

Article **Potassium Disorder in the Defect Pyrochlore KSbTeO6: A Neutron Diffraction Study**

José Antonio Alonso 1,*, Sergio Mayer ² , Horacio Falcón ² , Xabier Turrillas 3,4 and María Teresa Fernández-Díaz ⁵

- 1 Instituto de Ciencia de Materiales de Madrid Consejo Superior de Investigaciones Científicas., Cantoblanco, E-28049 Madrid, Spain
- ² Nanotech (Centro de Investigación en Nanociencia y Nanotecnología), Universidad Tecnológica Nacional-Facultad Regional Córdoba, 5016 Córdoba, Argentina; sergiomayer91@gmail.com (S.M.); hfalcon@frc.utn.edu.ar (H.F.)
- 3 Institut de Ciència de Materials de Barcelona, Consejo Superior de Investigaciones Científicas, Bellaterra, E-08193 Barcelona, Spain; turrillas@gmail.com
- ⁴ ALBA Synchrotron, Cerdanyola del Vallès, E-08290 Barcelona, Spain
- 5 Institut Laue Langevin, BP 156X, F-38042 Grenoble, France; ferndiaz@ill.eu
- ***** Correspondence: ja.alonso@icmm.csic.es; Tel: +34-91-334-9071; Fax: +34-91-372-0623

Academic Editors: Helmut Cölfen and Silvina Pagola Received: 25 November 2016; Accepted: 26 December 2016; Published: 13 January 2017

Abstract: KSbTeO₆ defect pyrochlore has been prepared from $K_2C_2O_4$, Sb₂O₃, and 15% excess TeO₂ by solid-state reaction at 850 ◦C. Direct methods implemented in the software EXPO2013 allowed establishing the basic structural framework. This was followed by a combined Rietveld refinement from X-ray powder diffraction (XRD) and neutron powder diffraction (NPD) data, which unveiled additional structural features. KSbTeO₆ is cubic, $a = 10.1226(7)$ A, space group *Fd3m*, $Z = 8$ and it is made of a mainly covalent framework of corner-sharing $(Sb,Te)O₆$ octahedra, with weakly bonded K⁺ ions located within large cages. The large K-O distances, 3.05(3)–3.07(3) Å, and quite large anisotropic atomic displacement parameters account for the easiness of K^+ exchange for other cations of technological importance.

Keywords: pyrochlores; AB₂O₆; ASbTeO₆; neutron powder diffraction; ionic diffusion

1. Introduction

Recently, the defect pyrochlore oxide $(H_3O)SbTeO_6$ has been described as an excellent proton conductor [\[1](#page-5-0)[,2\]](#page-5-1), showing a conductivity (σ) of 10⁻¹ S·cm⁻¹ at 30 °C under saturated water vapor partial pressure, matching the performance of Nafion[©] as proton conductor for low-temperature fuel cells. Among the most promising candidates to replace Nafion, the so-called antimonic acids (of general stoichiometry HSbO₃·nH₂O or Sb₂O₅·nH₂O) show a relatively high proton conductivity of ~10⁻⁴ S·cm⁻¹ at room temperature (RT) [\[3\]](#page-5-2), and some yttrium-doped derivatives reach conductivities as high as 10⁻³ S·cm⁻¹ [\[4\]](#page-5-3). An even larger σ value of 10⁻¹ S·cm⁻¹ at 30 °C under saturated water vapor partial pressure was described by Turrillas et al. [\[5\]](#page-5-4), for an original derivative of the antimonic acid obtained by partial replacement of Sb by Te, giving rise to a well-defined oxide with pyrochlore structure and composition $(H_3O)SbTeO_6$ [\[5\]](#page-5-4). The pyrochlore structure is very appealing while searching for materials of high ionic conductivity, since its open framework containing three-dimensional interconnected channels enables H_3O^+ ion diffusion. The general crystallographic formula of pyrochlore oxides is $A_2B_2O_6O'$, consisting of a covalent B_2O_6 network of BO₆ corner-sharing octahedra with an approximate B-O-B angle of 130 $^{\circ}$, and the A₂O' sub-lattice forming an interpenetrating network which does not interact with the former. It is well known that

both A cations and O' oxygens may be partially absent in defect pyrochlores with $A_2B_2O_6$ or even AB_2O_6 stoichiometry [\[6\]](#page-5-5).

The full characterization of the crystal structure of $(H_3O)SbTeO_6$ was performed by neutron diffraction, leading to the location of the protons in the framework [\[1\]](#page-5-0). $(H_3O)SbTeO_6$ has been prepared by ion exchange from KSbTeO $_6$ pyrochlore in sulfuric acid at 453 K for 12 h [\[1,](#page-5-0)[2\]](#page-5-1). The crystal structure of $KSDTeO₆$ has not been described in detail, although a pioneering study reports the synthesis of the A(SbTe)O₆ pyrochlore family $(A = K, Rb, Cs, Tl)$ [\[7\]](#page-6-0). The crystal structures of these oxides were defined in the $Fd\overline{3}m$ space group (No. 227), with $Z = 8$. For $A = K$, the unit–cell parameter reported is *a* = 10.1133(2) Å. Sb and Te atoms were defined to be statistically distributed at 16*d* Wyckoff sites; oxygen atoms were placed at 48*f* sites, and A cations at 32*e* (*x,x,x*) Wyckoff positions with $x = 0.109$, from XRD data [\[7\]](#page-6-0). In the present work, we report the ab-initio crystal structure determination of KSbTeO $_6$ from NPD data, followed by a Rietveld refinement from combined XRD and NPD data, yielding complementary information on the K^+ positions.

2. Experimental

KSbTeO₆ was prepared by the solid-state reaction between potassium oxalate (K₂C₂O₄), TeO₂, and $Sb₂O₃$ in a 1:2.3:1 molar ratio, providing an excess of TeO₂ to compensate for volatilization losses. The starting mixture was thoroughly ground and heated at 823, 973, 1073, and 1123 K for 24 h at each temperature, with intermediate grindings in order to ensure total reaction.

The initial product characterization was carried out by XRD with a Bruker-AXS D8 Advance diffractometer (40 kV, 30 mA) (Germany) controlled by the DIFFRACT^{PLUS} software, in Bragg–Brentano reflection geometry, with Cu K_α radiation (λ = 1.5418 Å). A nickel filter was used to remove Cu K_β radiation. NPD experiments were carried out in the D2B high-resolution powder diffractometer $(\lambda = 1.595 \text{ Å})$ at the Institut Laue-Langevin, in Grenoble, France. About 2 g of sample was contained in a vanadium can. The full diffraction pattern was collected in 3 h.

The crystal structure was solved ab-initio from NPD data using direct methods and the software EXPO2013 [\[8\]](#page-6-1). The model obtained was refined by the Rietveld method [\[9\]](#page-6-2) with the program FULLPROF (Grenoble, France, version Nov. 2016) [\[10\]](#page-6-3), from combined XRD and NPD data. A pseudo-Voigt function was chosen to generate the line shape of the diffraction peaks. The following parameters were refined in the final Rietveld fit: scale factor, background coefficients, zero-point error, pseudo-Voigt profile function parameters corrected for asymmetry, atomic coordinates, anisotropic atomic displacement parameters for all atoms, and the occupancy factor of the K^+ positions. The coherent scattering lengths of K, Sb, Te and O were 3.67, 5.57, 5.80 and 5.803 fm, respectively.

3. Results and Discussion

KSbTe O_6 oxide was obtained as a well-crystallized powder. The XRD pattern, shown in Figure [1,](#page-2-0) is characteristic of a pyrochlore-type structure, with $a = 10.1226(7)$ Å. As input data for EXPO2013 [\[8\]](#page-6-1), the unit-cell parameters, *Fd*3*m* space group symmetry and unit-cell contents were given: 8 K, 48 O and 16 Sb, due to the similar Sb and Te scattering lengths. NPD data were used for the crystal structure determination, given their monochromaticity, well-defined peak shape, and the large 2θ range covered (from 0 to 159°). EXPO2013 readily gave a structural model with O positions (1/8,1/8,0.429) corresponding to 48f Wyckoff sites, Sb positions (½,½) corresponding to 16*d* sites, and two possible Wyckoff sites for K: (¹ ⁄8, 1 ⁄8, 1 ⁄8), i.e., 8*a* sites; and (*x,x,x*), i.e., 32*e* sites with *x* = 0.248, defined in the origin choice 2 of the space group *Fd*3*m* (No 227). A combined XRD and NPD Rietveld refinement was carried out in that setting. The Sb and Te atoms were considered to be statistically distributed at (¹ ⁄2, 1 ⁄2, 1 ⁄2) 16*d* Wyckoff sites, and K at (*x*,*x*,*x*) 32*e* sites. The K⁺ ions were allowed to shift along the (*x*,*x*,*x*) 32*e* position adopting intermediate *x* values between those suggested by the ab-initio crystal structure determination. At the stage of refining isotropic atomic displacement parameters, $x = 0.1429(6)$ was reached for the (x, x, x) 32*e* Wyckoff position after convergence, accompanied by large temperature factors (B) of 1.2(2) Å².

A further fit improvement was achieved by refining anisotropic atomic displacement parameters, leading to the crystallographic data and Rietveld agreement factors gathered in Table [1.](#page-2-1)

Figure 1. Rietveld-refined XRD pattern of KSbTeO₆ at 298 K, characteristic of a cubic pyrochlore phase. The experimental XRD data is represented with red crosses, the calculated profile is shown with a black solid line, and their difference is shown at the bottom (blue line). Vertical green symbols indicate allowed peak positions.

Table 1. Unit–cell, fractional atomic coordinates, atomic displacement parameters, refined **Table 1.** Unit–cell, fractional atomic coordinates, atomic displacement parameters, refined occupancy factors and Rietveld agreement factors of KSbTeO₆ in the cubic space group *Fd3m* (No. 227), with $Z = 8$.

In the final Rietveld refinement, the *x* parameter in the 32*e* position shifted to 0.126(3). Thus, K practically occupies the (1/8,1/8) 8*a* Wyckoff sites. The main interatomic distances and angles are shown in Table 2. Figures 1 and 2 illustrate the good agreement between the observed and calculated shown in Table [2.](#page-3-0) Figures [1 a](#page-2-0)nd [2 i](#page-3-1)llustrate the good agreement between the observed and calculated XRD and NPD patterns, respectively. XRD and NPD patterns, respectively.

The Sb:Te ratio could not be refined, given the similar scattering factors (or scattering lengths for neutrons) of both elements using XRD or NPD. This ratio has to be 1:1 if K fully resides at 8*a* Wyckoff sites, or at 32e sites with an occupation of $1/4$. The excess of TeO₂ added to compensate for volatilization losses could also result in a slight over-occupation of the position with Te; therefore, an even lower occupation of the K position would occur. To address this problem, the occupancy of K was also refined: it converged to 1 atom per formula unit, within standard deviations (see Table [1\)](#page-2-1), thus confirming the 1:1 Sb:Te ratio. Sb:Te ratio.

Table 2. Selected interatomic distances and angles for $KSDTeO₆$ at 298 K.

Figure 2. Rietveld-refined NPD pattern of KSbTeO₆ at 298 K in the cubic $Fd\overline{3}m$ space group. The experimental NPD data is represented with red crosses, the calculated profile is shown with a black solid line, and their difference is shown at the bottom (blue line). Vertical green symbols indicate allowed peak positions.

Figure [3](#page-4-0) displays the pyrochlore structure of $KSpTeO₆$, which can be described as composed of a mainly covalent network of $(Sb,Te)O₆$ units sharing corners, with a $(Sb,Te)-O-(Sb,Te)$ angle of 135.45(2)° (Table 2). The cage-like holes within this network contain the K+ ions statistically 135.45(2)◦ (Table [2\)](#page-3-0). The cage-like holes within this network contain the K⁺ ions statistically distributed at 32*e* Wyckoff positions, with four times the required multiplicity to host K⁺ ions (eight per unit cell); μ_{box} only one in four lobes within each K+ cluster shown in Figure 3 must be considered as a carried thus, only one in four lobes within each K^+ cluster shown in Figure [3](#page-4-0) must be considered as occupied.

Figure 3. View of the KSbTeO₆ pyrochlore structure approximately along the [110] direction. It consists of a mainly covalent framework of $(Sb,Te)O₆$ octahedra sharing vertices, forming large cages wherein K⁺ ions are distributed at 32e Wyckoff sites with ¹/4 occupancy and large anisotropic atomic displacement parameters.

 T so-called (Sb,Te)O₆ octahedra are in fact slightly axially distorted, but they contain six equals equal six equals of α The so-called (Sb,Te)O₆ octahedra are in fact slightly axially distorted, but they contain six equal (3.87×1.8) (Sb,Te)-O interatomic distances of 1.9338(6) A (Table [2\)](#page-3-0), which compare well with 1.96 A, Shannon's
. The location of K+ ions at 32^e Wyckoff sites has been previously reported for the ASBT of the ASBT Of the ASBT O ionic radius sum [\[11\]](#page-6-4).

The location of K^+ ions at 32*e* Wyckoff sites has been previously reported for the ASbTeO₆ is the position of K^+ ions at 32*e* Wyckoff sites has been previously reported for the ASbTeO₆ series [\[6\]](#page-5-5). It is noteworthy that, in pioneering work on defect AB_2O_6 pyrochlores [\[12–](#page-6-5)[14\]](#page-6-6), the position of the A atoms was thought to be 8*a*; later on, the occupancy of (x, x, x) 32*e* positions, with x close to $1/8$ was suggested [\[15–](#page-6-7)[17\]](#page-6-8). For KSbTeO₆, the present work underlines the different results obtained \tilde{K} refining isotropic atomic displacement parameters $[x(K) = 0.1429(6)]$, thus with K⁺ at 32*e* Wyckoff sites; or anisotropic atomic displacement parameters, resulting in $x(K) = 0.126(3)$, very close to $1/8$ and thus equivalent (within experimental error) to 8*a* Wyckoff sites. If the K⁺ positions are fixed at the 8*a* site, the Rietveld fit does not improve and the atomic displacement parameters of all atoms remain similar.
 $T_{\text{max}} = 12.27 \frac{\text{m}}{\text{s}} (T_{\text{max}} - 1.2 \frac{\text{m}}{\text{s}})$

The K⁺ coordination is shown in Figure [4,](#page-5-6) with K-O distances of 3.05 and 3.07 Å (Table [2\)](#page-3-0) in a
The K+ coordination is shown in Figure 4, with K-O distances of 3.05 and 3.07 Å (Table 2) in a pseudo-octahedral coordination to oxygen atoms. In defect AB_2O_6 pyrochlores, it is worth recalling \cdots that for *x* equal or close to zero, the A atom can be considered as coordinated to six oxygen atoms only, ϵ forming a corrugated hexagon normal to the three-fold axis along the [111] direction. For increasing *x*, some new A-O distances decrease in such a way that for *x* equal to 1/8 (8*a* Wyckoff position in the *Fd3m* space group), A atoms occupy the center of a wide cage formed by 18 oxygens, six of them at relatively short distances $(3O + 3O')$, and 12 at larger distances $(3O'' +$ nine-additional oxygens, In the present structural description, with *x* virtual description, with an intermal electropic theories thermal electropic theories of the construction, with a structural electropic theories of the construction of the co which are not shown in Figure [4\)](#page-5-6).

In the present structural description, with *x* virtually 1/8, quite large anisotropic thermal ellipsoids $\sum_{n=0}^{\infty}$ (Figure [4\)](#page-5-6) were determined, with r.m.s. displacements of 0.324 Å and 0.172 Å along the long and short $\frac{1}{11}$ ellipsoid axes, respectively. Furthermore, the crystal structure described accounts for the large mobility ϵ of K⁺ ions within the pyrochlore cages and the easiness of ion exchange that leads to $(H_3O)SbTeO_6$ by treatment in H_2 SO₄ [\[1](#page-5-0)[,2\]](#page-5-1), thus enabling the conversion of the present material in a technologically important compound with exceedingly high ionic conductivity.

Figure 4. Close up of the coordination polyhedra around K⁺ ions enhancing the lobes of the anisotropic thermal ellipsoids, with K⁺ statistically occupying one in four lobes within each polyhedron. (Sb,Te)O₆ octahedra are not represented for clarity.

4. Conclusions 4. Conclusions

KSbTeO₆ exhibits a defect pyrochlore structure defined in the cubic *Fd*3*m* symmetry. The mainly covalent network formed by vertex-sharing $(Sb,Te)O_6$ octahedra enables weak interatomic interactions with K⁺ ions. A combined XRD and NPD study showed that K⁺ occupies 32*e* Wyckoff sites indistinguishable (within experimental error) from 8*a* sites, placed in the center of a large cage sites indistinguishable (within experimental error) from 8*a* sites, placed in the center of a large cage determined by 6 K-O distances in the range 3.05(3)–3.07(3) Å. The quite big anisotropic atomic determined by 6 K-O distances in the range 3.05(3)–3.07(3) Å. The quite big anisotropic atomic displacement parameters account for the easiness of ion exchange of this material to yield a product displacement parameters account for the easiness of ion exchange of this material to yield a product of technological importance, $(H_3O)SbTeO_6$ [2].

Acknowledgments: We thank the financial support of the Spanish MINECO to the project MAT2013-41099-R. **Acknowledgments:** We thank the financial support of the Spanish MINECO to the project MAT2013-41099-R. We are grateful to the Institut Laue-Langevin (ILL) in Grenoble for making all the facilities available. We are grateful to the Institut Laue-Langevin (ILL) in Grenoble for making all the facilities available.

Author Contributions: José Antonio Alonso and Xabier Turrillas conceived and designed the experiments; **Author Contributions:** José Antonio Alonso and Xabier Turrillas conceived and designed the experiments; Sergio Mayer, Horacio Falcón and María Teresa Fernández-Díaz performed the experiments; José Antonio Sergio Mayer, Horacio Falcón and María Teresa Fernández-Díaz performed the experiments; José Antonio Alonso and Xabier Turrillas analyzed the data; they all wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References References

- 1. Alonso, J.A.; Turrillas, X. Location of H⁺ sites in the fast proton-conductor $(H_3O)SbTeO_6$ pyrochlore. *Dalton Trans.* **2005**, 865–867. [\[CrossRef\]](http://dx.doi.org/10.1039/b414705g) [\[PubMed\]](http://www.ncbi.nlm.nih.gov/pubmed/15726137)
- 2. Soler, J.; Lemus, J.; Pina, M.P.; Sanz, J.; Aguadero, A.; Alonso, J.A. Evaluation of the pyrochlore (H₃O)SbTeO₆ as a candidate for electrolytic membranes in PEM fuel cells. *J. New Mater. Electrochem. Syst.* 2009, 12, 77–80.
- (H3O)SbTeO6 as a candidate for electrolytic membranes in PEM fuel cells. *J. New Mater. Electrochem. Syst.* 3. England, W.A.; Cross, M.G.; Hamnett, A.; Wiseman, P.J.; Goodenough, J.B. Fast proton conduction in **2009**, *12*, 77–80. inorganic ion-exchange compounds. *Solid State Ion.* **1980**, *1*, 231–249. [\[CrossRef\]](http://dx.doi.org/10.1016/0167-2738(80)90007-7)
- 3. England, W.A.; Cross, M.G.; Hamnett, A.; Wiseman, P.J.; Goodenough, J.B. Fast proton conduction in 4. Ozawa, K.; Wang, J.; Ye, J.; Sakka, Y.; Amano, M. Preparation and Some Electrical Properties of Yttrium-Doped inorganic ion-exchange compounds. *Solid State Ion.* **1980**, *1*, 231–249. Antimonic Acids. *Chem Mater.* **2003**, *15*, 928–934. [\[CrossRef\]](http://dx.doi.org/10.1021/cm020990i)
- 4. Ozawa, K.; Wang, J.; Ye, J.; Sakka, Y.; Amano, M. Preparation and Some Electrical Properties of Yttrium-5. Turrillas, X.; Delabouglise, G.; Joubert, J.G.; Fournier, T.; Muller, J. Un nouveau conducteur protonique Doped Antimonic Acids. *Chem Mater*. **2003**, *15*, 928–934. $HSDTO₆·xH₂O$. Conductivite en fonction de la temperature et de la pression partielle de vapeur d'eau.
Calid State Isu, 1995-17-160-174 *Solid State Ion.* **1985**, *17*, 169–174.
- 6. Subramanian, M.; Aravamudan, G.; Subba Rao, G.V. Oxide pyrochlores—A review. *Prog. Solid State Chem. Solid State Ion.* **1985**, *17*, 169–174. **1983**, *15*, 55–143. [\[CrossRef\]](http://dx.doi.org/10.1016/0079-6786(83)90001-8)6. Subramanian, M.; Aravamudan, G.; Subba Rao, G.V. Oxide pyrochlores—A review. *Prog. Solid State Chem.*
- 7. Alonso, J.A.; Castro, A.; Rasines, I. Study of the defect pyrochlores $A(SbTe)O_6$ (A = K, Rb, Cs, Tl). *J. Mater. Sci.* **1988**, *23*, 4103–4107. [\[CrossRef\]](http://dx.doi.org/10.1007/BF01106843)
- 8. Altomare, A.; Cuocci, C.; Giacovazzo, C.; Moliterni, A.; Rizzi, R.; Corriero, N.; Falcicchio, A. EXPO2013: A kit of tools for phasing crystal structures from powder data. *J. Appl. Cryst.* **2013**, *46*, 1231–1235. [\[CrossRef\]](http://dx.doi.org/10.1107/S0021889813013113)
- 9. Rietveld, H.M. A profile refinement method for nuclear and magnetic structures. *J. Appl. Crystallogr.* **1969**, *2*, 65–71. [\[CrossRef\]](http://dx.doi.org/10.1107/S0021889869006558)
- 10. Rodríguez-Carvajal, J. Recent advances in magnetic structure determination by neutron powder diffraction. *Physica B* **1993**, *192*, 55–69. [\[CrossRef\]](http://dx.doi.org/10.1016/0921-4526(93)90108-I)
- 11. Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. *Acta Crystallogr.* **1976**, *A32*, 751–767. [\[CrossRef\]](http://dx.doi.org/10.1107/S0567739476001551)
- 12. Babel, D.; Pausegang, G.; Werner, V. Die Struktur einiger Fluoride, Oxide und Oxidfluoride $\text{AMe}_2 X_6$: Der RbNiCrF⁶ -Typ. *Zeitschrift für Naturforschung B* **1967**, *22*, 1219–1220. [\[CrossRef\]](http://dx.doi.org/10.1515/znb-1967-1126)
- 13. Darriet, B.; Rat, M.; Galy, J.; Hagenmuller, R. Sur quelques nouveaux pyrochlores des systemes MTO₃ − WO³ et MTO³ − TeO³ (M = K, Rb, Cs, Tl; T = Nb, Ta). *Mater. Res. Bull.* **1971**, *6*, 1305–1315. [\[CrossRef\]](http://dx.doi.org/10.1016/0025-5408(71)90129-2)
- 14. El Haimouti, A.; Zambon, D.; El-Ghozzi, M.; Avignant, D.; Leroux, F.; Daoud, M.; El Aatmani, M. Synthesis, structural and physico-chemical characterization of new defect pyrochlore-type antimonates $K_{0.42}$ Ln_y $Sb_2O_{6+z'}$ and $Na_{0.36}$ Ln_y Sb_2O_{6+z} (0 < y, y'; z, z' < 1; Ln = Y, Eu and Gd) prepared by soft chemistry route. *J. Alloy. Compd.* **2004**, *363*, 130–137. [\[CrossRef\]](http://dx.doi.org/10.1016/S0925-8388(03)00485-7)
- 15. Fourquet, J.L.; Javobini, C.; de Pape, R. Les pyrochlores AIB_2X_6 : Mise en evidence de l'occupation par le cation AI de nouvelles positions cristallographiques dans le groupe d'espace *Fd*3*m*. *Mater. Res. Bull.* **1973**, *8*, 393–403. [\[CrossRef\]](http://dx.doi.org/10.1016/0025-5408(73)90043-3)
- 16. Pannetier, J. Energie electrostatique des reseaux pyrochlore. *J. Phys. Chem. Solids* **1973**, *34*, 583–589. [\[CrossRef\]](http://dx.doi.org/10.1016/S0022-3697(73)80163-5)
- 17. Castro, A.; Rasines, I.; Sanchez-Martos, M.C. Novel deficient pyrochlores A(MoSb)O₆ (A = Rb, Cs). *J. Mater. Sci. Lett.* **1987**, *6*, 1001–1003. [\[CrossRef\]](http://dx.doi.org/10.1007/BF01729113)

© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license [\(http://creativecommons.org/licenses/by/4.0/\)](http://creativecommons.org/licenses/by/4.0/.).