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Abstract: This study addresses the environmental and resource challenges posed by the
growing volume of waste electric porcelain in the power industry by developing solar
absorption and thermal storage integrated ceramics (SATS ceramics) from waste electric
porcelain. These SATS ceramics, which feature an exceptional mullite structure, were
crafted through the optimization of the sintering process. Notably, when sintered at
1400 ◦C with an 11 wt.% magnetite content, the resulting material boasts an optimal short-
clustered, ordered, and interwoven columnar mullite structure. This structure endows
the material with a remarkable flexural strength of 96.05 MPa and a specific heat capacity
of up to 0.6415 J/(g* ◦C) at 300 ◦C, significantly enhancing its thermal energy storage
efficiency. This research offers innovative insights into the high-value utilization of waste
electric porcelain and the development of solar thermal storage materials, underscoring its
significant environmental and economic advantages.

Keywords: waste electric porcelain; solar energy storage; magnetite; mullite phase;
material properties

1. Introduction
With the development of the electric power industry, electric porcelain has become

the most widely used insulator material. The increase in electric porcelain production has
led to an increase in waste [1–4]. The accumulation of global waste electric porcelain has
reached tens of millions of tons, resulting in the waste of resources, land occupation and
environmental protection problems. Therefore, more and more researchers are engaged in
the recycling of waste electric porcelain [5–8]. Wang et al. [9] successfully prepared high-
temperature heat-resistant materials based on waste electric porcelain using a pressureless
sintering method, and found that the samples sintered at 1250 ◦C and with a 30 wt.%
kaolin addition had the best overall performance, demonstrating a flexural strength of
32.83 MPa and a compressive strength of 89.59 MPa, which provided experimental bases for
tests of high-value utilization and the recycling of waste electric porcelain. Pivák et al. [10]
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investigated low-carbon composites based on MOC, silica sand, and ground insulator waste
and found that the addition of waste electric porcelain improves the mechanical strength and
reduces the thermal conductivity of the materials, providing a new avenue for the development
of environmentally friendly building materials. López-Perales et al. [11] recycled industrial
waste porcelain (chamotte waste) in the manufacture of porcelain stoneware, partially replacing
quartz and feldspar in a triaxial system, and found that the addition of 15% waste porcelain to
the new ceramic formulations significantly improved the material properties, obtaining the best
technical characteristics, including a density of 2.41 g/cm3, a linear shrinkage rate of 11.2%, a
water absorption of 0.08%, a mechanical strength 314.94 MPa, and a microhardness 7.07 GPa.
Talaei et al. [12] conducted a study on the mechanical properties of fiber-reinforced concrete
incorporating waste porcelain aggregates under elevated temperatures. They discovered that the
incorporation of steel fibers notably enhanced the concrete’s thermal resistance and compressive
strength. Meanwhile, polypropylene fibers were found to be effective in preventing concrete
spalling. These findings underscore the significant potential for enhancing the utilization of
waste electrical ceramics, but there are significant shortcomings in terms of high value.

The main components of waste ceramics are aluminum oxide (Al2O3) and silicon
oxide (SiO2), which are highly consistent with the material composition required for
solar absorption and thermal storage integrated ceramics (SATS ceramics) [13–19]. With
the development of concentrated solar power (CSP) technology, there is an increasing
demand for highly efficient heat-absorbing and energy-storing materials with excellent
heat-absorbing properties, good thermal stability, and thermal shock resistance to cope with
the high temperatures and thermal cycling conditions of CSP systems [20–23]. Lao et al. [21]
significantly improved the thermal storage capacity of the material by encapsulating an Al-
Si alloy (latent heat material) in a SiCw/Al2O3 honeycomb ceramic (heat-sensing material).
This enhanced the storage capacity by more than 114%, which demonstrates the advantages
of ceramic materials for high-temperature sensible heat storage. Xu et al. [24] investigated
the preparation of solar thermal storage ceramics using high-calcium high iron steel slag
and 10% cordierite, which had the best performance when sintered at 1240 ◦C, with a
flexural strength of 92.52 MPa, which was enhanced to 97.06 MPa after 30 thermal shock
cycles (an increase of 4.91% over the pre-temperate shock) and a thermal storage density
of 867.95 kJ/kg. In contrast, the present study utilizes solid waste and reduces the cost of
production, as shown by the price comparisons in Table 1.

Table 1. Price comparisons with Xu et al. [24].

Raw Materials Used in This Experiment Price/
¥/Tonne Raw Materials Used by Xu et al. [24] Price/

¥/Tonne

Waste Electric Porcelain (45 wt.%) 100 Bauxite (50 wt.%) 1800
Bauxite (45 wt.%) 1800 Kaolin (50 wt.%) 2500
Kaolin (10 wt.%) 2500 Iron Oxide (11 wt.%) 7000

Magnetite (9 wt.%) 880
Total Price 1184.2 Total Price 2920

According to Hasselman’s theory, the flexural strength (σ) is proportional to the thermal
stress fracture resistance parameter R. Therefore, the thermal properties of the material can be
indirectly reflected through and the relationship can be expressed by the equation:

R = ∆T = σ (1 − v)/Eα

where ∆T is the critical temperature. It can be seen that the higher the flexural strength,
the better the thermal performance of the material [25] and the more suitable it is for
high temperature working environments. Improving the microstructural refinement and
densification of the Al2O3 matrix can enhance the flexural strength of ceramics prepared
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by pressureless sintering. This improvement can be achieved by introducing sintering
additives, such as alkaline-earth metal oxides (MgO), transition-metal oxides (TiO2, Fe2O3),
and rare-earth oxides (Y2O3, Sm2O3, La2O3, etc.) [26].

At present, the research on the comprehensive utilization of waste electric porcelain
mainly focuses on building materials, but its application in the field of solar thermal storage
materials has yet to be studied in depth [12,27–30]. Waste electric porcelain is mainly
divided into blanks and glazes [17]. The blanks’ composition is similar to that of heat
storage ceramics, and the glaze composition is similar to the sintering additives used in
heat-storage ceramics, so waste electric porcelain has great feasibility in the preparation
of high-strength STAS ceramic materials [31]. Mature ceramic materials are subjected to
thermal stresses in high-temperature environments, which can lead to thermal cracking
and a reduction in energy storage capacity. This phenomenon results in a limited range
of applications for ceramic materials at elevated temperatures. In this study, specific heat
capacity tests reveal that the samples demonstrate commendable performance under high-
temperature conditions, thereby offering favorable prospects for use in high-temperature
working environments. The aim of this study is to explore the potential application of
waste electric porcelain in heat absorption and energy storage materials, and to develop
a low-cost, high mechanical strength SATS material by comprehensively examining the
chemical composition, physical properties, and thermophysical properties of waste electric
porcelain. The study will comprehensively examine the effects of additives and sintering
temperature on mechanical properties, linear shrinkage rate, bulk density, water absorption,
porosity, and ignition loss rate. The final flexural strength of the material was determined
to be 96.05 MPa, while Wang et al. reported a strength of 32.83 MPa and Xu et al. reported
92.52 MPa. Clearly, our materials satisfy the performance standards set by the industry.
This study provides a method for the production of low-cost and high-performance SATS
materials from waste electric porcelain.

2. Materials and Methods
2.1. Raw Materials

In this study, waste electric porcelain (produced in Shandong, China), bauxite (pro-
duced in Zhengzhou, Henan, China), and kaolin were used as raw materials. Magnetite
(Lingshou County Qiangdong Mineral Processing Factory, Shijiazhuang, China) was used
as an additive and polyvinyl alcohol (PVA, Aladdin, Shanghai, China) as a binder. The
formulations are shown in Table 2.

Table 2. Formulations of samples (wt.%).

Ingredient Waste Electric
Porcelain Bauxite Kaolin

(Clay)
Magnetite

(Fe3O4, Addition)
PVA

(Addition)

BK0

45 45 10

0

5

BK1 5
BK2 7
BK3 9
BK4 11
BK5 13

2.2. Preparation Process

According to the designed BK series formulation, the various components were accurately
weighed and the samples were prepared according to the sample preparation process shown in
Figure 1. The STAS ceramic samples were prepared after mixing, granulation (bound by PVA),
followed by dry-pressing molding, drying (in a DGT-G80 blower drying oven), and sintering
(in a KSL1700 type resistance furnace). Mixing is done to avoid product defects due to uneven
distribution of components and to make each part of the sample consistent in its properties and
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behavior. Pelletizing is done to enhance the bonding between particles so that the particles are
better held together when subjected to pressure, thus improving the hardness and stability of
the sample. Dry compression molding is done to form a dense molded body of the sample to
facilitate testing of its properties. Drying is done to remove moisture from the sample and thus
avoid errors in measuring the rate of loss on burnout. The purpose of sintering is to densify
the raw billet via high temperature treatment to improve its mechanical strength and physical
properties, while stabilizing the chemical properties in order to obtain a ceramic material with
excellent properties. The size specifications of the prepared samples are as follows: the slab
sample size is 45.50 mm (length) × 6.50 mm (width).
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Figure 1. Sample preparation process.

Based on the phase diagram of the silica-alumina-solute system [32], it is understood
that a large number of liquid phases are formed in the sample at temperatures greater than
1600 ◦C. When the rate of liquid phase production is greater than the rate of new phase
production, over-sintering occurs, resulting in melting of the material [33]. Therefore, the
sintering temperatures were set to 1100 ◦C, 1200 ◦C, 1300 ◦C, 1400 ◦C, and 1500 ◦C. It was
found that when the sintering temperature was 1500 ◦C, the samples melted, and the more
magnetite the sample contained the more serious the melting was.

2.3. Characterization

Material phase analysis was carried out using an X-ray diffractometer (XRD, Rigaku
Smartlab, Akishima-shi, Japan) with a step scanning speed of 5◦/min and a measurement
angle range of 5–80◦ to determine the phase composition. The microstructure of the
samples was observed using a scanning electron microscope (SEM, ZEISS Sigma 360, Jena,
Germany). An X-ray fluorescence spectrometer (XRF, EDX4500H, Jiangsu, China) was used
to determine the material composition and elemental ratios. The specific heat capacity of
the samples was analyzed using a differential scanning calorimeter (HS-DSC-100, Shanghai,
China) with a ramp rate of 10 ◦C/min.

The bulk density, porosity, and water absorption of the samples were determined by
the boiling method and Archimedes drainage method, according to the GB/T 3810.3-2016
standard. The flexural strength of all the sintered samples was tested by the three-point flexural
method using a universal material testing machine (WDW-3T, Jinan, China) according to the
GB/T 38978-2020 standard. The falling speed of the force arm for the flexural strength test
was uniformly set at 0.05 mm/min. The same batch of raw materials was used for all testing,
and all testing was performed using the same pressure tablet (10 MPa, 1 min), and the same
experimental apparatus to minimize experimental errors. Meantime, the physical property tests
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of the samples were conducted three times. The final data were derived by calculating the mean
and standard deviation of these test results, thereby enhancing the accuracy and reliability of
the findings. By considering the mass and length of the tested samples, the linear shrinkage rate
and ignition loss rate can be accurately calculated.

The linear shrinkage rate can be calculated from the change in length using the
following formula:

Lσ =
L0 − Ln

L0
× 100%

where Lσ is the linear shrinkage rate, %; n = 0, 1, 2, 3, 4, 5; L0 is the initial length, g; and Ln

is the sintered length, g.
The ignition loss rate allows for the calculation of the amount of loss on burn, which is

calculated using the following formula:

mσ =
m0 − mn

m0
× 100%

where mσ is the ignition loss, %; n = 0, 1, 2, 3, 4, 5; m0 is the initial mass, g; and mn is the
mass after sintering, g.

3. Results and Discussion
3.1. Compositional and Mineralogical Analysis of Raw Materials

Table 3 presents the chemical composition analysis of the raw materials utilized in
the study. The results indicate that the waste electric porcelain material contains 50.20%
silicon oxide (SiO2) and 29.15% aluminum oxide (Al2O3) by weight. In contrast, the
bauxite material comprises 79.19% SiO2 and 2.78% Al2O3. Additionally, both materials are
characterized by the presence of 5.37% ferrous oxide (FeO), 7.47% potassium oxide (K2O),
and 9.42% titanium oxide (TiO2). These constituents play a significant role in the sintering
process and the subsequent properties of the ceramics produced.

Table 3. Chemical composition of raw materials (wt.%).

Raw Materials Al2O3 SiO2 FeO K2O CaO TiO2 MgO MoO3 i.t.

Waste Electric
Porcelain 50.203 29.155 5.373 6.045 1.775 2.578 1.11 1.468 2.289

Bauxite 79.192 2.782 - 1.431 2.112 6.854 1.25 1.088 5.289
Kaolin 49.147 35.086 6.527 0.738 0.868 2.548 0.91 1.589 2.591

Magnetite 2.099 4.323 85.28 1.28 2.199 0.993 0.15 0.62 3.057

Alkaline metal oxides, such as potassium oxide (K2O), present in the raw materials, are
known to lower the sintering temperature. They facilitate the formation of a liquid phase,
which fills the material’s voids and encourages the growth of mullite crystals, thereby
enhancing the material’s structural strength [34]. Furthermore, the inclusion of transition
metal oxides, such as ferrous oxide (FeO), in the raw materials also contributes to the en-
hancement of the material’s mechanical strength [35,36]. Titanium oxide (TiO2) plays a role
in promoting the rapid in situ growth of mullite crystal columns within the material, which
in turn further bolsters the material’s mechanical strength [37]. Concurrently, magnetite
(Fe3O4) reacts with silicon oxide (SiO2) at high temperatures to produce solid solutions
with low melting points. These solid solutions induce deformation in the lattice structure
of the material, effectively preventing deformation caused by external forces and thus
significantly improving the material’s mechanical strength.

As depicted in Figure 2, the primary phase compositions of waste electric porcelain
are mullite, corundum, and α-quartz. In contrast, bauxite and kaolin are predominantly
composed of corundum, α-quartz, and kaolin phases. The presence of corundum (Al2O3)
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and mullite (3Al2O3·2SiO2) is crucial for enhancing sintering characteristics, minimizing
volumetric shrinkage, and ensuring the material’s stability at high temperatures [38]. These
phases are instrumental in bolstering the mechanical properties and thermal stability of
the sintered body, which are critical attributes for materials intended for high-temperature
structural applications.
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The material’s high content of silicon (Si) and aluminum (Al) is essential for the
formation of the mullite phase, which significantly enhances the specimen’s performance
under high-temperature conditions. Mullite is well-known for its excellent mechanical
properties and thermal stability, rendering it a vital component in improving the high-
temperature capabilities of ceramic materials. The inclusion of magnetite (Fe3O4), which is
primarily a metallic phase, significantly contributes to reducing the sintering temperature
of the samples and increasing their density. At high temperatures, Fe3O4 reacts with
SiO2 to form a low melting point solid solution, which facilitates the sintering process by
lowering the required temperature. Additionally, the magnetic properties of Fe3O4 enhance
the density and mechanical properties of the materials. The phase compositions of the
samples are consistent with the chemical composition analysis presented in Table 3, thereby
confirming the suitability and potential of raw materials like waste electric porcelain and
bauxite for the fabrication of high-temperature structural materials.

3.2. Effect of Sintering Temperature on Sample Properties

In order to investigate the effect of sintering temperature on the phase composition of
the samples, we performed XRD tests on the sintered samples [39]. Figure 3 demonstrates
the results of the phase composition of the samples at different sintering temperatures.
From Figure 3, it can be clearly observed that the main crystalline phases of the samples
after sintering at different temperatures are mullite and corundum phases, accompanied
by a small amount of quartz phase, which is consistent with the phase composition before
sintering. The intensities of the diffraction peaks for the primary mullite phase escalated
with the rise in sintering temperature, signifying that an elevated sintering temperature
is conducive to enhancing the crystallinity of mullite. Concurrently, the augmentation of
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the mullite phase coincided with a diminishing presence of Al2O3 and SiO2, resulting in a
progressive reduction of the corundum and quartz phases.
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The findings underscore the pivotal role of sintering temperature in influencing the
phase composition of the samples. The promotion of mullite phase crystallization through
high-temperature sintering is likely attributed to the thermal stability of mullite and its
growth kinetics at elevated temperatures. Concurrently, the consumption of Al2O3 and
SiO2 at high temperatures impacts the stability of other phases, resulting in a decrease in
the corundum and quartz phases. These transformations in phase composition directly
influence the microstructure and the resulting macroscopic properties of the samples, high-
lighting the importance of sintering temperature in the development of ceramic materials
with desired performance characteristics.

Figure 4 delineates the patterns of the linear shrinkage rate and ignition loss rate for
the samples across various sintering temperatures [40]. Initially, the linear shrinkage rate
escalates with temperature, a result of enhanced inter-particle bonding and diminished
porosity throughout the sintering process. Notably, between 1100 ◦C and 1200 ◦C, the
significant formation of the mullite phase results in a pronounced increase in the linear
shrinkage rate. However, beyond 1200 ◦C, this rate begins to decline, potentially due
to the proliferation of the liquid phase within the samples, which alters the sintering
dynamics. Sintered at 1500 ◦C, the linear shrinkage rate becomes negative, indicative of
sample deformation resulting from over-burning. Concurrently, ignition loss rate generally
increases with temperature but remains within a narrow range of 1.5% to 2.5%, with a
maximum variance of 2.32%. This increase in ignition loss rate is attributed to the thermal
decomposition of kaolin and the progressive release of volatiles, particularly sintered at
1500 ◦C, where over-burning leads to the emergence of multiple liquid phases. These trends
directly reflect the physical and chemical transformations occurring within the samples
during sintering, which are intricately linked to the microstructure and phase composition.
Such transformations are critical for optimizing the samples’ physical properties and
enhancing their mechanical and thermal stability.
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Figure 5a illustrates the changes in the bulk density, porosity, and water absorption of the
samples with varying sintering temperatures. Porosity has a significant effect on the mechanical
properties, thermal conductivity, and thermal shock properties of the material. An appropriate
pore size can optimize the impact resistance of the material, but too large of a pore size will
reduce its mechanical strength and thermal conductivity. In this paper, we explore the optimal
conditions for preparing the samples by testing the porosity of the samples.
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The porosity initially decreases with increasing temperature, then increases, and finally
decreases again. Notably, above 1200 ◦C, porosity rises from 20.9% to 24.0%. However,
beyond 1500 ◦C, porosity diminishes, which is attributed to over-burning above this tem-
perature, leading to the generation of a substantial liquid phase that fills the pores. Pore
formation during the molding process is identified as the primary defect, with closure
defects being of secondary concern. In conjunction with XRD analysis, it is postulated that
pore formation correlates with the development of mullite structures. This process necessi-
tates the consumption of Al2O3 and SiO2 from the raw materials to form mullite columns,
consequently creating pores. Furthermore, the reduction in bulk density is ascribed to the
proliferation of internal porosity, yet the overall fluctuation stays within the 2.3–2.5 g/cm3

range, exerting a minimal impact on flexural strength. Figure 5 illustrates that as the temper-
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ature increases, porosity initially decreases before subsequently increasing. This behavior
may be attributed to the addition of PVA, which, due to its high viscosity, may not have
been adequately controlled in terms of its ratio. As the PVA burns out, porosity increases.
In contrast to Figure 5b, the flexural strength increases rather than decreases, likely due
to the significant increase in the mullite phase with rising temperature, which enhances
the stability of the sample’s lattice structure. Furthermore, the uniform distribution of
pores may contribute to a more even stress distribution when the sample is subjected to
external forces, reducing the likelihood of stress concentration and consequently enhancing
the sample’s strength. Water absorption is directly proportional to porosity and inversely
proportional to bulk density, reflecting the interplay between these properties and their
influence on the material’s performance.

Figure 5b presents the flexural strength of the samples across a range of sintering
temperatures. The data reveal that the mechanical properties of the samples improved with
the elevation of temperature, culminating in an optimal flexural strength of 82.12 MPa sin-
tered at 1400 ◦C. This enhancement in mechanical performance is particularly pronounced
at this temperature. The bulk density of the samples in this experiment varies less, and
the main reason for the effects on the flexural strength is the interlocking of the mullite
phases. As illustrated in Figure 6, the XRD results were analyzed semi-quantitatively
for the mullite and corundum phases at different temperatures. It was observed that the
increase in the content of the mullite phase correlated with an enhancement in the flexural
strength of the samples. The presence of the mullite phase is a critical factor influencing
the high-temperature strength of the material. Based on the comprehensive analysis of the
physical properties of the BK series samples, it is concluded that the optimum sintering
temperature for the BK series samples is 1400 ◦C.
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To delve into the impact of sintering temperature on the microstructure of STAS
ceramics samples, we conducted SEM tests on the cross-sections of the samples. Figure 7
displays the outcomes of these tests, highlighting the influence of sintering temperature
on the sample microstructure. Sintered at 1100 ◦C, the samples initiate the formation
of a mullite structure, where mullite columns fill the pores, resulting in a progressive
reduction of porosity and a concurrent increase in flexural strength, aligning with the
findings presented in Figure 5. As the sintering temperature continues to rise, the mullite
columns expand, and their length-to-diameter ratio increases, signifying that elevated
sintering temperatures foster the growth of mullite crystals. This observation underscores
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the role of temperature in enhancing the crystallization and structural development of
mullite, which is pivotal for the microstructural evolution and mechanical performance of
STAS ceramics.
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The subdued mechanical properties of the samples at lower temperatures can be par-
tially attributed to the enrichment of iron (Fe) elements. The accumulation of Fe elements
enhances the brittleness of the ceramic samples, consequently diminishing their mechanical
properties [41]. A comparative analysis between Figure 7d,k reveals that as the temperature
increases, the distribution of Fe elements becomes more uniform, which significantly mitigates
the brittleness and enhances the mechanical properties of the samples. Observations from
Figure 7g–j demonstrate that the mullite structure undergoes progressive densification, with
the mullite column structure reaching maturity sintered at 1400 ◦C, characterized by diameters
ranging from approximately 632.4 nm to 1.273 µm. The interlaced mullite structure, indicative
of robust mechanical properties, corroborates the flexural strength data, providing substantial
evidence for the material’s performance capabilities.

Sintered at 1500 ◦C, however, the mullite began to aggregate, accompanied by the
emergence of irregular deep holes. This phenomenon is attributed to the substantial liquid
phase generated within the specimen, which, upon cooling, induces significant shrinkage,
leading to the formation of pores and consequently reducing the mechanical strength.
This observation aligns with the results pertaining to bulk density, porosity, and water
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absorption, as well as the flexural strength outcomes. Collectively, these findings underscore
that the sintering temperature exerts a profound influence not only on the crystallographic
growth and microstructural densification of mullite but also on the mechanical properties
and pore characteristics of STAS ceramics. This highlights the critical role of sintering
temperature in determining the overall performance and quality of the STAS ceramics.

3.3. Effect of Magnetite Content on Sample Properties

Figure 8 shows the results of the phase composition of the samples of the BK series
sintered at 1400 ◦C. From Figure 8, it can be seen that the main phase present in the
prepared SATS ceramics material is mullite, and a very small amount of corundum phase.
The increase in magnetite content accelerates the growth rate of the mullite structure,
consuming a large amount of Al2O3 and SiO2, to the extent that the phase composition
contains very little corundum phase and almost no quartz phase.
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Figure 8. XRD images of samples sintered at 1400 ◦C for BK series samples.

Figure 9 illustrates the changes in linear shrinkage rate and ignition loss rate with
respect to magnetite content for the BK series samples sintered at 1400 ◦C. As is made
evident in Figure 9a, the linear shrinkage rate of the samples escalates with an increase
in magnetite content. This trend can be ascribed to the Fe element’s role in augmenting
the glassy phase within the samples, which in turn diminishes the viscosity of the liquid
phase and accelerates the mass transfer rate. The enhanced mass transfer, coupled with the
increased glassy phase, fosters the development of mullite structures. Consequently, the
heightened consumption of Al2O3 and SiO2 due to mullite formation results in a higher
linear shrinkage rate for the samples. This relationship underscores the impact of magnetite
content on the sintering behavior and microstructural evolution of the BK series samples.

Furthermore, Figure 9b delineates an overall downward trend in the ignition loss rate
of the samples as the magnetite content increases, with the maximum difference recorded
at 1.99%. This reduction in ignition loss rate is likely due to the fact that the addition
of magnetite enhances the densification of the samples, thereby diminishing the content
of volatiles and consequently decreasing the sintering loss. This pattern suggests that
an increase in magnetite content significantly influences the sintering behavior and the
resulting microstructure of the samples. Lower ignition loss rate not only reduces heating
energy consumption but also reduces sintering cycles and improves energy efficiency.
Such an influence is crucial for refining the sintering process to achieve improved material
properties. The optimization of magnetite content can lead to enhanced densification and
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reduced porosity, which are key to attaining superior mechanical strength and thermal
stability in the final ceramic products.

Figure 10a illustrates the changes in bulk density, porosity, and water absorption
of the BK series samples at a sintering temperature of 1400 ◦C in relation to the content
of magnetite. With an increasing content of magnetite, there is a gradual reduction in
the porosity of the samples, accompanied by a corresponding increase in bulk density,
although the overall variation is not markedly substantial. This pattern indicates that the
incorporation of magnetite is instrumental in decreasing the porosity within the samples,
which in turn leads to an increase in their bulk density. The relationship between water
absorption and porosity is directly proportional, while it is inversely proportional to
bulk density, highlighting the interplay between these properties and their impact on the
material’s behavior and performance.
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Figure 10b elucidates the trend of increasing flexural strength in the samples with the
increment of magnetite content, ascribed to the Fe element’s contribution to enhanced den-
sification. Notably, the specimen BK4 achieved the highest flexural strength of 96.05 MPa,
demonstrating the optimal performance among the series. Conversely, the specimen BK5
exhibited a decline in flexural strength, which can be attributed to the reduced suitability of
the sintering temperature with the increased content of Fe3O4. BK5 samples are susceptible
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to over-burn at sintering temperatures of 1500 ◦C or more. Over-burning is characterized
by a reduction in the viscosity of the liquid phase and the decomposition of mullite at high
temperatures, resulting in matrix deformation, elevated bulk density, and a consequent de-
crease in flexural strength. The findings presented in Figure 10 underscore the effectiveness
of Fe3O4 addition within an appropriate content range in enhancing the physical properties
of the samples. This includes the reduction of porosity, the increase in bulk density, and
the improvement of flexural strength, thereby highlighting the significance of magnetite
content in tailoring the microstructure and mechanical properties of the BK series samples.

Figure 11 displays the SEM images of the BK series samples sintered at 1400 ◦C.
Figure 10a, captured at high voltage and low magnification, reveals that the porosity
of the samples remains largely unchanged, corroborating the findings from Figure 10.
Nonetheless, it is observed that as the magnetite content decreases, the porosity becomes
finer and more densely packed. This phenomenon is attributed to the increased presence of
Fe elements, which boost the mass transfer rate, expedite the growth of mullite columns,
and deplete Al2O3 and SiO2, thereby forming pores. Additionally, the elevated Fe content
may also induce sample shrinkage, contributing to pore formation. These SEM observations
provide a clear understanding of how microstructural changes with magnetite content
affect the material’s properties.

Figure 11b illustrates that the mullite structure transitions from a disordered to an
ordered arrangement with increasing magnetite content, achieving an optimal state at an
11 wt.% magnetite content. The mullite structure in the BK0 samples exhibits a haphazard
growth pattern, presenting as thick, irregularly shaped rods of varying lengths. Conversely,
the addition of a small amount of magnetite to samples BK1 and BK2 leads to a pronounced
and rapid elongation of the mullite columns. Specifically, the diameter of the mullite
columns in sample BK1 spans from 632 nm to 1.273 µm, and in sample BK2 it extends
from 883 nm to 1.540 µm. These findings indicate that an elevated magnetite content
can significantly expedite the formation of mullite columns, highlighting the influence of
magnetite on the microstructural development and the enhancement of material properties.

Continuing the examination of the BK3 and BK4 samples, it is evident that with the
increase in magnetite content, the mullite structure forms into short, clustered formations
with an interlaced pattern, which aligns with the observed flexural strength of the samples.
The interlaced mullite grains form a compact mesh structure that effectively disperses
stress and reduces stress concentration, significantly enhancing the material’s strength.
Additionally, this configuration establishes a continuous heat conduction pathway, min-
imizing scattering and reflection during thermal transfer, which subsequently improves
the material’s thermal conductivity. In addition, the interlocking grains constrain each
other and reduce the deformation during thermal expansion, thus improving the thermal
stability of the material. Under rapid temperature fluctuations, this interlaced structure can
absorb and distribute thermal stresses, reducing stress concentration, effectively preventing
crack formation and significantly improving the material’s thermal shock resistance. This
is compatible with the working environment of the material. However, a further increase
in magnetite content, and consequently in Fe element concentration, results in increased
brittleness of the samples. At the 13 wt.% magnetite content level, the EDS image shown in
Figure 11c indicates an enrichment of Fe elements on the mullite columns, which correlates
with a decrease in the sample’s mechanical strength.

Taking into account the flexural strength data, the sample with 11 wt.% magnetite
content was identified as having the optimal performance. EDS image analysis revealed
a uniform distribution of elements within the sample, particularly the Fe element, which
lacked any significant enrichment, effectively mitigating the sample’s brittleness. In con-
junction with XRD image analysis, it was confirmed that the predominant phase in the
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sintered samples was the mullite phase, aligning with the SEM image findings. This
consistency further validates the influence of magnetite content on the microstructural
development and the resultant properties of the samples.
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The thermophysical properties of STAS ceramics are pivotal for their efficacy in high-
temperature settings [42–44]. An in-depth thermophysical analysis has been conducted on
the BK series samples, specifically BK1 through BK5, which were sintered at their optimal
sintering temperatures. Figure 12 presents the specific heat capacity (Cp) measurements of
these BK series samples, spanning from room temperature to 300 ◦C. The observed gradual
increase in Cp values with rising temperature underscores the enhanced thermal storage
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capability of these ceramics. An elevated Cp value signifies an improved thermal storage
capacity, which is advantageous for high-temperature applications [45,46]. Specific heat
capacity is influenced not only by porosity and bulk density but also by the presence of
discontinuous solid and glass phases [47]. Initially, an increase in the Fe element content,
which corresponds to a rise in magnetite, leads to a decrease in the specific heat capacity of
the samples. However, as the mullite phase increases, the specific heat capacity begins to
rise. Beyond 280 ◦C, sample BK4 exhibits the highest specific heat capacity.
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Among the samples, BK1 demonstrates the highest Cp in the lower temperature
range, from room temperature to 280 ◦C, while BK4 excels in the higher temperature range,
between 280 ◦C and 300 ◦C, with a specific heat capacity of 0.6415 J/(g* ◦C) at 300 ◦C.
Notably, sample BK4 shows better Cp values in the high temperature range, making it the
sample with the best thermophysical properties. In summary, a higher specific heat capacity
translates to a better-suited thermal storage system, which could potentially reduce the size
of the system and enhance its thermal storage efficiency.

4. Conclusions
In this study, the preparation process and properties of waste electric porcelain solar

absorption and thermal storage integrated ceramics (SATS ceramics) were investigated in
depth, and the following conclusions were drawn:

(1) At a sintering temperature of 1400 ◦C and a magnetite content of 11 wt.%, the material
formed an optimal short-cluster, ordered interwoven columnar mullite structure,
resulting in a flexural strength of 96.05 MPa and a bulk density of 2.35 g/cm3, which
significantly enhanced the material’s properties.

(2) Thermophysical analyses showed that the specific heat capacity (Cp) of the ceramics
increased with increasing temperature, and that sample BK4 had the highest Cp value
of 0.6415 J/(g* ◦C) at 300 ◦C, indicating excellent thermophysical properties.

(3) XRD and SEM analyses confirmed the massive formation of mullite phase and grain
growth under the optimized conditions, while physical property tests revealed the
trends of porosity, bulk density, and water absorption, which affect the thermal
stability and mechanical strength of the materials.
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