw (Gloucestershire, UK) |
OM | MTZ-600E | Aoka Industry Technology Co., Ltd (Suzhou, China) |
AFM | FW-Nanoview 1000 | FSM Instruments Co., Ltd (Suzhou, China) |
SEM | SU8020 | Hitachi (Tkoyo, Japan) |
XRD | Empyrean | PANalytical B.V. (Amsterdam, The Netherlands) |
Device | Model | Manufacturer |
---|---|---|
Femtosecond Laser | MaiTai | Newport (Wuxi, China) |
Photoconductive Antenna | Tera-SED3 | Laser Quantum (Manchester, UK) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, X.; Xu, H.; Liu, H.; Nie, J.; Lu, G. Terahertz Modulation Properties Based on ReS2/Si Heterojunction Films. Crystals 2024, 14, 799. https://doi.org/10.3390/cryst14090799
He X, Xu H, Liu H, Nie J, Lu G. Terahertz Modulation Properties Based on ReS2/Si Heterojunction Films. Crystals. 2024; 14(9):799. https://doi.org/10.3390/cryst14090799
Chicago/Turabian StyleHe, Xunjun, Han Xu, Hongyuan Liu, Jia Nie, and Guangjun Lu. 2024. "Terahertz Modulation Properties Based on ReS2/Si Heterojunction Films" Crystals 14, no. 9: 799. https://doi.org/10.3390/cryst14090799
APA StyleHe, X., Xu, H., Liu, H., Nie, J., & Lu, G. (2024). Terahertz Modulation Properties Based on ReS2/Si Heterojunction Films. Crystals, 14(9), 799. https://doi.org/10.3390/cryst14090799