Titanium Nitride as an Alternative Plasmonic Material for Plasmonic Enhancement in Organic Photovoltaics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plasmonic Array Fabrication
2.2. Plasmon Enhanced Organic Photovoltaic Fabrication
2.3. Thin-Film and OPV Characterization
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rhodes, C.J. Solar Energy: Principles and Possibilities. Sci. Prog. 2010, 93, 37–112. [Google Scholar] [CrossRef] [PubMed]
- Green, M.A. Solar Cells: Operating Principles, Technology, and System Applications; Prentice Hall: Hoboken, NJ, USA, 1982. [Google Scholar]
- Feng, N.N.; Michel, J.; Zeng, L.; Liu, J.; Hong, C.Y.; Kimerling, L.C.; Duan, X. Design of Highly Efficient Light-Trapping Structures for Thin-Film Crystalline Silicon Solar Cells. IEEE Trans. Electron. Devices 2007, 54, 1926–1933. [Google Scholar] [CrossRef]
- Yablonovitch, E.; Cody, G.D. Intensity Enhancement in Textured Optical Sheets for Solar Cells. IEEE Trans. Electron. Devices 1982, 29, 300–305. [Google Scholar] [CrossRef]
- Yablonovitch, E. Statistical Ray Optics. J. Opt. Soc. Am. 1982, 72, 899–907. [Google Scholar] [CrossRef]
- Catchpole, K.; Polman, A.; Müller, J.; Rech, B.; Springer, J.; Vanecek, M. Plasmonic Solar Cells. Optics Express 2008, 16, 21793–21800. [Google Scholar] [CrossRef]
- Atwater, H.A.; Polman, A. Plasmonics for Improved Photovoltaic Devices. Mater. Sustain. Energy 2010, 1–11. [Google Scholar] [CrossRef]
- Pillai, S.; Green, M.A. Plasmonics for Photovoltaic Applications. Sol. Energy Mater. Sol. Cells 2010, 94, 1481–1486. [Google Scholar] [CrossRef]
- Jang, Y.H.; Jang, Y.J.; Kim, S.; Quan, L.N.; Chung, K.; Kim, D.H. Plasmonic Solar Cells: From Rational Design to Mechanism Overview. Chem. Rev. 2016, 116, 14982–15034. [Google Scholar] [CrossRef]
- Polman, A. Applied Physics: Plasmonics Applied. Science 2008, 322, 868–869. [Google Scholar] [CrossRef]
- Enrichi, F.; Quandt, A.; Righini, G.C. Plasmonic Enhanced Solar Cells: Summary of Possible Strategies and Recent Results. Renew. Sustain. Energy Rev. 2018, 82, 2433–2439. [Google Scholar] [CrossRef]
- Kurt, H. Plasmonic Enhancement in PTB7-Th:PC71BM Organic Photovoltaics. Opt. Mater. 2022, 133, 113006. [Google Scholar] [CrossRef]
- Yang, J.; You, J.; Chen, C.-C.; Hsu, W.-C.; Tan, H.; Zhang, X.W.; Hong, Z.; Yang, Y. Plasmonic Polymer Tandem Solar Cell. ACS Nano 2011, 5, 6210–6217. [Google Scholar] [CrossRef] [PubMed]
- Jung, K.; Song, H.-J.; Lee, G.; Ko, Y.; Ahn, K.; Choi, H.; Kim, J.Y.; Ha, K.; Song, J.; Lee, J.-K.; et al. Plasmonic Organic Solar Cells Employing Nanobump Assembly via Aerosol-Derived Nanoparticles. ACS Nano 2014, 8, 2590–2601. [Google Scholar] [CrossRef] [PubMed]
- Khabbaz Abkenar, S.; Tufani, A.; Ozaydin Ince, G.; Kurt, H.; Turak, A.; Ow-Yang, C.W. Transfer Printing Gold Nanoparticle Arrays by Tuning the Surface Hydrophilicity of Thermo-Responsive Poly N-Isopropylacrylamide (PNIPAAm). Nanoscale 2017, 9, 2969–2973. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Sun, Y.; Chen, L.; Zhang, Q.; Li, X.; Shuai, J. A Review on Plasmonic Nanostructures for Efficiency Enhancement of Organic Solar Cells. Mater. Today Phys. 2022, 24, 100680. [Google Scholar] [CrossRef]
- Gangadharan, D.T.; Xu, Z.; Liu, Y.; Izquierdo, R.; Ma, D. Recent Advancements in Plasmon-Enhanced Promising Third-Generation Solar Cells. Nanophotonics 2017, 6, 153–175. [Google Scholar] [CrossRef]
- Mandal, P. Application of Plasmonics in Solar Cell Efficiency Improvement: A Brief Review on Recent Progress. Plasmonics 2022, 17, 1247–1267. [Google Scholar] [CrossRef]
- Ai, B.; Fan, Z.; Wong, Z.J. Plasmonic–Perovskite Solar Cells, Light Emitters, and Sensors. Microsyst. Nanoeng. 2022, 8, 5. [Google Scholar] [CrossRef]
- Li, W.; Guler, U.; Kinsey, N.; Naik, G.V.; Boltasseva, A.; Guan, J.; Shalaev, V.M.; Kildishev, A.V. Refractory Plasmonics with Titanium Nitride: Broadband Metamaterial Absorber. Adv. Mater. 2014, 26, 7959–7965. [Google Scholar] [CrossRef]
- Catchpole, K.R.; Polman, A. Design Principles for Particle Plasmon Enhanced Solar Cells. Appl. Phys. Lett. 2008, 93, 191113. [Google Scholar] [CrossRef]
- Amalathas, A.P.; Alkaisi, M.M. Nanostructures for Light Trapping in Thin Film Solar Cells. Micromachines 2019, 10, 619. [Google Scholar] [CrossRef] [PubMed]
- Naik, G.V.; Shalaev, V.M.; Boltasseva, A.; Naik, G.V.; Shalaev, V.M.; Boltasseva, A. Alternative Plasmonic Materials: Beyond Gold and Silver. Adv. Mater. 2013, 25, 3264–3294. [Google Scholar] [CrossRef] [PubMed]
- Naik, G.V.; Kim, J.; Boltasseva, A. Oxides and Nitrides as Alternative Plasmonic Materials in the Optical Range. Opt. Mater. Express 2011, 1, 1090–1099. [Google Scholar] [CrossRef]
- Guler, U.; Naik, G.V.; Boltasseva, A.; Shalaev, V.M.; Kildishev, A.V. Performance Analysis of Nitride Alternative Plasmonic Materials for Localized Surface Plasmon Applications. Appl. Phys. B 2012, 107, 285–291. [Google Scholar] [CrossRef]
- Mahajan, U.; Dhonde, M.; Sahu, K.; Ghosh, P.; Shirage, P.M. Titanium Nitride (TiN) as a Promising Alternative to Plasmonic Metals: A Comprehensive Review of Synthesis and Applications. Mater. Adv. 2024, 5, 846–895. [Google Scholar] [CrossRef]
- Guler, U.; Shalaev, V.M.; Boltasseva, A. Nanoparticle Plasmonics: Going Practical with Transition Metal Nitrides. Mater. Today 2015, 18, 227–237. [Google Scholar] [CrossRef]
- Guler, U.; Boltasseva, A.; Shalaev, V.M. Refractory Plasmonics. Science 2014, 344, 263–264. [Google Scholar] [CrossRef]
- Günaydın, B.N.; Gülmez, M.; Torabfam, M.; Pehlivan, Z.S.; Tütüncüoğlu, A.; Kayalan, C.I.; Saatçioğlu, E.; Bayazıt, M.K.; Yüce, M.; Kurt, H. Plasmonic Titanium Nitride Nanohole Arrays for Refractometric Sensing. ACS Appl. Nano Mater. 2023, 6, 20612–20622. [Google Scholar] [CrossRef]
- Günaydın, B.N.; Hız, D.; Cankurtaran, S.E.; Gülmez, M.; Yüce, M.; Kurt, H. Plasmonic (Ti/Hf)N vs. Au Nanodisk Arrays: A Comparative Study of Refractometric Sensitivity. Opt. Sens. Detect. VIII 2024, 12999, 129990R. [Google Scholar]
- Park, D.G.; Cha, T.H.; Lim, K.Y.; Cho, H.J.; Kim, T.K.; Jang, S.A.; Suh, Y.S.; Misra, V.; Yeo, I.S.; Roh, J.S.; et al. Robust Ternary Metal Gate Electrodes for Dual Gate CMOS Devices. In Proceedings of the International Electron Devices Meeting. Technical Digest (Cat. No.01CH37224), Washington, DC, USA, 2–5 December 2001; pp. 671–674. [Google Scholar] [CrossRef]
- Reiter, S.; Han, W.; Mai, C.; Spirito, D.; Jose, J.; Zöllner, M.; Fursenko, O.; Schubert, M.A.; Stemmler, I.; Wenger, C.; et al. Titanium Nitride Plasmonic Nanohole Arrays for CMOS-Compatible Integrated Refractive Index Sensing: Influence of Layer Thickness on Optical Properties. Plasmonics 2023, 18, 831–843. [Google Scholar] [CrossRef]
- Askes, S.H.C.; Schilder, N.J.; Zoethout, E.; Polman, A.; Garnett, E.C. Tunable Plasmonic HfN Nanoparticles and Arrays. Nanoscale 2019, 11, 20252–20260. [Google Scholar] [CrossRef] [PubMed]
- Braic, L.; Vasilantonakis, N.; Mihai, A.; Villar Garcia, I.J.; Fearn, S.; Zou, B.; Alford, N.M.N.; Doiron, B.; Oulton, R.F.; Maier, S.A.; et al. Titanium Oxynitride Thin Films with Tunable Double Epsilon-Near-Zero Behavior for Nanophotonic Applications. ACS Appl. Mater. Interfaces 2017, 9, 29857–29862. [Google Scholar] [CrossRef] [PubMed]
- Kurt, H.; Pishva, P.; Pehlivan, Z.S.; Arsoy, E.G.; Saleem, Q.; Bayazıt, M.K.; Yüce, M. Nanoplasmonic Biosensors: Theory, Structure, Design, and Review of Recent Applications. Anal. Chim. Acta 2021, 1185, 338842. [Google Scholar] [CrossRef] [PubMed]
- Patsalas, P.; Kalfagiannis, N.; Kassavetis, S.; Abadias, G.; Bellas, D.V.; Lekka, C.; Lidorikis, E. Conductive Nitrides: Growth Principles, Optical and Electronic Properties, and Their Perspectives in Photonics and Plasmonics. Mater. Sci. Eng. R Rep. 2018, 123, 1–55. [Google Scholar] [CrossRef]
- Khalifa, A.E.; Swillam, M.A. Plasmonic Silicon Solar Cells Using Titanium Nitride: A Comparative Study. J. Nanophotonics 2014, 8, 084098. [Google Scholar] [CrossRef]
- Venugopal, N.; Gerasimov, V.S.; Ershov, A.E.; Karpov, S.V.; Polyutov, S.P. Titanium Nitride as Light Trapping Plasmonic Material in Silicon Solar Cell. Opt. Mater. 2017, 72, 397–402. [Google Scholar] [CrossRef]
- Khezripour, Z.; Mahani, F.F.; Mokhtari, A. Performance Improvement of Ultrathin Organic Solar Cells Utilizing Light-Trapping Aluminum-Titanium Nitride Nanosquare Arrays. Opt. Mater. 2018, 84, 651–657. [Google Scholar] [CrossRef]
- Khezripour, Z.; Mahani, F.F.; Mokhtari, A. Performance Improvement of Thin-Film Silicon Solar Cells Using Transversal and Longitudinal Titanium Nitride Plasmonic Nanogratings. Opt. Mater. 2020, 99, 109532. [Google Scholar] [CrossRef]
- Akhtary, N.; Zubair, A. Titanium Nitride Based Plasmonic Nanoparticles for Photovoltaic Application. Opt. Contin. 2023, 2, 1701–1715. [Google Scholar] [CrossRef]
- Kurt, H.; Alpaslan, E.; Yildiz, B.; Taralp, A.; Ow-Yang, C.W. Conformation-Mediated Förster Resonance Energy Transfer (FRET) in Blue-Emitting Polyvinylpyrrolidone (PVP)-Passivated Zinc Oxide (ZnO) Nanoparticles. J. Colloid. Interface Sci. 2017, 488, 348–355. [Google Scholar] [CrossRef]
- Kurt, H. Field-Dependent Charge Collection Model for Thin Film Organic Photovoltaics. Türk Doğa Fen Derg. 2020, 9, 135–140. [Google Scholar] [CrossRef]
- Kurt, H.; Ow-Yang, C.W. Impedance Spectroscopy Analysis of the Photophysical Dynamics Due to the Nanostructuring of Anode Interlayers in Organic Photovoltaics. Phys. Status Solidi (a) 2016, 213, 3165–3177. [Google Scholar] [CrossRef]
- Kurt, H.; Jia, J.; Shigesato, Y.; Ow-Yang, C.W. Tuning Hole Charge Collection Efficiency in Polymer Photovoltaics by Optimizing the Work Function of Indium Tin Oxide Electrodes with Solution-Processed LiF Nanoparticles. J. Mater.Sci. Mater. Electron. 2015, 26, 9205–9212. [Google Scholar] [CrossRef]
- Li, J.; Ye, J.; Chen, C.; Li, Y.; Verellen, N.; Moshchalkov, V.V.; Lagae, L.; Van Dorpe, P. Revisiting the Surface Sensitivity of Nanoplasmonic Biosensors. ACS Photonics 2015, 2, 425–431. [Google Scholar] [CrossRef]
- Nieborek, M.; Jastrzębski, C.; Płociński, T.; Wróbel, P.; Seweryn, A.; Judek, J. Optimization of the Plasmonic Properties of Titanium Nitride Films Sputtered at Room Temperature through Microstructure and Thickness Control. Sci. Rep. 2024, 14, 5762. [Google Scholar] [CrossRef]
- Haes, A.J.; Haynes, C.L.; McFarland, A.D.; Schatz, G.C.; Van Duyne, R.P.; Zou, S. Plasmonic Materials for Surface-Enhanced Sensing and Spectroscopy. MRS Bull. 2005, 30, 368–375. [Google Scholar] [CrossRef]
Sample Code | Plasmonic Material | Thickness (nm) | NSL Bead Diameter (nm) | NSL Bead Packing | Substrate |
---|---|---|---|---|---|
Reference | - | - | - | - | ITO |
Au-20-500-CP | Au | 20 | 500 | Close Packed | ITO |
Au-20-200-CP | Au | 20 | 200 | Close Packed | ITO |
Au-20-200-A | Au | 20 | 200 | Amorphous | ITO |
TiN-20-500-CP | TiN | 20 | 500 | Close Packed | ITO |
TiN-10-200-CP | TiN | 10 | 200 | Close Packed | ITO |
TiN-10-500-CP | TiN | 10 | 500 | Close Packed | ITO |
Au-40-500-ZnO | Au | 40 | 500 | Close Packed | ZnO |
TiN-20-500-ZnO | TiN | 20 | 500 | Close Packed | ZnO |
Sample Code | Jsc (mA/cm2) | Voc (mV) | Rs (Ω/cm2) | Rsh (Ω/cm2) | FF (%) | Champion Cell ηeff (%) | ηeff (%) | Enhancement (%) |
---|---|---|---|---|---|---|---|---|
Reference | 8.92 ± 0.74 | 861 ± 3 | 13.36 ± 0.75 | 1145 ± 290 | 59.9 ± 0.9 | 5.45 | 4.65 ± 0.46 | - |
Au-20-500-CP | 9.51 ± 0.22 | 856 ± 9 | 11.57 ± 1.58 | 990 ± 298 | 56.5 ± 0.9 | 5.09 | 4.61 ± 0.34 | −0.8% |
Au-20-200-CP | 8.79 ± 0.59 | 763 ± 9 | 22.83 ± 12.29 | 950 ± 773 | 48.7 ± 13.7 | 5.03 | 3.48 ± 1.55 | −25.1% |
Au-20-200-A | 8.19 ± 0.19 | 861 ± 6 | 11.48 ± 0.50 | 1388 ± 313 | 62.6 ± 1.8 | 4.49 | 4.41 ± 0.07 | −5.1% |
TiN-20-500-CP | 8.54 ± 0.16 | 853 ± 8 | 11.20 ± 0.21 | 1298 ± 275 | 60.5 ± 1.2 | 4.53 | 4.42 ± 0.08 | −4.9% |
TiN-10-200-CP | 9.18 ± 0.15 | 852 ± 10 | 10.84 ± 1.74 | 1165 ± 292 | 61.0 ± 3.5 | 5.28 | 4.78 ± 0.35 | +2.8% |
TiN-10-500-CP | 9.84 ± 0.49 | 862 ± 10 | 9.58 ± 1.00 | 1142 ± 181 | 61.4 ± 3.7 | 5.55 | 5.21 ± 0.37 | +12.0% |
Au-40-500-ZnO | 8.58 ± 0.70 | 841 ± 11 | 12.66 ± 1.31 | 1548 ± 286 | 58.6 ± 0.9 | 4.73 | 4.23 ± 0.37 | −9.0% |
TiN-20-500-ZnO | 10.24 ± 0.74 | 865 ± 7 | 11.39 ± 0.87 | 1127 ± 265 | 58.7 ± 1.7 | 5.56 | 5.20 ± 0.38 | +11.8% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tütüncüoğlu, A.; Yüce, M.; Kurt, H. Titanium Nitride as an Alternative Plasmonic Material for Plasmonic Enhancement in Organic Photovoltaics. Crystals 2024, 14, 828. https://doi.org/10.3390/cryst14090828
Tütüncüoğlu A, Yüce M, Kurt H. Titanium Nitride as an Alternative Plasmonic Material for Plasmonic Enhancement in Organic Photovoltaics. Crystals. 2024; 14(9):828. https://doi.org/10.3390/cryst14090828
Chicago/Turabian StyleTütüncüoğlu, Atacan, Meral Yüce, and Hasan Kurt. 2024. "Titanium Nitride as an Alternative Plasmonic Material for Plasmonic Enhancement in Organic Photovoltaics" Crystals 14, no. 9: 828. https://doi.org/10.3390/cryst14090828
APA StyleTütüncüoğlu, A., Yüce, M., & Kurt, H. (2024). Titanium Nitride as an Alternative Plasmonic Material for Plasmonic Enhancement in Organic Photovoltaics. Crystals, 14(9), 828. https://doi.org/10.3390/cryst14090828