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Abstract: In our review, we analyze the scaling of the condensation energy E∆ divided by γ,
E∆/γ ≃ N(0)∆2

1/γ, and quasiparticles of both conventional and unconventional superconduc-
tors, where N(0) is the density of states at zero temperature T = 0, ∆1 is the maximum value of the
superconducting gap, and γ is the Sommerfeld coefficient. It is shown that Bogoliubov quasiparticles
act in superconducting states of unconventional and conventional superconductors. At the same time,
quasiparticles are also present in the normal state of unconventional superconductors. We briefly
describe the difference between unconventional superconductors and conventional ones, such as
the resistivity in normal states and the difference in superfluid density in superconducting states.
For the first time, we theoretically show that the universal scaling of E∆/γ ∝ T2

c applies equally to
both conventional and unconventional superconductors. Our consideration is based on two experi-
mental facts: Bogoliubov quasiparticles act in conventional and non-conventional superconductors
and the corresponding flat band is deformed by the non-conventional superconducting state. As a
result, our theoretical observations based on the theory of fermion condensation agree well with the
experimental facts.

Keywords: quantum phase transition; flat bands; high-Tc superconductivity
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1. Introduction

It is generally accepted that conventional superconductors have nothing in common
with unconventional superconductors, since unconventional superconductors are metals
with flat bands [1] in the absence of quasiparticles; see, e.g., [2,3]. On the other hand,
experimental facts show that both types of superconductors have common properties: they
have quasiparticles and exhibit the common scaling behavior of the scaled condensation
energy E∆/γ; see, for example, [4–7]; while the corresponding flat bands of unconventional
superconductors are deformed by the superconducting state, which makes unconventional
superconductors similar to ordinary superconductors [8,9]. A universal scaling law has
been discovered for the scaled condensation energy E∆/γ across a wide range of classes of
superconductors [5], and this universal scaling law has not yet been explained. Thus, these
facts pose a challenging puzzle for condensed matter researchers. As a result, the prob-
lem of identifying a theoretically justified, experimentally observed scaled condensation
energy E∆/γ, applicable to conventional and non-traditional superconductors, becomes
acute [5]. Our theoretical consideration is based on the experimental paper that examines a
representative subset of cuprates under optimal doping without any pseudogap [5]. We
assume that our consideration is also applicable to graphene, since it has flat bands that
form its typical behavior observed in other unconventional superconductors; see [1,9–14]
and Figures 5 and 6 of Ref. [5].
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The flat band problem could have been solved many years ago when the Landau
Fermi liquid (LFL) theory was developed [15]. As known, it deals with energy functionals
E0[n(p)] in the functional space [n] of quasiparticle distributions n(p) located in [n] between
0 and 1. This theory is based on assumption that the single particle spectrum of a normal
Fermi liquid is similar to that of an ideal Fermi gas, differing from the latter in the value
of the effective mass M∗. At temperature T = 0, in homogeneous isotropic matter, the
LFL ground state quasiparticle distribution is the Fermi step function nF(p) = θ(p − pF).
Quasiparticles fill the Fermi sphere up to the same radius pF = (3π2ρ)1/3 (ρ is the number
density and pF is the Fermi momentum) as noninteracting particles (the Landau–Luttinger
theorem [15]). From the mathematical point of view, in the LFL theory, the minimum of
E0[n] is supposed to always lie at a boundary point nF of the space [n]. This assumption
remains valid as long as the necessary stability condition

δE0 =
∫
(ε[p, n(p, T = 0)]− µ)δn(p, T = 0)

d3 p
(2π)3 > 0, (1)

is fulfilled. Here, ε[p, n(p)] = δE0[n]/δn(p) is the quasiparticle energy, n(p) is the quasipar-
ticle distribution function, and µ is the chemical potential. The stability condition requires
that the change in E0[n] for any admissible variation in nF holds. Thus, it is the violation of
the condition given by Equation (1) that results in the rearrangement of the distribution
nF(p). The quasiparticle distribution function n(p) is constrained by the Pauli principle
1 ≥ n(p) ≥ 0. As a result, there are two classes of solutions of Equation (1). One class
forming flat bands is

ε(p) = µ; if 1 > n0(p) > 0 in pi < p < p f , (2)

which is valid if the special solution n0(p) becomes 1 > n0(p) > 0 in some region
pi < pF < p f [16–19]. The other conventional class is defined by δn(p) = 0, with n(p) = 0
or n(p) = 1, that is, n(p) = nF(p) [15].

Flat bands, now observed in many strongly correlated Fermi systems [1,13], first
emerged as a mathematical curiosity [16], and now, represent a rapidly expanding and
dynamic field with countless applications; see, e.g., [1,12,13,18–22]. High-Tc superconduc-
tors represent a wide class of strongly correlated Fermi systems, exhibiting the non-Fermi
liquid (NFL) behavior defined by flat bands; see, e.g., [13,18–22]. As a result, one can
expect that unconventional superconductors have nothing in common with conventional
superconductors. For example, in the case of unconventional superconductors, the critical
temperature is [13,16,19–22]

Tc ∝ ∆1 ∝ λ0, (3)

rather than being Tc ∝ exp (−1/λ0N(0)), where λ0 is the superconducting coupling con-
stant, ∆1 is the maximum value of the superconducting gap, and N(0) is the density of
states at the Fermi surface at T = 0 [23,24]. However, in both conventional and uncon-
ventional superconductors, the condensation energy exhibits universal scaling behavior,
E∆/γ ≃ N(0)∆2

1/γ ∝ T2
c , as follows from experimental facts [5].

In our review, we analyze both unconventional superconductors and conventional
ones, and demonstrate that both of them exhibit the common universal scaling of the
condensation energy E∆/γ, E∆/γ ≃ N(0)∆2

1/γ.
In Section 2, we consider the superconducting state with a flat band generated by

fermion condensation (FC) at T = 0.
Section 3 is devoted to quasiparticles in systems with FC. We show that quasiparticles

of unconventional superconductors become heavy but do not die.
Section 4 concentrates on superconducting with FC at finite temperatures.
In Section 5, for the first time, we explain that the universal scaling of E∆/γ ∝ T2

c
applies equally to conventional and unconventional superconductors. Our results are in
good agreement with experimental facts [5]. This observation suggests that the FC super-
conducting state is Bardeen–Cooper–Schrieffer (BCS)-like and suggests the fundamental
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applicability of the BCS formalism [23] to describe some properties of the superconducting
state, as predicted in [18,25]. Our analysis is made within the framework of the fermion
condensation (FC) theory based on the topological fermion condensation quantum phase
transition (FCQPT) that forms flat bands and leads to the universal scaling behavior of the
thermodynamic and transport properties of HF metals [12,16,18].

Section 6 is devoted to the summary of the main results of our review.

2. Superconducting Systems with the FC State at T = 0

We suggest that efficient particle–particle interactions in superconducting systems
with FC are attractive. We note that a strong repulsion in the particle–hole channel, inherent
in the systems with FC, coexists with the attraction in the particle–particle channel. For
example, the electron–electron attractive interaction arises in solids due to the phonon
exchange. In a superconducting electron (hole) liquid, E0 is the functional of two order
parameters n(p) =< a+p,βap,β > and κ(p) =< a+p,βa+−p,−β >=

√
n(p)(1 − n(p)). At T = 0,

the variational derivative δE0[n(p), κ(p)]/δn(p) = 0 reads

ξ(p)− ∆(p)(1 − 2n(p))√
n(p)(1 − n(p))

= 0. (4)

Here, E0 is the ground state energy of the electron liquid, being the exact functional of the
order parameter of the superconducting state κ(p) and quasiparticle occupation numbers
n(p) [18,26]. The single-particle energy ξ(p) = ε(p)− µ, with ε(p) = δE0/δn(p), while
∆(p) = −δE0/δκ(p), and κ(p) =

√
n(p)(1 − n(p)) is the superconducting order parameter

at T = 0. The BCS equations read [23,24]

n(p) =
1
2

[
1 − ξ(p)

E(p)

]
, E(p) =

√
ξ(p)2 + ∆2(p), κ(p) =

∆(p)
2E(p)

. (5)

In the BCS theory, κ(p) → 0 while ∆ → 0. However, there exist entirely different so-
lutions with κ ̸= 0 even if ∆ → 0. Indeed, for ∆ → 0, while κ ̸= 0, the second
term in Equation (4) vanishes, and again we arrive at Equation (2). Thus, such solu-
tions describe superconducting states of the system with FC since the order parameter
κ ̸= 0 at the finite region pi < p < p f [18,27,28]. Since ∆/ε0

F << 1, one can write
E0[n(p), κ(p)] = E0[n(p)]− µN + δEs[κ(p)], where

δEs =
1
2

∫ ∫
λ0(p, p1)κ(p)κ(p1)

d3 pd3 p1

(2π)6 . (6)

Here, ε0
F is the Fermi energy. Then, in the case of s-pairing, the gap ∆(p) is given by

∆(p) = −
∫

λ0(p, p1)
√

n(p1)(1 − n(p1))
p2

1dp1

4π2 , (7)

where λ0 is the zero harmonics of λ0(p, p′) over the angle between p and p′. Then, pairing
forces influence FC little and replacing n(p, T) in Equation (7) by n0(p) we obtain

∆0(p) = −
∫

λ0(p, p1)
√

n0(p1)(1 − n0(p1))
p2

1dp1

4π2 . (8)

Here, κ0(p) reads

κ0(p) =
√

n0(p)(1 − n0(p)) (9)

As a result, we can define the density of the superconducting electrons nFC:

nFC ≃
∫

κ0(p)
dp

(2π)3 . (10)
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Substituting Equation (8) into Equations (4) and (5), one finds that in the FC region

ξ0(p) =
∆0(p)(1 − 2n0(p))√

n0(p)(1 − n0(p))
; E0(p) =

|∆0(p)|
2κ0(p)

. (11)

The next step is adding integration outside of the FC region, e.g.,

∆1(p) = ∆0(p)−
∫

λ0(p, p1)θ(p1)
∆0(p1)

E0(p1)

p2
1dp1

4π2 , (12)

where θ(p) = 0 within the region of FC. The integral term, which diverges logarithmically
in BCS theory, now represents a correction of the order of λ2

0 ln λ0 to ∆ ∼ λ0, which leads
to the suppression of the isotope effect in Tc. We see that the order parameter κ0(p) is
non-zero even if ∆1 = 0. In other words, even in the absence of pairing interaction, if the
FC situation prevails, the system goes into a state with spontaneous gauge breaking [18,28],
which is traditionally associated with superconductivity. We also see that the gap ∆ is
linear in the coupling constant λ0. This is in contrast to the normal BCS case, where the
superconducting gap is exponentially small. Since Tc ∼ λ0, even the weak coupling limit,
e.g., the attraction of phonons in the particle–particle channel with L = 0, is sufficient to
provide a fairly high Tc [13,16,18,22,27,28]. On the other hand, when λ0 becomes repulsive,
the components of λL with L = 1 or L = 2 can be attractive, giving rise to pairing with
non-zero L. Neutron stars are an example of such attraction: in them, s-pairing dies at
pF ≃ 1.7 f m−1, while p-pairing persists up to pF ≃ 4 f m−1 [29]. Typically, the gap at L ̸= 0
is suppressed compared to the s case. In systems with FC, there is no such suppression. The
entropy S of a superconducting fluid with FC, S, vanishes at T → 0, since ∆1 ∝ λ0, and if
λ1 is assumed to be infinitely small, then the entropy S → 0 corresponds to the BCS theory.

3. Validity of the Quasiparticle Pattern
3.1. Finite Systems

The quasiparticle pattern [15] we proceeded from is applicable provided the width of
γFC(T) of the relevant single-particle states (in our case, the FC) does not exceed the energy
ε(p). First, we show that it is the inter-particle interaction that gives rise to the FC state.
In this case, the resulting flat bands become susceptible to external influences generated
by magnetic fields, pressure, temperature, etc., as well as to phase transitions occurring in
the system under consideration. This observation is in good agreement with experimental
facts [18]. Flat bands can emerge due to geometrical reasons and their properties would
be different from those driven by interaction; see, e.g., [30,31]. To consider the flat bands
caused by interactions, it is useful to start with a finite system that has non-degenerate
single-particle states; that is, the low-lying states are separated from each other and do not
decay at all. However, the interaction causes the single-particle states to collapse into the
FC state. To give an example of FC in finite systems, consider a spherical atomic nucleus
with closed shells and add K >> 1 particles to it; then, the energy E0 change in the system
is given by Equation [28]:

δE0 = Σλ,λ1

(
εo

λδnλδλ,λ1 +
1
2

Γλ1,λ1
λ,λ δnλδnλ1

)
. (13)

The levels are degenerate with respect to the magnetic quantum number m. The energies εo
λ

(where λ = n, l, j, m) are calculated in a closed-shell nucleus. The interaction amplitude Γ
contains all re-scattering processes, taking place in a finite nucleus. It is not much different
from the static scattering amplitude calculated in infinite nuclear matter. The case with only
two terms with ji >> 1 in the sum (13), for which n1 + n2 = K < (2jmin + 1), is especially
clear. Then, Equation (13) takes the form

δE0 = εo
1n1 + εo

2n2 +
1
2

D1n2
1 + Un1n2 +

1
2

D2n2
2, (14)
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and the single-particle energies εi are given by

ε1 =
δE0

δn1
= εo

1 + D1n1 + Un2, ε2 =
δE
δn2

= εo
2 + Un1 + D2n2, (15)

where i = 1, 2 and Di = Γii
ii and U = Γ11

22 = Γ22
11. Note, the numbers n1 and n2 are integers

in the usual case of the normal Hartree–Fock filling. Let us choose εo
1 < εo

2. As seen from
Equation (15), the normal occupation n2 = 0, n1 = K persists if εo

2 + KU > εo
1 + KD1. If this

inequality does not hold, we can try another reasonable exercise, e.g., n1 = 0, n2 = K. But
it also does not hold if εo

2 + KD2 > εo
1 + UK. Thus, any Hartree–Fock filling fails provided

K(U − D2) < (εo
2 − εo

1) < K(D1 − U). (16)

In this case, we are forced to resort to the variational condition

δE0

δnλ
= µ (17)

which implies ε1 = ε2. Then, after simple algebra one finds [28]

n1 = [εo
2 − εo

1 + K(D2 − U)]/Z n2 = [εo
1 − εo

2 + K(D1 − U)]/Z, (18)

with Z = D1 + D2 − 2U being positive. We see that both n1 and n2 differ from 0 simul-
taneously if Equation (16) is valid. The energy obtained as a result of the rearrangement
is δEFC = −[εo

1 − εo
2 + K(D1 − U)]2/2Z. The analysis can easily be extended to a larger

number of individual particle levels. The energy δEFC is relatively small, but this effect
could, in principle, help stabilize heavy and superheavy nuclei. The main feature of the ob-
tained solution is the forced “collapse” of the distances between the energies of individual
particles εi of the levels involved. Nowhere in the analysis was it assumed that the input
parameters are small, and if this is so, then the Fermi liquid approach is applicable to the
study of the FC, and not the Hartree–Fock method. The results obtained can be applied
to a completely different problem if one associates ni in Equation (15) with occupation
numbers for the site i. Then, omitting the diagonal contribution Di and taking U > 0 we
arrive at the Coulomb gap problem and obtain ordinary results: the density of states at the
Fermi surface falls [32]. The collapse of distances between different levels occurs if we add
repulsion at the same site, i.e., assume Di ̸= 0, so as to ensure that Equation (16) is satisfied.
This case, which has much in common with Hubbard’s model, has not yet been studied.

3.2. Macroscopic Systems

Turning to macroscopic systems where T exceeds the splitting between levels, it is
worth noting that the quasiparticle picture of the FC state is valid for superfluid systems
with FC due to the presence of the gap in the spectrum of E(p). Thus, only the case
Tc < T < T0

f should be analyzed, where T0
f is the temperature at which the influence of the

FC state on the properties of the system disappears [16,18,25,28]. In this case, calculations
were carried out in [27], and it turns out that the width of quasiparticles γFC(T) diverges at
low T as 1/T. From this result follows the conclusion γFC >> εFC(p), which apparently
destroys the quasiparticle picture of the phenomenon. Unfortunately, taking into account
the huge enhancement of the effective mass M∗

FC ∼ T−1, the author [27] neglected the
inverse suppression effect in the scattering amplitude Γ, responsible for the decay of
quasiparticles. Here, we briefly present the results of an improved estimate of the width
γFC(T) [28]. To find γFC(T) in a three-dimensional system, we use the well-known LFL
equation [33]

γFC(T) ∼ M∗3T2 <
W(θ, ϕ)

cos(θ/2)
> . (19)
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Here, W(θ, ϕ) ∼ |Γ2| is the transition probability, which depends on the angle θ between the
vectors p1 and p2 of incoming particles and the angle ϕ between the planes defined by the
vectors p1, p2 and p′

1, p′
2. The brackets < ... > denote angular averaging. In perturbation

theory, Γ represents the interaction potential V. The result γFC ∼ T−1 [27] is obtained
from (19):

M∗
FC(T) ≃ p f (p f − pi)/T. (20)

Here, we used the estimate dn0(p)/dp ≃ (p f − pi)
−1). Thus, we infer that the effective

mass M∗
FC(T), as well as the density of states at the Fermi surface NF = ρ(ε = µ, T) =

pF M∗(T)/π2, are enormously enhanced at low T. Taking into account Equation (20) and
Γ = V, we obtain that the quasiparticles cannot exist [27]. However, in FC systems the
difference between Γ and V is as huge as the difference between M∗

FC and the LFL effective
mass M∗

L. For clarity, consider the velocity-independent scalar part of Γ, which is associated
with the Landau amplitude f as follows from [28]:

Γ(q, ω, T) =
f (q)

(1 − f (q)χL(q, ω, T))
. (21)

The Lindhard function χL is estimated for particles with effective mass M∗. At ω ∼ T
both of the real and imaginary parts of χL(q, ω ∼ T) are of the same order of value:
|ReχL(q, ω ∼ T)| ∼ NF = pF M∗

FC/π2 ∼ T−1 and |ImχL(q, ω ∼ T)| ∼ M∗2ω/πq ∼ T−1.
This fact makes it possible to neglect the 1 in the denominator in Equation (21) and one
finds |Γ(T)| ∼ 1/NF(T) ∼ T. Thus, the effective interaction between FC quasiparticles
becomes weak and T-dependent; this is completely altered compared to the interaction
potential V. The result |NF(T)Γ(T)| ∼ 1 holds for any strongly correlated system. Taking
into account Equation (19) together with Equations (20) and (21), we are left with

γFC(T) ∼
M∗3

FCT2

M∗2
FC

∼ T
ρc

ρ
. (22)

We see that γFC(T)/|εFC(p, T)| ∼ ρc/ρ, and so the quasiparticle model holds as long as
ρc << ρ. We safely assume that the FC density ρc is small: ρc/ρ << 1. Taking into account
other components of Γ does not change this conclusion [28]. The estimate (22) can be
obtained in another way [28] from the formula for the width of γFC(T), related to the decay
of a quasiparticle with energy ε(p) and momentum p > pF [33]:

γ = 2π Tr
∫

|Γ(q, ω)|2n(k)(1 − n(p + q))δ(ω0 − ω)
d3k d3q
(2π)6 . (23)

where ω = ε(p + q) − ε(k) is the transferred energy and ω0 = ε(p) − ε(p − q) ∼ T
the decrease in the quasiparticle energy as a result of rescattering processes. Therefore,
a quasiparticle with the energy ε(p) decays into a quasi-hole ε(k) and two quasiparti-
cles ε(p − q) and ε(p + q). Here, ω = ε(p + q) − ε(k) is the transferred energy, and
ω0 = ε(p)− ε(p − q) ∼ T is the decrease in the quasiparticle’s energy due to rescattering
processes. As a result, the quasiparticle with energy ε(p) decays into a quasi-hole ε(k)
and two quasiparticles ε(p − q) and ε(p + q). It should also be noted that q must satisfy
the condition p > |p − q| > pF, since the quasiparticle loses momentum and energy.
Integrating over d3k in Equation (13) yields ImχL(q, ω) [28]. As a result, it is possible
to find

γFC = −
∫ ∫

|Γ(q, ω0)|2M∗2ω
q2dqdx

2π3 . (24)

In evaluating this integral, we denote t = ε(p)− ε(p − q) ≤ T and express the angular
variable x in terms of t, which gives dx = M∗dt/pq. Integrating over t introduces an
additional factor T into Equation (24). Remembering that |Γ| ∝ T, we again obtain



Crystals 2024, 14, 826 7 of 17

γFC(T) ∼ |Γ|2M∗3T2 ∼ T
ρc

ρ
. (25)

It is again seen that in the case ρc/ρ << 1, the lifetime of the FC quasiparticles is large, de-
spite the huge density of states, and the quasiparticle model of the FC is preserved. Thus, as
is often the case, in perturbation theory a catastrophe occurs [27], whereas in HF metals and
unconventional superconductors quasiparticles exist; see, e.g., [4,6,7]. Thus, Equation (25)
agrees with the experimental facts that quasiparticles exist in strongly correlated metals.
It is seen from Equation (25) that the resistivity ρ(T) ∝ T; see, e.g., [28,34]. A detailed
discussion of γFC(T) taking into account the contribution of transverse zero sound and the
formation of the resistivity ρ(T) ∝ T is given in [34,35], while the absence of the FC state
leads to ρ(T) ∝ T2; see, e.g., [15].

4. Superconducting State with FC at Finite Temperatures

Now, we consider the superconducting state of unconventional superconductors
within the framework of the FC theory [16,18]. It was experimentally shown that in HF
metals the quasiparticles are well-defined excitations [6] and in the superconducting state of
unconventional superconductors the elementary excitations are Bogoliubov quasiparticles
(BQs), that is, the excitations are Bardeen–Cooper–Schrieffer-like [4,7,23,24]. Therefore, as
we shall see, unconventional superconductors exhibit the same scaling behavior of the
condensation energy E∆/γ as conventional superconductors [5].

The energy dispersion of single-particle excitations and the corresponding coherence
factors as a function of momentum were measured on high-Tc cuprates (Bi2Sr2Ca2Cu3O10+δ,
Tc = 108 K) by using high-resolution angle-resolved photoemission spectroscopy [4]. All
the observed features qualitatively and quantitatively agree with the behavior of BQs in
conventional superconductors predicted by the BCS theory [4,6,23,24]. This observation
shows that the superconducting state of unconventional superconductors is BCS-like with
BQs, and implies the basic validity of the BCS formalism in describing the superconducting
state, and is closely related to the deformation of flat bands by the superconducting phase
transition [9,25,28]. On the other hand, a number of properties, such as the maximum
value of the superconducting gap ∆1, high density of states, and other exotic properties,
are beyond the scope of the BCS theory [12,18,25]. Below, we call electron (hole) liquids
electronic. For T < Tc, the thermodynamic potential Ω of the electron liquid is determined
by the expression (see, e.g., [15,24])

Ω = E0 − µN − TS, (26)

In Equation (26), N is the quasiparticle density, µ is the chemical potential, and S is the
entropy. The ground state energy E0[κ(p), n(p)] of the electron liquid is an exact functional
of the order parameter of the superconducting state κ(p) and quasiparticle occupation
numbers n(p) [18,26]. Here, we assume that the electronic system is two-dimensional
to describe the results of [4], and all the results can be transferred to the case of a three-
dimensional system [18]. This energy is determined by the well-known equation of the
theory of weak coupling superconductivity:

E0 = E[n(p)] + δEs. (27)

Here, E[n(p)] is the exact Landau functional determining the ground state energy of a
normal Fermi liquid [15,18], and δEs is given by

δEs =
∫

λ0V(p1, p2)κ(p1)κ
∗(p2)

dp1dp2

(2π)4 . (28)
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Here, λ0V(p1, p2) is the pairing interaction, with λ0 being the coupling constant. The
quasiparticle occupation number’s

n(p) = v2(p)(1 − f (p)) + u2(p) f (p), (29)

and at finite temperatures the order parameter κ becomes

κ(p) = v(p)u(p)(1 − 2 f (p)). (30)

While at T = 0 the order parameter reads

κ(p) =
√

n0(p)(1 − n0(p)). (31)

Here, the coherence factors u(p) and v(p) obey the normalization condition

v2(p) + u2(p) = 1, (32)

and are selected from the condition that the energy E0 of the system is minimal for a given
entropy S [15]. The distribution function f (p) determines the entropy:

S = −2
∫
[ f (p) ln f (p) + (1 − f (p)) ln(1 − f (p))]

dp
4π2 . (33)

We assume that the pair interaction λ0V(p1, p2) is weak and arises due to electron–
phonon interaction. Minimizing Ω with respect to κ(p) and using the definition
∆(p) = −δΩ/κ(p), we obtain the equation relating single-particle energy ε(p) to the su-
perconducting gap ∆(p):

ε(p)− µ = ∆(p)
1 − 2v2(p)
2v(p)u(p)

. (34)

Single-particle energy ε(p) is determined by the Landau equation:

ε(p) =
δE[n(p)]

δn(p)
. (35)

Note that E[n(p)], ε[n(p)], and the Landau amplitude

F(p, p1) =
δE2[n(p)]

δn(p)δ(p1)
(36)

are exact equations [26]. Minimizing Ω with respect to f (p), and after some algebra, we
obtain the well-known equation for the superconducting gap ∆(p):

∆(p) = −1
2

∫
λ0V(p, p1)

∆(p1)

E(p1)
(1 − 2 f (p1))

dp1

4π2 . (37)

Here, the excitation energy E(p) is defined by the Bogoliubov quasiparticles:

E(p) =
δ(Egs − µN)

δ f (p)
=

√
(ε(p)− µ)2 + ∆2(p). (38)

The coherence factors v(p), u(p) and the distribution function f (p) are given by the
usual equations:

v2(p) =
1
2

(
1 − ε(p)− µ

E(p)

)
; u2(p) =

1
2

(
1 +

ε(p)− µ

E(p)

)
, (39)
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f (p) =
1

1 + exp(E(p)/T)
. (40)

Equations (34)–(40) are the traditional ones of the BCS theory [23,24], defining the supercon-
ducting state with BQs and the maximum value of the superconducting gap ∆1 ∼ 10−3εF
provided that it is assumed that the system in question has not passed FCQPT.

As we have seen in Section 2, at T = 0, the ground state of the flat band system is
degenerate, and the occupation numbers n0(p) of the single-particle states belonging to
the flat band are continuous functions of the momentum p, in contrast to the standard LFL
step from 0 to 1 at p = pF, as seen from Figure 1. As a result, at T = 0 the superconduct-
ing order parameter κ0(p) =

√
n0(p)(1 − n0(p)) ̸= 0 in the region occupied by FC; see

Equation (9) [18]. This property contrasts sharply with the standard LFL picture, where for
T = 0 and p = pF the order parameter κ(p) is necessarily zero; see Figure 1. Because of
the fundamental difference between the single-particle spectrum of FC and the spectrum
of the rest of the Fermi liquid, a system having FC is essentially a two-component system
separated from the usual Fermi liquid by a topological phase transition [10,17,18]. The
range L of momentum space adjacent to µ where FC is located is given by L ≃ p f − pi; see
Figure 1. We note that Equations (8) and (9) imply that the gap ∆ is a linear function of both
λ0 and κ0(p). Since Tc ∼ ∆, we conclude that Tc ∝ κ0 ∝ nFC ∝ ρs. Here, nFC is given by
Equation (10), being the density of superconducting electrons ρs, and forming the FC state;
see Figure 1. In the case of over-doped high-temperature superconductors, the topological
FCQPT takes place at the critical doping xc, that is, x = xc, nFC ∝ pF(p f − pi) ∝ xc − x,
with (p f − pi)/pF ≪ 1 [18,36]; therefore, at temperature T = 0, the density of the su-
perconducting electrons nFC turns out to be considerably smaller than the total electron
density nel :

nFC = ρs ≪ ρel . (41)

We note that Equation (41) is in good agreement with experimental facts, being in contradic-
tion with the BCS result that states: at T = 0 the density of the superconducting electrons
ρs coincides with the density of electrons ρel , ρs = ρel [37,38].

e ( p )
e ( p ) = m

n ( p )

p fp i p F

1
0

F C  s t a t e

T = 0

Figure 1. Schematic plot of electron liquid at T = 0 with FC and ∆1 = 0. In the case of a system
without FC, the solid red curves show ε(p), and n0(p) has the usual step function shown by the
solid green line. Due to the presence of FC, the system is separated into two components: the first
one is a normal Fermi liquid with the quasiparticle distribution function n0(p < pF) = 1, and
n0(p > pF) = 0. The second one is FC with 0 < n0(pi < p < p f ) < 1 and the flat single-particle
spectrum ε(pi < p < p f ) = µ. Both of them are shown by the dashed lines. The Fermi momentum
pF satisfies the condition pi < pF < p f .

Proceed to consider the superconducting state with FC that appears after the topo-
logical FCQPT point. At T = 0 and λ0 → 0 the maximum value of the superconducting
gap is ∆1 → 0, and also, the critical temperature Tc → 0 and Equation (34) is converted
into Equation (2) [16,18]. For T → 0, Equation (2) defines a new Fermi liquid state with
FC [16,17], that has a strong influence on the system properties up to temperature T0

f , at
which the influence of FC vanishes. It can be seen from Equation (2) that the entropy
S(T → 0) → S0, where S0 > 0, is determined by the expression
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S0 = −
∫
[n0(p) ln n0(p) + (1 − n0(p)) ln(1 − n0(p))]

dp
(2π)2 . (42)

For T → 0, Equation (2) defines a special state of a Fermi liquid with FC, for which the
modulus of the order parameter |κ(p)| has finite values in the (p f − pi) region, whereas
the maximum value of ∆1 → 0 in this region. Observe that f (p, T → 0) → 0, and it
follows from Equations (29) and (30) that if 0 < n(p) < 1, then |κ(p)| ̸= 0 in the region
(p f − pi). Such a state can be considered as superconducting, with an infinitely small value
of ∆1, so that the entropy of this state is equal to zero. At any finite T > 0, the entropy
S ≥ S0, thus the topological FQCPT is of the first order [18]. The FC state is formed by
the Landau interaction F(p = pF, p1 = pF) being relatively strong as compared with the
pairing interaction λ0V; therefore, λ0V does not noticeably disturb the occupation numbers
n0, but does disturb the corresponding flat band [9,18].

Consider the schematic T − B phase diagram of an unconventional superconductor. As
we shall see, this phase diagram differs significantly from that of conventional superconduc-
tors. However, this distinction does not exclude the common features of unconventional
and traditional superconductors, which makes the physics of superconductivity more
complex and attractive.

It is seen from the schematic phase diagram, Figure 2, that at temperatures T ≲ Tc
the superconducting–normal phase transition shown by the solid line in Figure 2 is of
the second order and entropy S is a continuous function of its variable T at Tc(B). At
temperatures T → 0, the normal state can be recovered by the application of a magnetic
field B that is approximately equal to the critical field B ≃ Bc2. This state can be considered
as a magnetic field-induced LFL state since the resistivity exhibits LFL behavior, ρ(T) ∝ T2,
which becomes ρ(T) ∝ T as the temperature increases [18]. When the system in its NFL
state, under the application of a magnetic field B > T∗, HF metal transits to its LFL state,
where temperature T∗(B) defines the crossover midline, as seen from Figure 2. At T → 0
the entropy of the superconducting state SSC → 0 and the entropy of the NFL state tends
to some finite value SNFL ≥ S0; see Equation (42). Thus, at temperatures T0 ≥ T the
equality SSC(T) = SNFL(T) cannot be satisfied [18,39]. Thus, the second-order phase
transition becomes the first below a certain temperature T0(B), as happens in CeCoIn5
and as shown by the arrow in Figure 2 [39–41], while conventional superconductors do
not exhibit a first-order phase transition under the influence of magnetic fields [15]. Note
that the topological FCQPT is also the first-order phase transition. This first-order phase
transition is determined by both the entropy jump mentioned above and the topological
charge of FCQPT, which also changes by a jump [17,19]. Thus, possible fluctuations of the
order parameter κ are excluded at T ≤ T0 [18,39].

0 4 8 1 2 1 6
0

1

2

L F LN F LT 0

T(K
)

B ( T )

L F L

N F L

B c 2

S > S 0

S C

T c

T *

Figure 2. Schematic T − B phase diagram of a superconducting HF metal, with upper critical field Bc2.
The vertical and horizontal arrows crossing the transition region are marked with a line, representing
the LFL–NFL and NFL–LFL transitions at fixed B and T, respectively. The shaded region shown by
two adjacent red lines indicates the transition from the LFL state with ρ(T) ∝ T2 to the NFL state
with ρ(T) ∝ T. The median line T∗ of the crossover is shown by the solid line. As shown by the solid
curve, at B < Bc2 the system is in its superconducting (SC) state.
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The superconducting critical field Bc2 is shown by the purple circle. The superconducting–
normal phase boundary is represented by the solid and dashed curves. The solid square
indicates the point at T = T0 at which the superconducting phase transition Tc changes
from the second-order phase transition to the first-order phase transition.

5. General Behavior of the Scaled Condensation Energy of Conventional and
Unconventional Superconductors

It can be seen from Equations (2) and (34) that the system is divided into two quasipar-
ticle subsystems: the first subsystem in the range (p f − pi) is characterized by quasiparticles
with the effective mass M∗

FC ∝ 1/∆1, and the second is occupied by quasiparticles with the
finite mass M∗

L and momenta p < pi [18]. The energy scale E0 which defines the region
occupied by quasiparticles with the effective mass M∗

FC is

E0 = ε(p f )− ε(pi) ≃ 2
(p f − pF)pF

M∗
FC

≃ 2∆1. (43)

At λ0 ̸= 0, the gap ∆1 is finite. It can be seen from Equation (37) that the superconducting
gap depends on ε(p). On the other hand, as seen from Equation (34), ε(p) depends on ∆(p),
since at ∆1 → 0 the spectrum becomes flat. When differentiating both sides of Equation (34)
relative to the momentum p, we find that the effective mass M∗

FC = dε(p)/dp |p=pF reads [9]

M∗
FC ∼ pF

p f − pi

2∆1
. (44)

It follows from Equation (44) that the effective mass and the density of states
N(0) ∝ M∗

FC ∝ 1/∆1 are finite and constant at T < Tc, see Figure 3, [9,25]. Thus, we arrive
at the result that contradicts the BCS theory, and follows from Equation (44):

∆1 ∝ Tc ∝ VF ∝
1

N(0)
∝

1
M∗

FC
, (45)

where VF ∝ pF/M∗
FC is the Fermi velocity [8,9,25]; see Figure 4. As λ0 → 0, the supercon-

ducting gap ∆1 → 0 and the density of states near the Fermi level tends to infinity; see
Equation (45).

 ∆
1
 >  0

T c ~ V F > 0

f l a t  b a n d
V F ~ T c ~ ∆

1
= 0

n ( p )

p fp i p F

1
0

T = 0

P

     F C
0 < n 0 ( p ) < 1

ε( p )

Figure 3. Schematic plot of electron liquid at T = 0 with FC. Because of the presence of FC, the system
is divided into two components: the first is a normal Fermi liquid with a quasiparticle distribution
function n0(p < pi) = 1 and n0(p > p f ) = 0. The second is FC with 0 < n0(pi < p < p f ) < 1 and a
single-particle spectrum ε(pi < p < p f ) = µ. Due to the presence of FC, the Fermi momentum pF

satisfies the condition pi < pF < p f . The modified flat band with ∆1 > 0 and VF > 0, resulting from
the emergence of the superconducting state, is shown by the red dashed line; see Equation (45). This
change is depicted by the arrow and shown schematically by solid and dotted lines.
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0 2 4
0

2

4

 

  
V F (1

04 m/
s)

T c  ( K )

 E x p e r i m e n t

T w i s t e d  b i l a y e r  g r a p h e n e

Figure 4. Experimental results for the average Fermi velocity VF, shown as solid diamonds, as
functions of critical temperature Tc for the magic-angle twisted bilayer graphene [8]. Down arrows
indicate that VF ≤ V0, where V0 is the maximum value shown. The theory is shown by the solid line,
which gives VF ∝ Tc ∝ 1/N(0); see Equation (45) [9].

Measurements of VF as a function of Tc [8] are depicted in Figure 4. These observations
are in good agreement with Equation (45). We note that this unusual behavior Tc ∝
1/N(0) is observed in measurements on the uncommon superconductor Bi2Sr2CaCu2O8+x,
where x is the oxygen doping concentration [9,42]; see Figure 5. Thus, our theoretical
prediction [18,25] agrees very well with the experimental results [8,42]. It is worth noting
that VF → 0, as well as Tc → 0, as can be seen from Figure 4. This result shows that the flat
band is disturbed by the finite value of ∆1, and possesses a finite slope that makes VF ∝ Tc,
as seen from Figure 4. Indeed, from Figure 4, the experimental critical temperatures Tc
do not correspond to the minima in the Fermi velocity VF as they would in any BCS-like
theory [8]. This extraordinary behavior is explained within the framework of the FC theory
based on the topological FCQPT forming flat bands [9,18]. As shown below, another
unusual behavior, i.e., the general universal scaling of E∆/γ of both conventional and
unconventional superconductors [5], is also associated with Equation (45) and explained
within the framework of the FC theory.

0 2 4
0

2

4

( L D O S ) _ _ 1  ( a u )  ~ V F

D (
me

V)

 

 

 
V F (1

04 m/
s)

T c  ( K )

 E x p e r i m e n t

x

Figure 5. Experimental results for the mean Fermi velocity VF as a function of the critical temperature
Tc. The experiment is shown by filled diamonds [43–45]. The theory is shown by a solid line. The
inset is taken from [42] and shows the experimental dependence of the superconducting gap on
the integrated local density of states (LDOS) collected on the high-temperature superconductor
Bi2Sr2CaCu2O8+x; x is the oxygen doping concentration. A more dark color represents more data
points of the same integrated LDOS and the same gap size ∆ [42].

We come to the conclusion that, in contrast to the traditional BCS theory of supercon-
ductivity, the single-particle spectrum ε(p) strongly depends on the superconducting gap,
and we have to solve Equations (35) and (37) in a consistent manner. On the other hand,
suppose that Equations (35) and (37) are solved and the effective mass M∗

FC is determined.
We can now fix ε(p) by choosing the effective mass M∗ of the system under consideration
to be equal to M∗

FC, and then, solving Equation (37) in the same way as in the case of the
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BCS traditional theory of superconductivity [23]. As a result, it can be seen that the super-
conducting state is characterized by BQs with the dispersion determined by Equation (38).
The coherence coefficients v, u are determined by Equation (39), and the normalization
condition (32) is satisfied. We conclude that the observed features are consistent with the
BQ behavior according to experimental facts [4,5,7,42–46]. This observation suggests that
a superconducting state with FC is similar to BCS and implies the basic reliability of BCS
formalism when describing a superconducting state in terms of BQ. This is exactly the case
that was observed experimentally in high-Tc cuprates; see, e.g., [4,7].

In fact, as is seen from Equations (43) and (44), even at T = 0, Fermi liquid with FC
presenting a highly generated state is absorbed by the superconducting phase transition
and never exhibits the dispersionless plateau associated with M∗

FC → ∞. As a result, a
Fermi liquid beyond the point of FCQPT can be described by two types of quasiparticles
characterized by the two finite effective masses M∗

FC and M∗
L, respectively, and by the

intrinsic energy scale E0 [18,25].
It is reasonably safe to suggest that we have come back to the Landau theory by

integrating out high-energy degrees of freedom and introducing quasiparticles. The sole
difference between the Landau Fermi liquid and Fermi liquid having undergone FCQPT is
that we have to expand the number of relevant low-energy degrees of freedom by adding
both a new type of quasiparticle with effective mass M∗

FC, given by Equation (44), and the
energy scale E0, given by Equation (43). We have also to bear in mind that the properties of
these new quasiparticles of Fermi liquid with FC cannot be separated from the properties
of the superconducting state. It can be said that the system of quasiparticles in the range of
LFC becomes very “soft” and should be considered as a strongly correlated fluid. Thus, the
properties and dynamics of the system are determined by a strong collective effect, which
has its origin in the topological FCQPT and is determined by the macroscopic number
of quasiparticles in the range LFC. This system cannot be disturbed by scattering of the
microscopic number of quasiparticles and represents a quantum protectorate [25,47]. We
have returned to the theory of Landau Fermi liquids, since the high-energy degrees of
freedom are eliminated and quasiparticles are returned. The only difference between LFL,
which serves as the basis for constructing a superconducting state, and a Fermi liquid with
FC is that we must expand the number of corresponding low-energy degrees of freedom,
introducing a new type of quasiparticle with the effective mass of M∗

FC, given by Equa-
tion (44) and the energy scale E0, indicated by Equation (43). Therefore, the single-particle
spectrum ε(p) is characterized by both two effective masses, M∗

L and M∗
FC, and by the

scale E0, which determine the low-temperature properties [18,25], while the dispersion
of BQs is given by Equation (45). Note that both the effective mass M∗

FC and the scale E0
are independent of temperature for T < Tc, where Tc is the critical temperature of the
superconducting phase transition [18]. Obviously, we cannot directly relate these new
quasiparticle excitations of BQs to quasiparticle excitations of an ideal Fermi gas, since
the system in question has undergone topological FCQPT. However, the main properties
of the LFL theory are preserved in FCQPT: low-energy excitation of a strongly correlated
fluid with FC quasiparticles, whereas in the superconducting state they are represented
by BQs [18]. It can be said that the system of quasiparticles in the range (p f − pi) be-
comes very flexible and must be tuned in accordance with the superconducting state; see
Equations (44) and (45).

At the same time, one could expect serious deviations from the BCS results when cal-
culating the pairing correction ∆EFC to E0[n]. Applying the Landau formula for the change
in E0[n] due to the variation δn(p, T) = n(p, T)− n0(p) of the occupation numbers [15]
and adding the superfluid term (28), we arrive at the following result:

∆EFC =
∫
(ε(p)− µ)δn(p)

dp
(2π)2 + δEs. (46)
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Here, δEs is given by Equations (3), (28), and (31):

δEs = −1
2

∫ p f

pi

∆0(p)
√

n0(p)(1 − n0(p))
dp

(2π)2 . (47)

In the usual BCS case, the first term and the second one become proportional ∼ ∆2/ε0
F,

so that ∆EFC ∼ ∆2/ε0
F [15]. One could suspect that in a system with FC, the first term in

Equation (46) turns out to be zero, for ε(p)− µ = 0 in the region p f − pi; see Equation (2).
This is incorrect, since both the inverse Fermi velocity 1/VF and the effective mass M∗

FC
become finite under the influence of the superconducting state [9]; see Equation (45).
Considering also that we are dealing with BQs, we are left with the usual BCS result
for the superconducting condensation energy E∆, which is valid for both conventional
superconductors and unconventional superconductors:

∆EFC/γ ∼ E∆/γ ∼
N(T)∆2

1
γ(T)

∼ ∆2
1 ∼ T2

c . (48)

Here, N(T) and γ(T) are the density of states and the Sommerfeld coefficient, respectively.
Experimental facts show that N(T) and γ(T) strongly depend on temperature T [12,18] and
∆1 is the maximum value of the superconducting gap. However, M∗(T) ∝ N(T) ∝ γ(T) [18],
and we obtain E∆/γ ∼ T2

c . It is seen from Figure 6 that Equation (48) is in accordance
with experimental facts [5]. Indeed, taking into account that BQs of unconventional su-
perconductors within the framework of the FC theory coincide with BQs of conventional
superconductors and Equation (44), we conclude that the condensation energy E∆/γ given
by Equation (48) has a universal form valid in the case of both conventional supercon-
ductors and unconventional ones. To check this conclusion, we compare our theoretical
result with experimental facts [5]. Figure 6 shows the scaling of the condensation energy E∆
versus T2

c on a log–log scale. It is seen from Figure 6 that the universal scaling E∆/γ ∝ T2
c

is valid for all superconductors, both the conventional and the unconventional ones. This
universal scaling behavior takes place over almost seven orders of magnitude for E∆/γ
and three orders of magnitude for Tc [5]. This observation is not surprising since, as we
have seen above, unconventional superconductors have the same BQs as conventional
ones since the shape of the corresponding bands correlates with their Tc, as follows from
Equation (45). Note that due to the strong influence of the pseudogap state on the proper-
ties of unconventional superconductors, such as the density of states, heat capacity, and
even the true value of Tc, only optimally doped samples [5,48] were considered. Thus, the
FC theory allows us to justify Equation (48), which describes superconductivity far beyond
the weak coupling regime and is applicable to both conventional and unconventional
strongly correlated superconductors.

0 . 1 2 0 . 1 6 0 . 2 0 0 . 2 4 0 . 2 8 0 . 3 2
0 . 1

0 . 2

0 . 3

0 . 4

E ∆/γ (
K2 )

T c  ( K )

αs = 2 . 0

Figure 6. Condensation energy E∆/γ ∝ T2
c divided by specific heat γ as a function of Tc for a wide

range of superconductors, with slope αs = 2 [5]; see Equation (48). The deviations from the best-fit
line, spanning six orders of magnitude for E∆/γ and almost three orders of magnitude for Tc, are
relatively small.
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6. Summary

We analyzed the general behavior of unconventional superconductors and conventional
superconductors and demonstrated that both the universal condensation energy scaling
E∆/γ = N(0)∆2

1/γ and the quasiparticle model are equally applicable to both types of su-
perconductivity. Our explanation is based on the general properties of superconductors:
Bogoliubov quasiparticles act in conventional and non-conventional superconductors, while
the corresponding flat band is only deformed by the non-conventional superconducting state,
making the effective mass finite. As a result, the non-conventional superconducting state
becomes BCS-like. These observations suggest that in some cases the non-traditional super-
conducting state can be considered an analogue of the BCS state, as predicted in 2001. Note
that in the normal state, non-traditional superconductors exhibit resistivity behavior ρ(T) ∼ T,
while traditional ones have ρ(T) ∼ T2. We also considered the superconducting electron
density ρs of both superconductors. Our theoretical observations are in good agreement
with experimental facts. Note that the theory of unconventional superconductivity is under
development and new experimental results could be obtained that could reveal, for example,
the absence of quasiparticles. Such observations may demonstrate the inconsistency of our
explanation and lead to new considerations. However, for now our theoretical observations
are in good agreement with experimental facts, demonstrating the existence of Bogoliubov
quasiparticles and the scaling behavior of the scaled condensation energy.
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