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Abstract: In this paper, we show the fundamentals of statistical method of structure analysis.
Basic concept of a method is the average unit cell, which is a probability distribution of atomic
positions with respect to some reference lattices. The distribution carries complete structural
information required for structure determination via diffraction experiment regardless of the inner
symmetry of diffracting medium. The shape of envelope function that connects all diffraction
maxima can be derived as the Fourier transform of a distribution function. Moreover, distributions
are sensitive to any disorder introduced to ideal structure—phonons and phasons. The latter are
particularly important in case of quasicrystals. The statistical method deals very well with phason
flips and may be used to redefine phasonic Debye-Waller correction factor. The statistical approach
can be also successfully applied to the peak’s profile interpretation. It will be shown that the average
unit cell can be equally well applied to a description of Bragg peaks as well as other components of
diffraction pattern, namely continuous and singular continuous components. Calculations performed
within statistical method are equivalent to the ones from multidimensional analysis. The atomic
surface, also called occupation domain, which is the basic concept behind multidimensional models,
acquires physical interpretation if compared to average unit cell. The statistical method applied to
diffraction analysis is now a complete theory, which deals equally well with periodic and non-periodic
crystals, including quasicrystals. The method easily meets also any structural disorder.
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1. Introduction

Quasicrystals are materials exhibiting aperiodic arrangement of atoms in the atomic structure.
Aperiodicity violating translational symmetry allows for non-crystallographic symmetry elements in
the diffraction diagrams of quasicrystals and other aperiodic materials [1,2]. For example rotational
symmetry axes, like 5-, 8- or 12-fold, are possible to appear in their diffraction patterns. Aperiodicity,
on the other hand, does not exclude the long range order of the atomic structure, which is perfectly
preserved in aperiodic crystals [2–4]. However, the symmetry of the diffraction pattern of quasicrystals
is not the same as the symmetry of a structure itself. Forbidden symmetry elements occur only locally
in the structure. Aperiodicity forces a lack of crystal lattices. The aperiodic quasilattice is being
considered as underlying framework instead. The so far most successful method of structure analysis
of quasicrystals is higher-dimensional (or superspace) description [5–10]. It assumes a quasicrystal as
a periodic system in high dimensions. Atoms become multidimensional objects arranged periodically
in usually cubic lattice. The physical structure is obtained by cut with 3-dimensional subspace
where the atomic arrangement is observed. In addition, diffraction analysis can be performed in
higher-dimensional reciprocal space. The superspace description delivers a simple tool for structural
analysis of quasicrystals, particularly in the case of ideal crystals. It has been applied to number of
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structure refinements of decagonal and icosahedral quasicrystals [11–13]. However, the influence
of entropy on the stabilization mechanism of aperiodic systems must not be neglected. Entropic
disorder competes the multidimensional periodicity. Effectively, the objects are aperiodic even in
high dimensions.

One of the very few alternatives to superspace description is the statistical method where atomic
positions in the physical space are replaced by their relative values with respect to some periodic
reference lattices [14]. Obtained distribution of such relative positions is limited to the so-called
average unit cell and exists in the physical space—exactly as the atomic structure. The distribution
gives us a perfect tool for structural considerations of periodic and any type of aperiodic systems with
no interpretational difficulties, and also whole spectrum of analyzes available to perform [15].

The review paper is composed as follows. First, in Section 2 the concept of the average unit
cell will be introduced and exemplary construction will be given for periodic crystal, quasicrystal,
incommensurately modulated crystal and aperiodic Thue-Morse sequence. Next, in Section 3 the
derivation of structure factor formulas of the structures considered in Section 2 will be performed
and diffraction diagrams calculated using statistical method will be presented. Section 4 is
dedicated to a peak profile analysis within statistical method and Section 5 focuses on phononic
and phasonic disorder. Then, Section 6 shortly discusses the similarities and differences between the
state-of-art superspace description and novel statistical approach. Finally, Section 7 comprises the
concluding remarks.

2. The Average Unit Cell (AUC) Concept and the Statistical Method

One of the drawbacks of superspace description is that the atomic surfaces are non-physical
objects identified as multidimensional atoms. The statistical method keeps all considerations in the
physical space only, i.e. the space where atoms are arranged in the structure. To explain in details
what the average unit cell concept is, let us use a simple 1D model structure, which in general can be
periodic or aperiodic. The construction of the average unit cell is illustrated in Figure 1. Beside the
atomic structure we need also the so-called reference lattice which is periodic with lattice constant λk
related to the length of some vector k0 as λk =

2π
k0

. To take full advantage of our description (in terms
of structure analysis) vector k0 must be a basic scattering vector in the reciprocal space where the
diffraction image is observed. In general there are no restrictions on the choice of reference lattice
constant other from λk, it is, however, most useful to relate λk with k0. New atomic positions u in the
AUC are obtained as projections of original atomic positions onto reference lattice and calculated with
respect to the nearest node of a reference lattice. Mathematically it is achieved by modulo operation.
Each position xj of atom j can be defined in the AUC reference frame as:

uj = xj mod λk. (1)

Inversely, atomic positions in physical space, xj, can be retrieved from the AUC as:

xj = αλk + uj, (2)

where α, being an integer, numerates consecutive periods in the reference lattice frame. It is easy to
notice that values uj are limited to a region

〈
− λk

2 , λk
2

)
or 〈0, λk), depending on a definition, and form

a distribution. After normalization this distribution gains a statistical meaning. Numerical calculations
confirmed by analytical considerations performed for different model structures show the characteristic
feature of such distribution—for large enough systems it is well-defined, limited and in many cases
dense. The distribution, denoted as P(u), is called the average unit cell. Its shape is characteristic for
a given structure type, but also for amount of disorder and size of a structure (coherence length),
which is discussed in details in further parts of this paper.

In case of aperiodic systems, like quasicrystals, yet another reference lattice is needed to describe
fully aperiodic structure and its diffraction pattern. We introduce a lattice with lattice parameter
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λq = 2π
q0

, where q0 is another reciprocal-space vector, called modulation vector, and is usually related to

k0 by a scaling property, i.e. q0 = k0
ξ with ξ being a scaling factor. The term “modulation vector” is

known in the crystallography of modulated structures and refers to the positions of satellite reflections
in the diffraction diagram. Scaling factor is responsible for commensurateness of a modulation—it
can be rational or irrational number. In the case of quasicrystals, it is often equal to τ ≈ 1.618,
which is the golden mean value (so called τ-based quasicrystals for which diffraction peaks’ positions
scale with τ). Introducing another reference lattice has the same reasons as introducing doubled
dimensionality in superspace description—it is forced by aperiodicity. We define positions vj of atom
j and their distribution function P(v) in an analogous manner as for the reference lattice λk before.
Values vj are restricted to a region

〈
− λq

2 , λq
2

)
(or equivalently: 〈0, λq)). The complete information

of a structure is stored in a full distribution function P(u, v), which is the distribution of atomic
positions projected onto both reference lattices. The total function P(u, v) is a fundamental definition
of an AUC. However, the scaling property of a structure, if present, enforces a characteristic behavior
of P(u, v), namely the function is non-zero only along a certain curve v(u) in parameter space (u, v),
which is strongly dependent on scaling factor ξ. It is worth noting that the distribution P(u, v) is not
a 2D function, since coordinates u and v are defined along one direction in space—they do not span
a 2D space. The distribution P(u, v) must be instead considered a 2-parameter distribution function.
If the scaling property is known, the marginal distributions—P(u) or P(v)—store the full structural
information of a system. Mathematically, it can be obtained from P(u, v) by integration over one

parameter, e.g., P(u) =
∫ λq

0 P(u, v)dv. We usually consider P(u) as the AUC. In Figure 2a the marginal
distribution with respect to a full distribution is shown in the case of 1D quasicrystal modeled by
a Fibonacci chain. The distribution P(u) is a most fundamental object in the statistical approach, which
enables calculating the full diffraction patterns, but also considering structural disorder or sample
finite size effects. The situation changes if the structure becomes not ideal, e.g., exhibits atomic disorder.
Then, the scaling relation v(u) can be violated and the full distribution P(u, v) must be considered.

The simple interpretation of a distribution P(u) applies for vertices of a “lattice” in aperiodic
crystals (it is quasilattice in case of quasicrystals or underlying periodic lattice in case of
incommensurately modulated structures). The atomic decoration of the “lattice” in positions other
from vertices naturally subdivides the AUC. The same feature is observed in modeling of atomics
surfaces in superspace description. It is of course possible to find a shape of AUC for decorated model
structure, but from practical point of view—rather unnecessary. In a refinement process the decoration
is to be refined or found in general. It is more efficient to include an atomic decoration in a structure
factor independently from “lattice” part, the information of which is kept in the P(u) shape.
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Figure 1. A construction of the average unit cell for two reference lattices (black vertical bars) with 
lattice constants ߣ  and ߣ . Grey atoms of an arbitrary crystal structure (here the nodes of 1D 
Fibonacci chain) are projected on reference lattices (red and blue crosses). Distances to the nearest 
nodes are marked with ݑ and ݒ. 

Figure 1. A construction of the average unit cell for two reference lattices (black vertical bars) with
lattice constants λk and λq. Grey atoms of an arbitrary crystal structure (here the nodes of 1D Fibonacci
chain) are projected on reference lattices (red and blue crosses). Distances to the nearest nodes are
marked with u and v.
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2.1. AUC for Periodic Structures

The basic scattering vector of a periodic lattice with lattice parameter a is 2π
a . The reference

lattice constant λk is equal to a, which implies that the distribution P(u) is simply a Dirac delta
function centered at u = 0. Of course, by choosing λ 6= a, but commensurate, the distribution will be
fragmented but still built of Dirac deltas distributed over entire region 〈0, λ) in positions dependent
on λ/a ratio with heights restricted by normalization condition of P(u). The shape of P(u) has no
internal structure and reduces simply to a crystallographic unit cell known for periodic crystals.

2.2. AUC for Quasicrystals

The statistical method was first applied to 1D model quasicrystal—Fibonacci chain in [16].
The Fibonacci chain can be constructed with a sequence of long L and short S distances whose length
ratio tends to τ in infinite system. Golden mean is a scaling factor in most types of known quasicrystals.
Segments L and S follow a recurrence rule L→ LS, S→ L after each iteration step. Such sequence is
fully aperiodic but perfectly deterministic and ordered [4,10,17]. Endpoints of the segments define
nodes of the “lattice” which becomes a quasilattice of 1D quasicrystal. The full distribution P(u, v)
and marginal distribution P(u) as well as scaling relation v(u) for a Fibonacci chain are presented
in Figure 2a. P(u, v) is dense and uniform and non-zero only along segment line v = −τ2u which
is called TAU2-scaling [18]. In fact, the TAU2-scaling can have a constant shift b which expresses
non-centrosymmetricity of P(u, v), for details see [19]. The width of P(u) is dependent on a chosen
vector k0. For a Fibonacci chain an average interstitial distance is known to be λk =

τ2+1
τ+1 ≈ 1.38 (a.u.).

The basic scattering vector is in this case k0 = 2πτ2

τ2+1 ≈ 4.54 (a.u.). This scattering vector corresponds
to a (1,1)-peak position in 2D reciprocal space in the superspace approach. For such a choice of k0

a width of distribution P(u) is u0 = 1
τ and its height P0 = 1

u0
= τ. If different scaling property is

chosen, the characteristic parameters k0, λk, u0 are expressed by ξ instead of τ.
1D quasicrystal is just a model example but does not restrict a generality of the statistical approach

to modeling of real quasicrystals. More realistic model quasilattices are built by Penrose tiling (model of
2D decagonal quasicrystal) and Ammann tiling (model of 3D icosahedral quasicrystal). TAU2-scaling
applies for both cases. The shapes of AUCs are the following: 4-parameter distribution P(u1, u2, v1, v2)

for Penrose tiling is spanned by 4 two-dimensional pentagons (2 smaller and 2 bigger) [20–22];
6-parameter distribution P(u1, u2, u3, v1, v2, v3) for Ammann tiling takes form of 3D Keplerian
solid—rhombic triacontahedron [15,23]. To construct AUCs for 2D and 3D quasicrystals we need to
span pairs of reference lattices which are 2D or 3D, respectively. Depending on the choice of basic
scattering vectors k0 (orthogonal or oblique vector basis), which are now 2D or 3D, the AUCs undergo
different deformations of regular pentagons or triacontahedron [24,25]. Similarly, the width u0 in case
of Fibonacci chain depends on the choice of k0.

2.3. AUC for Harmonically Modulated Structure

Let us now consider 1D modulated structure with harmonic displacive modulation given by
single sine function. Every atomic position of this structure can be expressed as

xn = na + A sin(q0na), (3)

with n—atomic position with respect to nth unit cell; a—unit cell size (parameter of the underlying
periodic lattice); A—modulation amplitude (usually small value in comparison to a); q0—modulation
vector (in the reciprocal space). The modulation vector can be either commensurate or incommensurate
with respect to basic reciprocal space vector k0, which is related to lattice parameter a. By this,
we distinguish commensurately and incommensurately modulated structures. Vector q0 can be
defined again as q0 = k0

ξ with scaling factor ξ expressing the commensurateness. The distribution
P(u) for harmonically modulated structure is given by far more complex shape than in previous cases.
The characteristic U-like shape (see Figure 2b) can be analytically define as
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P(u) =
1

πA
√

1−
( u

A
)2

. (4)

It diverges at u = ±A, but is normalizable and integrable [26]. The scaling relation v(u) takes
a form of modified arcsine-like shape, which is a continuous function well defined in three intervals
(see Figure 2c):

v(u) =


1
q0

sin−1 ( u
A
)
+ u, u ∈ 〈−A, A〉

1
q0

[
−sin−1 ( u

A
)
+ π

]
+ u, u ∈ (0, A〉

1
q0

[
−sin−1 ( u

A
)
− π

]
+ u, u ∈ 〈−A, 0)

. (5)

Exact analytical derivations require a little mathematics but are necessary in terms of a derivation
of the structure factor formula. All calculations are performed in details in [27].

2.4. AUC for Thue-Morse Sequence

A Thue-Morse sequence, defined by binary recurrence rule a→ ab, b→ ba with arbitrary a and
b segments, can be used to construct a very special chain-structure which is aperiodic, but not chaotic,
with singular-continuous component in the diffraction pattern [4,28,29]. The structure is perfectly
ordered but completely aperiodic even in high dimensions. In this case, the statistical description
finds its great application [30]. For a construction of AUC we have again some freedom of choosing
the reference lattice. Let us choose a reference lattice parameter λk = a + b with center of interval(
− λ

2 , λ
2

)
in a position a + b (see Figure 2d). Basic scattering vector is k0 = 2π

a+b . If we consider large
enough number of atoms (formally tending to infinity), occupation probability of center position
gets 1/2 and positions b and –b (position –b corresponds to position a) take the probability 1/4 each.
The above holds for the Bragg peaks in the diffraction diagram, which are periodic in case of the
Thue-Morse chain. However, also the singular continuous part in the diffraction pattern can be
successfully solved within statistical method. The full AUC shape strongly depends on the scaling
factor ξ, and by this on modulation vector q0, but not only. For completely aperiodic sequences like
Thue-Morse chain also the sample size (number of atoms N in the chain) is crucial. Coherence length
strongly influences the singular continuous part of a diffraction pattern. This feature must be also
considered during construction of AUC. For instance, if the number of atoms in sequence is given by
multiples of 6 at scaling factor ξ = 3, the probability distribution values take 9 non-zero positions of
heights proportional to 1/6. For further details see [15,30]. Summarizing, for the Thue-Morse aperiodic
sequence the reference lattice concept allows to designate intensities and scaling properties for the
singular continuous part with scattering vector q0 = k0/(2m + 1) with m being integer.
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Figure 2. (a) Distribution P(u, v), marginal distribution P(u) and scaling relation v(u) = −τ2u for the
Fibonacci chain. It is shown that P(u, v) is non-zero only along v(u) line. (b) Distribution P(u) and
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3. Structure Factor Derivation

Structural investigation of materials requires, in most general case, a starting model structure,
which is refined against experimental data—usually diffraction data with neutron, X-ray or electron
beams. In addition, computational methods, like energetics calculations, are available to refine the
structure model. In all cases the starting model is needed and analytical formula for the structure factor
must be considered as a function, which allows for simulating the diffraction pattern and comparing
it with the measured one. The question is notably important and difficult in the case of complex
materials, like aperiodic crystals and particularly quasicrystals, where no periodic unit cell is available.
The statistical method is perfectly suitable for deriving analytical formulas of structure factors for all
aperiodic crystals.

Analytical derivation of structure factor formula in the statistical approach takes full advantage
of Fourier transforming properties. Starting from a definition, the structure factor can be written as

F(k) = ∑N
j=1 f jexp[ikxj], (6)

where xj is the atomic position in the structure, k is the scattering vector length (in reciprocal space),
f j is a scattering form factor for j-th atom, i is an imaginary unit and summation is over all N atoms
in the structure. In further parts parameters f j will be omitted. This, however, does not limit our
consideration to monoatomic decorations only (see the comment at the end of the Section 3.1). We can
now use our statistical interpretation of atomic positions expressed in reference lattices λk and λq

frame (see formula (2)). In addition, an arbitrary scattering vector can be written as k = nk0 + mq0

with n, m being integer indices. Structure factor now takes the form

F(k) = F(n, m) = ∑N
j=1exp[ink0(αλk + uj) + imq0(βλq + vj)] = ∑N

j=1exp[ink0uj + imq0vj], (7)

where α, β, n, m are integers and uj, vj are coordinates of atoms in the AUC constructed for reference
lattices λk and λq respectively. From discussion in Section 2 we know that values uj, vj densely fill
the limited space (they form a well-defined distribution P(u, v)) and are usually not independent
(scaling relation v(u)). This entitles us to replace summation in (7) with integration over the AUC
shape. Finally, the structure factor F in one-dimensional case for scattering vector k can be expressed
by means of a generalized two-mode Fourier transform [16,25,31]:

F(k) = F(n, m) =
w λk

0

w λq

0
P(u, v) ei(nk0u+mq0v)dudv, (8)
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with further simplification possible due to scaling relation v(u). The use of scaling properties of
aperiodic sets in the two-mode Fourier transform (8) effectively reduces the dimensionality of the
problem by half. This will be effectively used in the following subsections. We focus on purely
“geometric” structure factor with no corrective factors. As mentioned already in Section 2, the “atomic”
part of the structure factor can be separated from the “lattice” part. Atomic decoration appears as
phase factor to the complete structure factor formula.

3.1. Structure Factor for Quasicrystals

1D Fibonacci chain is the easiest structure model of a quasicrystal. All conclusions obtained
here apply equally to the model decagonal and icosahedral quasicrystals. Scaling factor ξ = τ leads
to characteristic TAU2-scaling relation v = −τ2u, which significantly simplifies integration in (8).
The structure factor for Fibonacci chain takes the form

F(k) = F(n, m) =
w u0

0
P(u) eik0u(n−τm)du, (9)

which after simple calculation gives:

F(w) = e−i wu0
2

sin
(wu0

2
)(wu0

2
) , (10)

where w = k0(n− τm) is reduced scattering vector, u0 = 1
τ is the width of P(u) distribution. The phase

factor (exponent in (10)) stands for possible non-centrosymmetricity of P(u), the structure factor
formula is in general a complex number. After symmetrizing the distribution one gets the real form
which can be expressed again in k:

F(k) = cos (mπ)
sin
(
(k−mk1)

u0
2
)(

(k−mk1)
u0
2
) , (11)

where k is the scattering vector length (any continuous value k is possible) andk1 = k0

(
τ + 1

τ

)
=
√

5k0

is a shift vector which interpretation will be delivered later. For centrosymmetric distribution P(u),
which is always possible to obtain, the phase in structure factor formula is only 0 or π (for even and
odd values m, respectively). The intensity of a diffraction reflection at any position k can be easily
calculated as squared modulus of the structure factor, i.e., I(k) = |F(k)|2, and for Fibonacci chain it is
given by characteristic shape of sin2(x)/x2 function. The F(k) and I(k) plots for the Fibonacci chain
are shown in Figure 3a,b.

Transformation from (9) to (10) gives us an interesting interpretation of a distribution P(u)–its
Fourier transform (10) defines the so-called envelope function [31]. An envelope connects tops of the
diffraction peaks sharing the same value m. For all other peaks we observe a shift of an envelope
by vector k1 first used in formula (11) (this is the interpretation of k1). The full diffraction pattern of
1D Fibonacci chain, obtained by applying formula (11), is composed of periodic series of peaks with
period k1 belonging to a common envelope function and peaks distributed within envelopes with
period k0. These characteristics holds true not only for quasicrystals, but also for commensurately and
incommensurately modulated crystals, as well as periodic crystals. Formula (9) can be rewritten to
a more general form which makes use of periodically expanded AUC (denoted as Pexp(u)), what leads
to a universal tool applicable for diffraction analysis of any structure type. A Fourier transform of such
periodic structure calculated using the following equation:

F(k) = ∑
m

e−imθ
∞w

−∞

Pexp(u)e−i(k−mk1)udu (12)

leads to a complete diffraction pattern of all (n, m)-peaks, whereas conventional Fourier transform (9)
gives the envelope function. What is important to note is that all reflections belonging to a common
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envelope function have identical phase (denoted as θ). The phase changes whenever an envelope
passes through zero (see equation (11)). Such behavior enables calculating phases of a structure
factor directly from a diffraction pattern with no need of using iterative phase-retrieval algorithms.
Having complete diffraction pattern one can reduce it to reduced scattering w and by inverse Fourier
transform obtain a probability distribution P(u) and, eventually, the full information of the structure.
For details see [32]. Formula (12) can be applied to numerous structure types with different scaling
factors exhibiting quasicrystalline diffraction pattern. Such concept, with potential application to
structure refinement of complex systems, was proposed in [25] with all details given.

As a confirmation of utility of the statistical method applied to arbitrary decorated structure
numerous decagonal quasicrystals modeled by the (rhombic) Penrose tiling were successfully refined
in [33–35]. In addition, for an icosahedral quasicrystal modeled by the Ammann tiling the structure
factor for arbitrary decoration and the so-called simple decoration scheme was derived and discussed
in [23,36]. The latter structure factor takes the form [23]:

F(k) = ∑10
o=1(F(k)AR

o ∑NAR
j=1 f jαje

ik·rj) + ∑10
o=1(F(k)OR

o ∑NOR
j=1 f jαje

ik·rj), (13)

with F(k)AR
o /F(k)OR

o being Fourier transforms of parts of the AUC corresponding to a given orientation
o of the rhombohedra. Ammann tiling is built of two prototiles-acute (AR) and obtuse (OR)
rhombohedra, which volume ratio remains τ and faces are spanned by golden rhombuses [10,37].
It is a known fact that 3D aperiodic quasilattice can be spanned by the two types of rhombohedra
taking each 10 symmetrically independent orientations in space. For that reason index o runs over ten
different orientations. As mentioned in Section 2.2 the AUC for Ammann tiling has a shape of rhombic
triacontahedron. The parts related to 20 orientations of rhombohedra have again rhombohedral shapes.
Each prototile can be in general decorated by NAR/NOR atoms. The j-th atom is placed at the position rj
with respect to the reference vertex of an rhombohedron and depending on the position gives a fraction
αj of one to the total sum. Parameters f j are atomic form factors of each atom j. Atomic decoration is
the phase factor to the complete structure factor formula, as already mentioned. The formula (13) was
recently confirmed for simple decoration scheme, where atoms are placed in the vertices and mid-edges
of the rhombohedra. An acute rhombohedron has additional 2 atoms on the long body-diagonal. Such
a decoration scheme allows for considering binary and ternary icosahedral systems. The diffraction
pattern of exemplary Cd-Yb and Al-Pd-Mn decorations was presented in Figure 3c. This picture
shows how useful the structure factor formula derived within statistical description can be in terms of
arbitrary decorated quasicrystalline structure based on model tilings. For all details see [36].
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3.2. Structure Factor for Modulated Structures  

A statistical approach was applied to modulated structure initially in [26,38], but 
comprehensive considerations were performed in [27]. As discussed in Section 2.3 calculations 
within statistical method require slightly more advanced mathematics. The method allows, 
however, for fully analytical derivation of the structure factor formula with no need of complex 

Figure 3. (a) Structure factor F(k) calculated for the Fibonacci chain using formula (11) with first
4 envelopes m = {0, 1, 2, 3} marked with different colors (red, olive, blue and cyan); (b) Diffraction
pattern of the Fibonacci chain calculated as squared formula (11) with first 4 envelopes marked
(notation from the left figure used). Peaks are distributed periodically within an envelope (period
k0 = 2πτ2

τ2+1 ≈ 4.54 [a.u.]) and envelopes are deployed with periodicity k1 =
√

5k0 ≈ 10.2 [a.u.] which is
an incommensurate ratio relative to scaling factor τ; (c) Exemplary diffraction pattern calculated using
formula (13) along given direction in reciprocal space for the simple decoration of CdYb and AlPdMn
icosahedral phase.
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3.2. Structure Factor for Modulated Structures

A statistical approach was applied to modulated structure initially in [26,38], but comprehensive
considerations were performed in [27]. As discussed in Section 2.3 calculations within statistical
method require slightly more advanced mathematics. The method allows, however, for fully analytical
derivation of the structure factor formula with no need of complex expansion methods used in classical
approach to the subject [39–41]. General formula (8) can be again reduced to 1D integration over
distribution P(u) given in (4) in 3 intervals defined in (5). As shown in details in [27] the result of
integration is a known fact that the structure factor for harmonically modulated structure with single
modulation component is given by Bessel function of the first kind:

F(k) = J−m

(
k0 A

(
n +

m
ξ

))
= J−m(kA), (14)

where k = k0

(
n + m

ξ

)
and ξ being the scaling factor defining a commensurateness of a modulation.

Notation from Section 2.3 was used. Integer indices n and m numerate main and satellite reflections
respectively. The diffraction pattern is again composed of series of peaks grouped to envelopes
defined by Bessel functions of the consecutive order –m (see Figure 4). The series are this time
not periodic, as the zeros of Bessel function are not periodic. Using statistical description we also
showed a close similarity between quasicrystals and incommensurately modulated crystals. It appears
that 1D quasicrystal, modeled by the Fibonacci chain, can be understood as a modulated structure
with multiple modulation vectors being the higher order Fourier expansion of the basic modulation
term [27,38].

3.3. Structure Factor for Thue-Morse Sequence

The structure factor corresponding to Bragg component of a diffraction pattern can be easily
found as a sum of atomic occupation terms weighted with occupation probabilities Pi of each site
(in Figure 2d P0 = 1

2 , Pa = Pb = 1
4 ). This gives a formula:

F(k0) =
N
2
(1 + cos(k0b)), (15)

Peak intensities scale with number of atoms as N2 what is characteristic for Bragg reflections.
The singular continuous part of the diffraction pattern scales fractally with N and is still possible to
be described by statistical method. The calculations are difficult and different for different class of
number of elements in the chain. Details can be found in refs. [15,30]. The complete diffraction pattern
of Thue-Morse chain is presented in Figure 4c.
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Figure 4. (a) Structure factor F(k) calculated using formula (14) and (b) Diffraction intensities I(k)
calculated as squared formula (14) for harmonically modulated structure with single modulation term
(A = 0.2, a = 1.0, ξ = τ). Due to known property of Bessel functions, J−m(z) = −Jm(z), the peaks
presented in I(k) plot are doubled. First 5 envelopes marked with different colors. (c) Diffraction
pattern of the Thue-Morse sequence with Bragg component (envelope function calculated as squared
formula (15) for k0 = 2π

1.1 ≈ 5.71 [a.u.] and b = 0.1, marked with red) and singular continuous
component. The full diffraction pattern (both components) I(k) are plotted with black line.
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4. AUC-Based Analysis of a Peak Profile

This section shows how the statistical method can be involved to analyze the profile of a diffraction
peak. Despite more than 100 years of modern crystallography the theory of diffraction is still being
developed and new phenomena are revealed. One of the important topics is the peak profile, which
may contain important information on the sample, like size of the crystallites or spatial coherence
length of the crystalline material. The known Scherrer formula relates the size of a crystallite with line
broadening and is still being developed in terms of nano-crystalline materials and better accuracy of
determining the crystallite size [42]. In addition, spatial coherence of the impacting X-ray beam is being
studied in terms of peak broadening [43], however the very interesting influence on the peak profile
has the coherence length understood as number of scatterers (atoms) in the crystal structure. It has
been shown within kinematic theory of scattering that the peak broadening decreases with number
of atoms in the chain but only for crystallites smaller than the X-ray spatial coherence length [44].
In another case, the peak width is crystallite-size-independent. Recently, the structure refinements
with no analytical functions for profile fitting are tested for powder samples [45]. Proper handling
with the peak profile is admittedly an important task during the structure refinement process.

In our studies we performed a simulated diffraction experiment on the periodic chain of point-like
scatterers (analogously to the multiple slit diffraction experiment). Numerical Fourier transforming of
atomic chain was performed as a simulation of real experiment—the numerically obtained data can
be treated as “measured” data. Simple calculations show how the diffraction peak profile strongly
depends on number of atoms N (see Figure 5). As already mentioned, with increasing number of
atoms the line broadening gets smaller tending to Dirac-delta-like peaks. The positions of consecutive
peak-maxima are counted by main scattering vector k0, where k0 = 2π

a with a being the constant lattice
parameter of the atomic chain. In the next plot (Figure 6) the plot of intensities I measured for different
scattering vectors k1 taken from a close vicinity of k0 is presented vs. number of atoms N. For clarity
the figure shows I/N vs. N plot. For k1 = nk0, n ∈ Z the behavior is linear meaning that diffraction
intensities measured at centers of broadened peaks are proportional to number of atoms squared.
This is known to be a Bragg spectrum of a diffraction pattern (I ∝ N2). The successive deviation from
a straight line in the Figure 6 is observed for intensities measured at k1 slightly differing from k0

(e.g., k1 = (1.01− 1.15) k0 as shown in the figure). Diversity of the scaling I(N) opens a possibility of
various interpretations of a peak profile. Using the statistical approach it is possible to construct the
distribution P(u) for different k1-s and model the diffraction pattern for a comparison with measured
one. Positions u in the AUC can be now calculated modulo λ1 = 2π

k1
. The exemplary distributions P(u)

are shown in the Figure 7. For the record, the AUC constructed for main scattering vector k0 in the case
of periodic structure takes a form of a single Dirac-delta peak at u = 0. The same distribution obtained
for k1 6= k0 gets fragmented and reduced. Its shape depends on the sample size (parameterized by
number of atoms N). If the periodic chain is replaced by an aperiodic one, like the Fibonacci chain,
the distribution P(u) gains an internal structure (with given width and height). If it is constructed for
the scattering vector k1 rather than k0 it can take the form presented in the Figure 7b. Summarizing,
it is possible to use the statistical method to construct AUCs for different scattering vectors included
in the peak profile and model the diffraction pattern of a finite-size sample. Such modeling is also
possible in a reversed way – given the diffraction pattern with broad peaks the shape of distribution
P(u) is possible to obtain and coherence length (number of atoms N in the scattering crystal volume)
can be retrieved.
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5. Structure Disorder in Aperiodic Crystals

Recent development of the statistical approach to structural description of quasicrystals provided
a novel method of proper dealing with disorder observed in real structures. Two challenges of modern
crystallography of quasicrystals are: (i) including all weak reflections available from diffraction
experiments with use of synchrotron radiation, and (ii) how to explain and “repair” the characteristic
bias observed in log-log plots of calculated vs. measured diffraction intensities during the structure
refinement procedure. The course is significantly deviating from a straight line in weak reflections
regime (I < 10−2 with respect to the strongest reflection), as observed in many refinement results.
Modern instruments allow us to collect diffraction datasets of 6 or more orders of magnitude of peak
intensities. It is a big challenge to properly process the measured data. One of many corrections
during structure refinement process is the Debye-Waller factor correction. It compensates for the
perturbations arising from thermal vibrations (phononic term) or flips (phasonic term) of atoms.
The Debye-Waller factor can be also generalized to a statistical interpretation [46,47]. The general
formula for Debye-Waller factor is exp[−k2σ2], where k is the scattering vector and σ is a variance of
the distribution of atomic arrangement (both in physical or perpendicular space). Small peaks, which
usually have large perpendicular-space component of the scattering vector in superspace description
(see e.g., [35] and supplemental materials), are biased in the modern refinement results. We attributed
the latter to the improper corrective factor for phasons, which is standard (exponential) Debye-Waller
factor, commonly used in structure refinements of quasicrystals, and proposed a novel method of
analysis of phononic and even more phasonic effects within statistical method. For that we performed
credible proofs upon model systems (vertex decoration models) based on Fibonacci chain, Penrose
tiling and Ammann tiling. In this review, paper we focus on the Fibonacci chain. All “measured” or
“observed” data are meant to be numerically obtained by simulated diffraction experiment.

The AUC is highly sensitive to any type of atomic disorder introduced to the structure. Phonons
smear a TAU2-scaling along [1,1]-direction in (u, v)-space, whereas phasons lead to the fragmentation
of marginal distribution P(u). Both effects are easily noticeable. Knowing the fragmentation of P(u)
we are able to introduce a phasonic corrective factor at the level of structure factor definition (it is not
a multiplicative but an additive factor) with one parameter to fit, which is a number of flips in the
structure [48].

5.1. Phonons

The smearing of ideal atomic positions caused by thermal vibrations of atoms around equilibrium
can be, in general, modeled by various functions. The most obvious one is the Gaussian function,
which has a deep statistical interpretation. However, also other function types, like harmonic or flat,
can be equally good. In [49] it was shown that the three listed function types used as generating
functions of phonon disorder in model structures (including periodic ones) are reflected in change
of P(u) distribution function. As already mentioned, the distribution is an object constructed in
physical space, that is why easily maps all the changes of atomic arrangement, like structural disorder.
Gaussian smearing of atomic arrangement is simply reflected by Gaussian smearing of P(u) along
the [1,1]-direction for u, v coordinates (see Figure 8a). The thing is, however, more complicated,
because also P(v) distribution gets changed under phonons. In general, the total P(u, v) distribution is
broadened due to phonons. The scaling relation v(u) provides the best tool for considering phononic
smearing of the probability distribution. We need the full P(u, v) distribution, depicted in Figure 8b,
to properly describe the diffraction pattern. Gaussian smearing of each atomic position leads to
smearing of the characteristic TAU2-scaling. After Fourier transforming of a modified P(u, v) it appears
that the structure factor formula consists of two factors: one is the structure factor of an ideal atomic
structure and the second, multiplicative factor is the Fourier transform of the phonons-generating
function. The final formula for the structure factor for system with phononic disorder in case of 1D
quasicrystal is following:
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F(k) = F(n, m) =
w λk

0

w λq

0
P(u, v)ei(nk0u+mq0v)dudv

w λk

0
G(up)ei(nk0up+mq0up)dup, (16)

where G(up) is the phonons-generating function and up is the atomic displacement from equilibrium
position reduced to the AUC frame. In the case of Gaussian-type function, the multiplicative factor
(integral on the right) is nothing but the Debye-Waller factor known in crystallography as major
corrective factor in structure refinement process. Harmonic or flat function G(up) leads to Bessel- or
cardinal sine-function type of the corrective factor as a direct result of Fourier transforming. For details
on the exact mathematical derivation see [49].

Phononic disorder influences strongly intensities of reflections in the diffraction pattern. Figure 8c
shows how the intensities calculated for ideal Fibonacci chain are modified by the phononic correction
factor. The main conclusion from that picture is that for wide range of reflections, namely k < 20 k0,
the type of corrective factor used in the refinement is irrelevant. For Gaussian, Bessel and cardinal sine
function the behavior of relative diffraction intensities is essentially the same. Significant deviation
appears only at distant reflections (k > 20 k0). By trial and error, based on the quality of the obtained
fit different distributions G(up) of position fluctuation with respect to the ideal structure, the final step
of a refinement process can be tested.
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Figure 8. (a) Modified marginal distribution P(u) of the Fibonacci chain with phonons (original
shape for ideal structure marked with dotted line); (b) TAU2-scaling relation for Fibonacci chain
modified by Gaussian phononic smearing. Respective v(u) relation for ideal structure shown in the
inset. In both plots the amplitude of phonons was 2% of λk; (c) Envelope functions of the diffraction
peaks for the Fibonacci chain with phononic disorder corrected by three different multiplicative
correction functions: Gaussian (standard Debye-Waller factor black), Bessel (red) and cardinal sine
(blue) plotted relative to intensities calculated for ideal structure with no phonons. Main scattering
vector k0 = 2πτ

τ2+1 ≈ 2.81 [a.u.].

5.2. Phasons

Phasons, also called phason modes or phason flips, are phenomena characteristic mostly to
quasicrystals. In physical space they manifest with rearrangements (flips) of atoms or whole group of
atoms in the structure. In model structures, phasons can be identified with flips of tiles (e.g. rhombuses
in the rhombic Penrose tiling or short and long distances in the Fibonacci chain). After such swaps,
the perfect quasiperiodic order is violated and the structure becomes disordered. The rearrangement
of atoms or tiles is an entropic effect—phasonic disorder increases the entropy of the system. By this
means, phasons are very important in terms of stability mechanism of quasicrystals. It is a very hot
topic in crystallography of quasicrystals and still not a solved problem—are quasicrystals stabilized
by energy or entropy? Recent high temperature diffraction measurements and other structural
analysis, also for crystalline approximants, opened a new discussion on the problem with preference of
entropic stabilization mechanism [50–54]. The origin of phason modes acquires a better understanding
in superspace description. The flips appearing in physical space are generated by distortion of
a projection strip or, equivalently, by tilt of a cutting plane in higher-dimensional space. For details
see [55–57]. The current state-of-art theory of phasons was introduced by Lubensky et al. [58,59]
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and is a hydrodynamic theory. However, during a structure refinement the phasonic disorder is
corrected by using Debye-Waller factor in the same form as known for phonons with substituting
the physical-space component of the scattering vector with the perpendicular-space component in
superspace approach. Phasons are, in effect, corrected by multiplicative exponential term in the
structure factor formula. The theory of phasons is still inconsistent and new approach is highly
expected. Moreover, we attribute the bias in the fitted vs. measured diffraction data, particularly seen
for small intensities, with exponential decay introduced by phasonic Debye-Waller factor. For more
details in that subject see [48].

The statistical method delivers an alternative to the analysis of phasons in quasicrystals.
The probability distribution P(u) appears to be highly sensitive also to phasonic disorder, as seen in
the Figure 9a. The figure presents the AUC of the Fibonacci chain with phason flips introduced by
rearrangement of tile-sequence: LS→ SL with a probability α = 5% (called a flip ratio). Parameter
α = 5% means that every 20th sequence LS in the chain is being replaced by a sequence SL. After such
flips the distribution P(u) becomes fragmented with new part appearing in the place where there was
no probability density before and its area proportional to α. The fragmented AUC can be now Fourier
transformed to a structure factor formula. After analytical derivation the phasonic correction function
appears to be an additive factor in the following form

Dphas(k) = ∑i=1,3 Aisinc[(k−mk1)di], (17)

where summation runs over three subregions of P(u) as depicted in the Figure 9a, Ai and di are heights
and widths of each region. Cardinal sine function, sinc(x), can be equivalently replaced by spherical
Bessel function of the first kind with order 0, j0(x). Parameters m and k1 are used in the same sense as
in previous sections. Parameters di are directly related to the type of flip ( LS→ SL or inversely) and
are constant for different flip ratios. Therefore, the flip ratio can be straightforwardly obtained from
parameters Ai, for any given type of flips. For detailed calculations see [49].

In Figure 9b,c the log-log plots of calculated vs. measured intensities are shown for two types of
correcting factor used in the refinement. First is the standard phasonic Debye-Waller factor

DD−W
(
kperp

)
= exp

[
− 1

16π2 (kperp)
2bphas

]
(18)

with single fitting parameter bphas, being proportional to the squared atomic displacement in the
perpendicular space, and where kperp denotes a perpendicular-space component of a scattering vector
k. Second is the factor defined by formula (17). In both cases, the Fibonacci chain with vertex
decoration is used as model 1D quasicrystal. It is clearly seen that using a standard DD−W correction
yields a systematic deviation in the weak reflections part of the plot, as already mentioned. This is
because exponential term favors large-kperp reflections, which are attributed to small intensities in
the diffraction diagram (it is a known characteristics of diffraction patterns of quasicrystals), whereas
strong reflections (small-kperp) are corrected only slightly. It must be emphasized that for aperiodic
structures, particularly for quasicrystals, the amount of weak reflections is much bigger than that of
strong ones. The possibility to effectively use weak reflections in the refinement process is therefore
of a great importance. Using a statistical approach to the phasonic Debye-Waller correction enables
a practical use of weak reflections, whereas the standard “superspace” Debye-Waller factor not.
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Figure 9. (a) AUC for the Fibonacci chain with phasons (flip ratio α = 5%). Red arrow show the
move of the fragment originally placed within the AUC of ideal Fibonacci chain to a new position
where there was zero-probability before; (b) Calculated vs. “observed” intensities in the diffraction
diagram of Fibonacci chain with phasons (α = 5%) and standard phasonic Debye-Waller correction
given by formula (18). The characteristic bias is observed for weak reflections (I < 10−2); (c) The same
figure as (b) but with correction given by formula (17) obtained by a statistical method. Perfect fit is
observed with only small spread caused by numerical errors (finite size of sample, number of atoms of
about 106).

6. Statistical Approach and Superspace Method

The basic concept behind superspace (higher-dimensional, nD) method is to restore periodicity
in high dimensions. The concept was first introduced for modulated crystals with incommensurate
modulation [60]. An aperiodic structure becomes periodic when lifted up to high dimensions with
atoms replaced by multidimensional atomic surfaces (also called occupation or acceptance domains).
Atomic surfaces decorate the nodes of nD structure (usually even/odd vertices, body centers and
mid-edges of the nD cubic unit cell). The aperiodic structure is obtained by projecting the higher
dimensional structure cut from inside the so-called projection strip (which can be a multidimensional
window spanned in superspace) on the lower-dimensional subspace, called parallel space, which is
the physical space. The projection strip (window) is spanned along the so-called perpendicular space,
which is orthogonal to the parallel space. Atomic surfaces are also constructed in perpendicular space.
This is a fundamental of the cut-and-project method [10]. Other possible approach to superspace
analysis of aperiodic crystals is to consider a cut in the nD structure with lower-dimensional physical
space. The cutting plane needs to be tilted appropriately to obtain a quasiperiodic ordering [8]. In real
refinements of quasicrystals the shape of atomic surfaces become usually far more complicated than
those constructed for model tilings (4 pentagons for Penrose tiling and rhombic triacontahedra for
Ammann tiling) due to proper handling with atomic decoration of the tiles. The superspace method is
sometimes called atomic surface modelling method.

It was proven [15,21] that the AUC can be considered as equivalent to an oblique projection
of atomic surface onto physical space along direction defined by kperp/kpar, which is the ratio of
perpendicular- to parallel-space component of any scattering vector from reciprocal space. In fact,
variables (u, v) can be obtained by an oblique projection of the perpendicular-space components
of atomic positions (the atomic surface). This 1:1 correspondence is, however, valid only for ideal
structures, like a model Fibonacci chain, Penrose tiling or Ammann tiling with no atomic perturbations.
The problem occurs while including atomic disorder to the structure. Atomic surfaces remain
unchanged, whereas the probability distributions (AUCs) are highly sensitive to any type of disorder,
as discussed in Section 5.

As an alternative to the superspace method the statistical method is, however, more general. It can
be successfully used for description of not only periodic crystals or quasicrystals, but also modulated
structures as well as aperiodic structures with singular continuous components in the diffraction
pattern. The latter case would require an infinite-dimensional superspace to properly reproduce all
fractal reflections in a diffraction as lifted to high dimensions. Even model aperiodic structures like
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those generated by Thue-Morse or Rudin-Shapiro sequences as well as amorphous systems are not
possible for being considered in superspace description, whereas the statistical method deals perfectly
with them [30,61]. Only the physical-space approaches, such as statistical method, allow us to assess
the relationship between the peak intensities and the number of atoms involved in the diffraction
experiment, what is a key of understanding the singular continuous component of a diffraction pattern.
Concluding, probability distributions of atomic positions in the AUC frame (in physical space) can be
easily obtained by an oblique projection of the atomic surfaces from high dimensions, whereas the
physical-space description cannot be straightforwardly lifted to higher-dimensional one in the most
general case.

As already mentioned, the superspace method is simple in mathematical sense, but causes
important limitations in terms of physical interpretation of the atomic surfaces. The statistical
description gives a unique interpretation of the atomic surfaces. Fourier transform of the envelopes
of the structure factor (defined by squared modulus of the formula (10), see Section 3.1) placed
in the vertices of multidimensional superspace and spanned along perpendicular space becomes
atomic surfaces. Mathematical details as well as interesting conclusions on characteristic features of
diffraction patterns of quasicrystals obtained by statistical interpretation of superspace analysis can be
found in [19].

7. Summary

The statistical method is a complete theory suitable for structure determination of periodic and
aperiodic systems. Any kind of structure can be expressed in terms of the statistical distribution
of atomic positions with respect to the periodic reference lattice with lattice constant related to
characteristic length-scale present in the structure. As far as periodic crystals are concerned the
description of the structure with the use of statistical approach does not differ from the methodology
provided by classical crystallography. The average unit cell, defined as probability distribution,
is constructed for periodic crystal is the same as unit cell. The full advantage of the statistical description
can be exploited when quasiperiodic system is considered. The distribution contains full structural
information and it was shown that the structure factor is the Fourier transform of the distribution.
The distribution can be constructed for arbitrarily decorated structure but due to calculational reasons
and transparency of obtained results the distribution is limited to nodes of quasilattice (for instance,
aperiodic tiling). Whole distribution, being sum of distributions for each independent atom would be
just too complex for analysis and would not carry any new information.

The shape of the distribution depends on the type of investigated structure. Quasicrystals
possess a uniform distribution, whereas e.g. harmonic displacive modulation results with U-like
shape. The distribution can be constructed even for structures aperiodic in higher-dimensional
space, like Thue-Morse sequence, for which projection scheme reserved for superspace description is
not applicable.

The problem of incorporating disorder in the form of phonons and phasons into structural analysis
can also be solved within statistical approach because of the immediate occurrence of the latter on the
shape of distribution. Although phononic contribution can be carried out traditionally by Debye-Waller
factor even for quasiperiodic structures its generalization for phasons, based on higher-dimensional
approach, seems to fail in weak-reflections-regime. Phason flips are observable as cuts in the statistical
distribution. If those cuts are considered in the structure factor calculations a proper handling of weak
reflections in diffraction pattern is possible. Even more, an exact number of flips is possible to estimate
due to dependence of the depth of the cut on the probability of phason flip (flip ratio). Therefore,
a well-known problem of deviation in the correlation plot of calculated intensities vs. observed ones,
attributed by us to improper handling of phasons, can be resolved.

The reference lattice concept can also serve as a tool of probing the peak profile to estimate the
coherence length and the size of crystalline domain. The shape of AUC, obtained for scattering vectors
in the vicinity of Bragg peaks, depends on the number of atoms’ contribution to scattering process,
therefore a coherence length can be obtained.
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Although there is equivalency between higher-dimensional and statistical approach in terms of
quasiperiodic structures, meaning the AUC can be considered as oblique projection of the atomic
surface, the relation is true for defect-free structure solely. The disorder influences changes in the
probability distribution, which can be interpreted in statistical meaning but cannot be equally analyzed
in higher-dimensional space. Moreover, the statistical approach is generalizable for other types of
structures even without counterpart in the higher-dimensional space.
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