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Abstract: We report on 2-dimensional electron gases realized in binary N-polar GaN channels on
AlN on sapphire templates grown by metal–organic vapor phase epitaxy. The measured sheet carrier
density of 3.8 × 1013 cm−2 is very close to the theoretical value of 3.95 × 1013 cm−2 due to the low
carbon and oxygen background doping in the N-polar GaN if grown with triethyl-gallium. By
inserting an intermediate AlN transition layer, room temperature mobilities in 5 nm channels up to
100 cm2/Vs were realized, probably limited by dislocations and oxygen background in N-polar AlN.
Thicker channels of 8 nm or more showed relaxation and thus much lower mobilities.

Keywords: N-polar AlN; N-polar GaN; MOVPE; impurity incorporation; GaN relaxation

1. Introduction

Nitride-based high electron mobility transistors (HEMTs) have entered the mass market.
Due to their exceptional performance at higher frequencies, any power RF-application
using solid state devices has switched to GaN-based HEMTs. These are typically in the
Ga-polar orientation where a 2-dimensional electron gas (2DEG) is generated at the interface
between a GaN channel and an AlGaN barrier layer on top [1]. The performance of a HEMT
strongly depends on the 2DEG. Higher sheet carrier densities in the 2DEG can be achieved
by increasing the AlGaN content. However, this also increases the ohmic resistance to the
channel without further measures. Moreover, AlGaN develops cracks for barrier layers
thicker than 10 nm with an aluminum content of more than ≈60 %.

To further increase the switching speed, N-polar structures were developed [2]. When
based on N-polar GaN, they have an AlGaN back barrier and a thin GaN channel on top.
The thin GaN channel has good ohmic access, as it is directly on the surface, and is fast to
deplete, as it is very thin. However, the AlGaN back barrier below limits the Al-content
and, thus, the maximum carrier density in the 2DEG. Thus, the idea is to use N-polar
AlN templates.

So far, N-polar HEMT development focused on high-frequency applications. However,
N-polar AlN-based HEMTs are also interesting for power applications. Al-polar HEMTs
that reach high breakdown voltages use AlGaN channels, which reduces mobility on
templates with higher dislocation densities due to partially relaxed AlGaN buffer layers,
e.g., [3]. Apart from reducing carrier mobilities, the partially relaxed AlGaN buffer layers
also reduce the thermal conductivity. Finally, there is the top Al-rich AlGaN barrier in
Al-polar HEMTs, which results in rather high contact resistances. N-polar AlN-based
HEMTs have advantages for high voltage power with direct contact to the GaN channel,
leading to low contact resistances and the lack of breakdown through the highly insulating
AlN buffer, which has also a higher heat conductivity than GaN or AlGaN.
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First, N-polar GaN/AlN HEMTs have been recently demonstrated on AlN bulk
substrates by molecular beam epitaxy (MBE) [4,5]. For broader applications, growth on
cheaper, large area substrates with the mainstream industrial technology of metal–organic
vapor phase epitaxy (MOVPE) is desirable.

Unlike the growth of N-polar GaN by MOVPE, N-polar AlN layers on sapphire [6–10]
or 4H-SiC [11,12] are typically quite rough (>3 nm) in the literature. In MBE, however,
smooth N-polar AlN has been reported on (111) Si [13], SiC [14], and even bulk AlN [4].
MBE inherently has a much lower V/III ratio than MOVPE, and the recently achieved smooth
N-polar AlN by MOVPE on sapphire also used very low V/III ratios [15,16]. Building on
this, 2DEGs have been reported for AlGaN channel layers on AlN on vicinal sapphire
by MOVPE [17] and HEMTs were demonstrated [17–21]. However, the alloy scattering
inherent to the ternary AlGaN additionally limits the mobility, with the reported value
ranging between 20 and 40 cm2/Vs [17]. Just in print is a report with mobilities of up to
180 cm2/Vs, suggesting that the dislocations in the AlN buffer are limiting the mobility [20].
Another recent work showed that, using tri-methylgallium as precursor at 650 °C, extremely
high V/III ratios are needed to keep the carbon content low [21]. Thus, we chose to
investigate N-polar GaN on AlN heterostructures on sapphire, focusing on the impurity
incorporation and the interface to AlN.

2. Materials and Methods

The samples in this study were grown in a 3 × 2” close coupled showerhead MOVPE
reactor from EpiQuest with a fixed 18 mm gap. The total flow was 10 L/min. The susceptor
temperatures were measured in situ, and were about 30–70 °C below the thermocouple
temperatures. In the following, we will use the thermocouple temperatures, since the in
situ system was not working during some of the growth experiments.

The substrates were (0001) sapphire 4° misoriented to [112̄0]. The growth of the
N-polar AlN in this reactor has been reported before [16], and more details on the growth
of N-polar GaN will be reported elsewhere. Essentially, a low V/III ratio is needed for
smooth N-polar AlN, and low temperature (750–850 °C) are needed for smooth GaN
channels. The precursors used were tri-methylalumium (TMAl), tri-methylgallium (TMGa)
or tri-ethylgallium (TEGa), and ammonia (NH3) with hydrogen as the carrier gas at a
reactor pressure of 10 kPa and a total flow of 10 L, unless for the SIMS sample. For AlN, we
used 0.8 Pa NH3 and 0.47 Pa TMAl at 1280 °C set-point. The NH3 was ramped during the
transition layer to GaN to 5000 Pa, which is also used for GaN growth. The GaN channel
was grown at 800 °C with a TEGa partial pressure of 0.52 Pa.

For secondary ion mass-spectrocopy (SIMS), we prepared a sample with five layers.
At the bottom was the AlN buffer with a V/III ratio of 1.75. Then, the sample was cooled
without growth to 1000 °C, and a GaN layer was grown at a V/III ratio of 1000 with 10 %NH3
in the gas phase, followed by a GaN layer at 900 °C, both layers with TMGa. Then, the
temperature was decreased to 850 °C, and the total flow was accidentally decreased to
6 L/min, leading to 80 % NH3 in the gas phase. The V/III ratio was still 1000 for the growth
of the last two layers at 850 °C, first with TMGa and then with TEGa. At the end of each
layer, there was a short Si doping using monomethyl-silane (MMSi), which resulted also in
a spike of the carbon content, either due to the change in the Fermi level or directly from
the carbon from the MMSi.

The samples were characterized by tapping mode atomic force microscopy (AFM),
X-ray reflectivity (XRR) for channel thickness, and X-ray diffraction (XRD) for structural
characterization. Since GaN and AlN are relatively far in reciprocal space, we used the
10.5 reflection to characterize the strain state in reciprocal space maps because only for this
reflection both GaN and AlN could be recorded in a single ω− 2Θ reciprocal space map
(RSM) with a an area detector in a five-axis diffractometer.

The sheet resistivity was mapped contactless via eddy currents. For detailed mea-
surement, 10× 10 mm pieces were cut from the 2” templates and measured in a variable
temperature Hall system with a 0.5 T magnet and the possibility for AC-hall measure-
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ments, in case of low mobilities. Further measurements of the sheet resistance together
with contact resistance was performed using circular transfer line measurements (cTLM).
After cleaning by acetone/isopopanol/water, we spin-coated the lift-off resist (LOR7B) and
photoresist (S1813) and developed for 20 s in a TMAH-based developer. After an oxygen
plasma cleaning, the contact were deposited by electron beam evaporation, Ti/Al/Ni/Au
(20/120/30/100 nm). Finally, the sample was annealed under nitrogen for 1 min at a range of
temperatures before cTLM was measured.

3. Results and Discussion

We had established before the need for low V/III ratios for smooth N-polar AlN
templates [16], and low growth temperature of GaN below 900 °C to avoid step-bunching,
which otherwise develops at higher temperatures [22]. While simply growing a GaN layer
on AlN delivered sheet carrier densities in the range of 2 − 3 × 1013 cm−2, the mobilities
were very low, less than 3 cm2/Vs. One suspect was carbon incorporation from the Ga
precursor, tri-methylgallium.

We therefore performed a SIMS measurement, shown in Figure 1. We first focused on
the N-polar AlN template. Comparing carbon and oxygen, the latter has a much higher
concentration in the N-polar AlN. Furthermore, there are oscillation of the carbon and
oxygen content at the beginning of the AlN layer. These are due to the spontaneous rotation
of the bowed sapphire wafers in their pocket at high temperatures, as the SIMS central was
cut a little off the center and which typically stopped after a certain AlN thickness has been
grown. The difference in the impurity incorporation is caused by a temperature gradient
from the inside to the outside of the susceptor because the outer heater reaches 100% power
already at 1200 °C. Therefore, the outer area is about 30–50 °C colder at 1280 °C setpoint,
leading to a higher carbon incorporation at the outer edge and an oscillation when a wafer
rotates in its pocket.
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Figure 1. SIMS measurement of an N-polar AlN with four different GaN layers on top. Right: a
sketch of the layer stack.

Looking at the stabilized levels, the oxygen level is much higher in the range of mid-to-
high 1018 cm−3, while carbon is ten times less, despite the very low V/III ratio close to unity.
A much higher oxygen concentration in N-polar AlN, even in the ≈ 5× 1019 cm−3 range
compared to 1× 1019 cm−3 on Al-polar AlN, has been also reported by Takeuchi et al. [6],
and recently by Kowaki et al. in Figure 5 of [20]. The high oxygen incorporation in N-polar
AlN has two main reasons.

First, N-polar AlN must be grown under very Al-rich conditions. The NH3 flow rate is
so low that the AlN start to desorb and the growth rate is already decreasing [16]. N-polar
GaN also shows a very high oxygen incorporation at Ga-rich conditions [23,24], which had
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been predicted for a Ga-covered N-polar GaN by theory before [25]. At similar metal-rich
conditions, the N-polar surface, with its single metal layer, picks up more oxygen than
the double metal layer Al-rich surface of Al-polar AlN, which is present under the most
Al-rich conditions [26]. A new calculation suggests that the high offcut used for N-polar
growth also increases the incorporation of oxygen [27]. For N-polar GaN, increasing the
V/III rate to above 1000 resulted in much lower oxygen incorporation [23,24]. Growing
N-polar AlN with a high V/III ratio is very challenging, and usually results in a rough
surface as discussed in the introduction.

The second reason for a high oxygen background in AlN is the relatively low growth
rate of AlN, at 460 nm/h or less. This slow growth rate is necessary to obtain a smooth
surface [16], but gives more oxygen a chance to incorporate. This is even more severe
during the growth interruption due to lowering the temperature at the end of the AlN
growth. During the 7 min, the exposed AlN surface accumulated a very high oxygen
concentration, leading to a high oxygen peak at the AlN/GaN interface in Figure 1. Even
though the role of oxygen in AlN is still not fully clarified, such a high oxygen impurity
concentration at the interface is certainly not good for the mobility of the 2DEG.

Therefore, we tried to shorten the growth interruption from N-polar AlN to the start
of the GaN channel growth. To further reduce the O content in AlN, we introduced an
intermediate AlN layer with a higher V/III ratio while ramping the temperature. Therefore,
we increased the NH3 flow during AlN growth to the 50% maximum, resulting in a V/III
ratio of 5500 while decreasing the temperature to 1100 °C. To shorten the time that the
AlN was exposed, after 4 minutes (less than 10 nm of AlN growth at this high V/III ratio),
we decreased the temperature to 950 °C in 90 s while still growing AlN. Then, TMAl was
switched to the vent and the heater was set (not ramped) to 875 °C. As Figure 2 shows, the
buffer has a very nice regular step-bunching with an RMS roughness of 0.3 nm. The surface
after growing the intermediate layer was more irregular, but generally smooth with almost
the same RMS roughness (excluding the dots). The dots in the right AFM image were due
to a too long nitridation time of that sample, and were also found on samples without an
intermediate layer.

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

h / nm V/III=1.75 1280°C

0.0 0.5 1.0 1.5 2.0

x / µm

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

h / nm +intermediate layer

0.0 0.5 1.0 1.5 2.0

x / µm

Figure 2. Surfaces of AlN after buffer with a V/III ratio of 1.75, with an additional intermediate layer
with high V/III ratio, and growing while ramping the temperature down. The small dots are from
defects from a too long/too hot nitridation prior to the AlN growth.

Using this procedure, we could reduce the growth interruption between AlN and GaN
from 7 min to 75 s. After 75 s, we started growing the GaN channel using TEGa for 2 min
(5–6 nm GaN) while ramping the heater to 850 °C which resulted in a growth temperature
of (850± 25) °C for the GaN channel and smooth surface (apart from the dots) as seen in the
inset in Figure 3.
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Figure 3. Variable temperature Hall measurement of sheet carrier concentration (left axis, black
circles) and mobility (right axis, red squares) for an optimized sample with a channel thickness of
5.4 nm. The circle are sheet carrier measurements of samples with lower mobility. The inset shows
the GaN surface of that sample.

Apart from oxygen in AlN, the carbon content in GaN is also important, because
carbon forms a deep level and thus reduces the carrier mobility. For N-polar GaN, lower
carbon incorporation was reported at high temperatures compared to Ga-polar [23,24,28],
while at lower temperatures, the ratio was inverted [28]. The V/III ratio had little impact
on the carbon, no matter the growth temperature [23,24,28]. This is very different from
Ga-polar GaN, where the oxygen is low but the carbon depends strongly on the V/III ratio.
Only at the very low growth temperature of 650 °C, a strong correlation of carbon content
and V/III ratio from mid 1017 cm−3 at V/III = 45,000 to upper 1019 cm−3 at V/III = 15,000 has
been reported [21].

Figure 4 compares the carbon incorporation in our N-polar GaN to the one into
Ga-polar GaN from the literature. Since the carbon incorporation depends strongly on
the V/III ratio in Ga-polar GaN, we selected literature data with a comparable carbon
concentration at 1000 °C, which were the data from Koleske et al. [29] (V/III = 1000),
Danielsson et al. [30] (V/III = 625), and Loeto et al. [31] (no V/III ratio given). The slope of
the Ga-polar samples is close to the slope of our N-polar GaN. However, below 900 °C, the
carbon content even decreases (but this may be due to an accidentally higher NH3 partial
pressure) while the carbon content in Ga-polar increases. Still, almost 50× less carbon is
incorporated at 850 °C in N-polar GaN. When switching to TEGa for GaN growth, the
carbon reduces to 3 × 1017 cm−3, almost the same carbon level as for the GaN grown at
1000 °C with TMGa.

Finally, the oxygen content in the N-polar GaN in Figure 1 was at all temperatures is
between 2− 5× 1017 cm−3, a factor of 10 lower than recently reported values for N-polar
GaN grown at 800 °C and 650 °C with TMGa of low-to-mid 1018 cm−3 [21]. Thus, the low
oxygen background and the comparable low carbon background doping would not limit
the GaN channel mobility when using TEGa, even for growth at 850 °C.

As Figure 3 shows, the carrier concentration is almost temperature independent. The
sheet carrier concentration linearly reduces from 3.78 × 1013 cm−2 at 300 K to
3.49 × 1013 cm−2 at 100 K. The linear reduction suggests that this is rather due to ther-
mal expansion and the temperature-dependent changes in the band gap, the elastic, and
the piezoelectric coefficients, and not due to the freezing out of carriers. Moreover, the
3 × 1017 cm−3 oxygen background in GaN, according to the SIMS data from Figure 1,
translates to only 1.62× 1011 cm−2 sheet carrier density, which is much less than observed
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change. The expected sheet carrier concentration from the piezo- and pyro-polarization
induce charge for GaN strained on AlN would be 3.95 × 1013 cm−2 following [1] with
updated elastic and piezo-electric tensors, which again indicates that there were very few
deep traps and no background doping in our GaN channel layers.
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Figure 4. Carbon concentration in N-polar GaN (our data, Figure 1) and Ga-polar GaN from the
literature [29–31].

We observed the onset of relaxation (≈10 %) for one 7.4 nm thick N-polar GaN layer on
AlN while a 7.2 nm film was fully strained (see Figure 5). Since both the templates were
slightly different quality, about 8 nm is the thickness limit for a coherent GaN channel on
AlN for our current set of growth conditions. A recent paper demonstrated the coherent
growth of 9.5 nm of N-polar GaN on AlN while an 11 nm thick GaN layer on Al-polar AlN
was 70 % relaxed [21]. Furthermore, also MBE reported no relaxation on N-polar bulk AlN
for thicknesses up to 10 nm [5]. Hence, with different growth conditions (e.g., a lower GaN
growth temperature), a critical thickness of 10 nm seems possible for MOVPE for N-polar
GaN on AlN.

Compared to the strong change in relaxation, the roughness did not change much with
GaN thickness. Only above 10 nm did the step-bunching become more severe (Figure 5,
right), while the relaxation increased from almost zero to 35 %. Thus, it is not surprising
that the mobility shows a much stronger correlation with relaxation than with the RMS
roughness (Figure 6a).

This raises the question, what is limiting the 2DEG mobility? A previous study on
N-polar GaN channels has calculated the impact of several effects and showed that, for thin
channels, the roughness scattering at surfaces and interfaces dominates [32]. There was
also an increase in mobility reported for GaN channels on top of N-polar AlN substrates
(with an Al0.91Ga0.09N interlayer) when the layer thickness increased from 5 to 8 nm [4]
(plotted in Figure 6b). In comparison, our mobilities stayed the same or slightly reduced
with increasing thickness from 5.5 nm to 7.2 nm (Figure 6b). This indicates that scattering
mechanisms other than interface roughness are dominating, which explains the relatively
low mobilities. And, indeed, when plotting the roughness versus the mobility, there is no
correlation in Figure 6. However, when plotting the strain relaxation versus the mobility, a
clear correlation is seen in Figure 6a. Thus, misfit dislocations reduce the mobility. Therefore,
dislocation in the AlN should also strongly limit the mobility.

Indeed, the mobility went up to a certain extent with thicker AlN buffer layers, which
have a narrower FHWM of the 10.2 reflection in XRD, as shown in Figure 7. However, a 2 h
AlN template did not follow the trend which was probably due to a strong step-bunching
developing on that sample which reduced the effective channel width. The general trend of
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the 30 and 60 min samples agrees with the data of [20] and points that at the moment our
mobility is limited by the dislocations in the N-polar AlN buffer, which was also suggested
by Kowaki et al. [20].
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Figure 5. RSM of the 10.5 reflection and (1 × 1) µm2 AFM images with RMS roughness for three
different GaN channel thicknesses on N-polar AlN. The color bar is the logarithm of the counts.
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plotted versus the mobility. (b) Sheet resistance (left axis, black squares) and mobility (right axis, red
suqares (our, red stars) [4] for different thicknesses with simple intermediate AlN layer (open symbols
calculated from contactless sheet resistance).

To obtain an idea of the current threading dislocation (TD) density in our N-polar AlN
templates, we counted the density of small hillocks when overgrowing an AlN template
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with AlN intermediate V/III ratios (50–200). Using a 30 min template gave a density of
5× 109 cm−2, which decreased to 2− 3× 109 cm−2 on a 60 min template. These are reasonable
numbers for the TD density in N-polar AlN, as for rough N-polar AlN Takeuchi et al.
reported a TD density of ≈ 1010 cm−2 [6]. If overgrown with AlN using even higher V/III
ratios (around 2000), we found a density of hexagonal hillocks of 2− 4× 108 cm−2, which is
probably the density of c- and mixed-type TDs.
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Figure 7. XRD rocking curve width of the skewsymmetric 10.2 reflection of the AlN buffer layer and
the mobility of 5.5 nm thick GaN channels. Black data from [20], red our data after 30 min, 60 min and
120 min of AlN buffer layer growth, resulting in the indicated thicknesses.

Thus, oxygen related traps at the AlN/GaN interface and dislocations are the limiting
the mobility in our samples. The difference of the templates is our main suspect as to why,
at 5 nm channel width, our mobilities were still a factor of 2–3 or more below the reported
ones in refs. [4,20,32], and do not increase when increasing the GaN channel layer thickness.
The roughness is not the limit right now, and relaxation is not an issue for layers thinner
than 8 nm.

Since our best channels were 5.5 nm thin, we wanted to see whether low-resistance
ohmic contacts could be formed to them. For this, we processed a 5.4 nm GaN channel
sample with a mobility of 96 cm2/Vs with cTLM using Ti/Al/Ni/Au contacts as described
in the experimental section. In the literature, annealing of Ti/Al/Ti/Au contacts to N-polar
AlGaN channels used 850 °C (at 30 s) [19]. However, we worried about the stability of the
very thin GaN channels, and thus tested several temperatures.

The contact resistance decreased upon annealing as can be seen in Figure 8. However,
when annealing at temperatures above 500 °C, the sheet resistance increased as the 5.4 nm
GaN under the contact was gradually eaten up by alloying, and was completely gone
at 800 °C. Thus, contact resistance at 500 °C is (115 ± 65) × 10−6 Ωcm2, which is quite
similar to the value of 94× 10−6 Ωcm2 for the recently published cTLM data of Ge-doped
GaN [33]. However, using a roughened n+ Si-doped GaN regrowth of 27 nm, specific
contact resistances of 0.17 × 10−6 Ωcm2 have been reported using as-deposited Ti/Au
contacts on semi-insulating N-polar GaN templates [34]. While such a thick GaN layer
would relax during regrowth on AlN, thinner n+ Si:GaN layers with Ti/Au contacts have
been also used in MBE for GaN channels on N-polar AlN and gave a contact resistance
of 13× 10−6 Ωcm2 [5] (calculated from the TLM data). So while our contacts work even to
ultra-thin GaN channels, there is certainly room for improvement.
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Figure 8. Specific contact resistance (left axis, red squares) and sheet resistance (right axis, blue stars)
for contacts annealed at different temperatures.

4. Conclusions

We have demonstrated 2DEGs at a binary AlN/GaN hetero-junction on N-polar AlN
grown on sapphire. The AlN and GaN show a relatively low oxygen background, and
using TEGa as precursor, low carbon even for GaN channel growth at 800 °C. The carrier
mobilities in 5.5 nm GaN channels were close to 100 cm2/Vs, and are currently limited by the
dislocation density of the AlN templates, and probably also by the oxygen traps in N-polar
AlN near the AlN/GaN interface. We could form ohmic contact to 5 nm GaN channels
and the contact resistance improved by annealing below 600 °C without affecting the GaN
channel sheet resistance.
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