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Abstract: Indentation as a method to characterize materials has a history of more than 117 years.
However, to date, it is still the most popular way to measure the mechanical properties of various
materials at microscale and nanoscale. This review summarizes the background and the basic
principle of processing by indentation. It is demonstrated that indentation is an effective and efficient
method to identify mechanical properties, such as hardness, Young’s modulus, etc., of materials
at smaller scale, when the traditional tensile tests could not be applied. The review also describes
indentation process via both experimental tests and numerical modelling in recent studies.
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1. Introduction

Indentation tests were first performed by a Swedish iron mill’s technical manager Brinell who used
spherical balls from hardened steel ball bearings or made of cemented tungsten carbide as indenters to
measure the plastic properties of materials in 1900 [1–4]. Brinell’s testing approach is schematically
shown in Figure 1a. Brinell also proposed the following formula to determine the hardness

HB = 2P
πD(D−

√
D2−d2)

(1)

here HB is the Brinell hardness; P is the load; D is the diameter of the ball indenter and d is the diameter
of residual area of the impression.

Brinell’s work was then followed and improved by Meyer in 1908 [5]. In his work, the hardness
(H) is calculated by the load (P) divided by the projected area (A), namely

H =
P
A

(2)

In 1922, the Vickers test was carried out and commercialized by the Firth-Vickers company [6].
A square-based pyramid diamond indenter with a 136◦ semi-angle was used instead of a ball indenter,
as shown in Figure 1b. The Vickers hardness (HV) is defined as the load divided by the surface area of
the impression, namely

HV = 1.8544 P
d2

V
(3)

where dV is the length of diagonal of the surface area.
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Figure 1. Commonly used methods of indentation hardness tests: (a) spherical indenter (Brinell and 
Meyer); (b) diamond pyramid (Vickers) [7]. 

The Brinell, Meyer and Vickers methods were then widely used in the metallurgical and 
engineering industries in the early 20th century since indentation tests offered simplicity, low-cost 
and high speed compared with conventional tensile testing. No special shape or extra fabrication of 
sample is required for indentation tests except for a simple sample with a flat surface. In addition, 
several indentation tests could be quickly performed on a small area without destroying the whole 
sample. 

Another significant finding is that the hardness is load-dependent, which was proposed by 
Meyer through ball indentation experiments on a wide range of metals [7]. For a given ball size, the 
diameter of the impression after unloading was found to be related to the applied load by the 
following empirical relationship: ܲ = C݀  (4) 

here P is the applied load; C is a constant of proportionality; the exponent n is the well-known Meyer 
index and d is the diameter of the residual area of the impression after unloading. When the n-value 
is less than 2, according to Equations (2) and (4), the hardness increases with decreasing the load. 
While the n-value is larger than 2, the hardness decreases with decreasing the load. If the Meyer index 
equals to 2, the hardness is a constant, namely load-independent. For most metals that can be work 
hardened by the indentation process, n > 2 [7]. Therefore, the Meyer index has been found to be 
strongly dependent on the work hardening of the tested material and to be independent of the size 
of the ball indenter [5]. Meyer [5] also found that the same hardness using balls of different diameters 
could be obtained only if the indentations were geometrically similar, namely with the same ratio 
d/D. 

Tabor’s work [8] performed in 1948 represents a landmark in the understanding of the 
indentation process. He qualitatively described the procedure how an indentation by a ball initially 
led to elastic deformation, then to plastic flow associating with work hardening, and final on removal 
of the load to elastic recovery. In 1951, Tabor [1] had proven that the indentation hardness (H) could 
be related to the yield stress (σ) of the material by an equation based on the theory of indentation of 
a rigid perfectly plastic solid, namely ܪ = C(5)  ߪ 

where C is a constant, which depends on the geometry of the indenters. For the strain-hardened 
materials and the materials which consequently have no definite yield stress, the stress measured at 
a representative strain εr can be used as σ [9]. The representative strain denotes the strain at where 
the corresponding stress can be regarded as the yield stress during tensile deformation for the 
materials without definite yield stress. The value of the representative strain is relevant to the 
geometry of the indenter. For instance, ߝ୰ ≈ 0.08 for a Vickers diamond indenter. 

Tabor [7] started taking an interest in the indentation response of polymers and of 
macroscopically brittle materials in the studies of their frictions. In the following couple of years, 

Figure 1. Commonly used methods of indentation hardness tests: (a) spherical indenter (Brinell and
Meyer); (b) diamond pyramid (Vickers) [7]. Reproduced with permission from Ian M. Hutchings,
Journal of Materials Research; published by Cambridge University Press, 2009.

The Brinell, Meyer and Vickers methods were then widely used in the metallurgical and
engineering industries in the early 20th century since indentation tests offered simplicity, low-cost and
high speed compared with conventional tensile testing. No special shape or extra fabrication of sample
is required for indentation tests except for a simple sample with a flat surface. In addition, several
indentation tests could be quickly performed on a small area without destroying the whole sample.

Another significant finding is that the hardness is load-dependent, which was proposed by
Meyer through ball indentation experiments on a wide range of metals [7]. For a given ball size, the
diameter of the impression after unloading was found to be related to the applied load by the following
empirical relationship:

P = Cdn (4)

here P is the applied load; C is a constant of proportionality; the exponent n is the well-known Meyer
index and d is the diameter of the residual area of the impression after unloading. When the n-value
is less than 2, according to Equations (2) and (4), the hardness increases with decreasing the load.
While the n-value is larger than 2, the hardness decreases with decreasing the load. If the Meyer index
equals to 2, the hardness is a constant, namely load-independent. For most metals that can be work
hardened by the indentation process, n > 2 [7]. Therefore, the Meyer index has been found to be
strongly dependent on the work hardening of the tested material and to be independent of the size of
the ball indenter [5]. Meyer [5] also found that the same hardness using balls of different diameters
could be obtained only if the indentations were geometrically similar, namely with the same ratio d/D.

Tabor’s work [8] performed in 1948 represents a landmark in the understanding of the indentation
process. He qualitatively described the procedure how an indentation by a ball initially led to elastic
deformation, then to plastic flow associating with work hardening, and final on removal of the load to
elastic recovery. In 1951, Tabor [1] had proven that the indentation hardness (H) could be related to the
yield stress (σ) of the material by an equation based on the theory of indentation of a rigid perfectly
plastic solid, namely

H = Cσ (5)

where C is a constant, which depends on the geometry of the indenters. For the strain-hardened
materials and the materials which consequently have no definite yield stress, the stress measured at
a representative strain εr can be used as σ [9]. The representative strain denotes the strain at where the
corresponding stress can be regarded as the yield stress during tensile deformation for the materials
without definite yield stress. The value of the representative strain is relevant to the geometry of the
indenter. For instance, εr ≈ 0.08 for a Vickers diamond indenter.

Tabor [7] started taking an interest in the indentation response of polymers and of macroscopically
brittle materials in the studies of their frictions. In the following couple of years, Tabor and
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King [10] reported the method of estimating the yield pressure on polyethylene, PMMA (Polymethyl
methacrylate), PTFE (Polytetrafluoroethylene), and halocarbon polymer via Vickers hardness
measurements. Subsequently, Pascoe and Tabor [11] reported a range of polymers obeyed Meyer’s
laws. The single-crystal rock salt was also investigated by King and Tabor [12] with Vickers
indentations, by which, they found the values of yield stress from the indentation matched well
with the compression experiments.

In 1960s, indentation at high temperature was investigated by Atkins and Tabor [13]. They studied
the mechanical properties of single crystals of MgO at temperatures of 600 ◦C to 1700 ◦C via the mutual
indentation hardness technique. It was found that the short-time hardness decreased when the
temperature increased.

Conventional indentation tests have the length scale of the penetration in microns or millimetres.
In the mid-1970s, the indentation technique was applied to measure the hardness of small volumes
of material, such as thin film. The length scale of the penetration is usually in nanometres.
Therefore, this new technique is called nanoindentation. Apart from the penetration length scale, the
distinguishing feature of nanoindentation testing is the indirect measurement of the contact area [14].
In conventional indentation tests, the contact area is directly measured from the residual impression
area. In nanoindentation test, the residual impression area is too small to be directly measured.
Therefore, the contact area is determined by the measured penetration depth in nanoindentation.

Since 1980s, especially after 1990s, extensive experimental studies of nanoindentation have been
performed on many different types of materials. This review will provide the systematic description
of indentation study of materials via both experimental and numerical methods. The contents of
this article can be summarized as follows. The first section provides the background necessary for
understanding the mechanics of indentation and hence for understanding its applications in materials
science. The second part reviews methods of mechanical properties characterization and measurement
and follows with application to experimental measurement reported in the literature. Next, we discuss
the numerical study of deformation mechanism of materials induced by indentation. We follow with
a comprehensive review of the models involved in texture and indentation size effect prediction,
ranging in length scale from the meso- and micro- to the nanoscale, and a critical assessment of
their performance.

2. Nanoindentation Facilities

The most famous manufacturers of nanoindentation equipment include Keysight Technologies
(Santa Rosa, CA, USA), Micro Materials Ltd. (Wrexham, UK), Fischer-Cripps Laboratories Pty Ltd.
(Killarney Heights, Australia), Hysitron Inc. (Eden Prairie, MN, USA), and Anton Paar (Ashland,
VA, USA). The iconic products of these manufacturers are shown in Figure 2. The working theories of
different representative instruments are given in Figure 3. All of these instruments include three principal
parts, namely indenter, load application, and capacitive sensor for measuring the displacements of the
indenter. For instance, in Figure 3a, the load is applied by an electromagnetic coil which is connected
to the indenter shaft by a series of leaf springs. The deflection of the springs is a measure of the load
applied to the indenter, and the displacement usually can be measured by a capacitive sensor.
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Figure 2. Commercial representative indentation instruments: (a) Nano-Indenter XP (Keysight 
Technologies); (b) Ultra-Micro-Indentation System (IBIS); (c) TS-75-TriboScope (Hysitron); (d) Table-
Topnanoindentation (Anton Paar). 

 
Figure 3. Sketches of the representative indentation instruments: (a) Nano-Indenter; (b) The Ultra-
Micro-Indentation System (UMIS); (c) TriboScope; (d) The Nano-Hardness Tester (NHT) [15]. 

The indenter is conventionally made of diamond which has been ground to shape and sintered 
in a stainless steel chuck. The frequently used shapes of indenter are shown in Figure 4a–f [16]. The 
conical indenter has a sharp, self-similar geometry. Normally, the cone angle is either 60° or 90°, and 
the tip radii are 0.7, 1, 2, 5, 10, 20, 50, 100 and 200 μm [16]. The applications of conical indenter are 
extensive, including scratch testing, wear testing, nano-scale 3D imaging capturing and tensile, and 
compression tests on MEMS (Microelectromechanical systems). Berkovich indenter is the most 
frequently used indenter for indentation tests. The most noticeable feature of Berkovich indenter is 
that it is a three-sided pyramid which can be ground to a point, making it easy to maintain a self-
similar geometry to micro-scale or nano-scale. The radius is about 150 nm when it is new and will 
become 250 nm 12 months later. The applications of Berkovich indenter are much more extensive, 
such as bulk materials tests, thin films tests, polymers tests, scratch testing, wear testing, MEMS tests 
and in situ imaging. The Vickers indenter is a four-sided pyramid and suitable for measuring 
mechanical properties on the very small scale, such as nano-scale as the line of conjunction at the tip 
limits the sharpness of tip for determination of hardness for very shallow indentation. The 
recommended applications include bulk materials tests, films and foils tests, scratch testing and wear 
testing.  

Figure 2. Commercial representative indentation instruments: (a) Nano-Indenter XP (Keysight
Technologies); (b) Ultra-Micro-Indentation System (IBIS); (c) TS-75-TriboScope (Hysitron);
(d) Table-Topnanoindentation (Anton Paar).
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Figure 3. Sketches of the representative indentation instruments: (a) Nano-Indenter; (b) The
Ultra-Micro-Indentation System (UMIS); (c) TriboScope; (d) The Nano-Hardness Tester (NHT) [15].

The indenter is conventionally made of diamond which has been ground to shape and sintered
in a stainless steel chuck. The frequently used shapes of indenter are shown in Figure 4a–f [16].
The conical indenter has a sharp, self-similar geometry. Normally, the cone angle is either 60◦ or 90◦,
and the tip radii are 0.7, 1, 2, 5, 10, 20, 50, 100 and 200 µm [16]. The applications of conical indenter
are extensive, including scratch testing, wear testing, nano-scale 3D imaging capturing and tensile,
and compression tests on MEMS (Microelectromechanical systems). Berkovich indenter is the most
frequently used indenter for indentation tests. The most noticeable feature of Berkovich indenter is that
it is a three-sided pyramid which can be ground to a point, making it easy to maintain a self-similar
geometry to micro-scale or nano-scale. The radius is about 150 nm when it is new and will become
250 nm 12 months later. The applications of Berkovich indenter are much more extensive, such as
bulk materials tests, thin films tests, polymers tests, scratch testing, wear testing, MEMS tests and in
situ imaging. The Vickers indenter is a four-sided pyramid and suitable for measuring mechanical
properties on the very small scale, such as nano-scale as the line of conjunction at the tip limits the
sharpness of tip for determination of hardness for very shallow indentation. The recommended
applications include bulk materials tests, films and foils tests, scratch testing and wear testing.
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much higher stresses and strains in the area in contact with the indenter, thus makes it capable of 
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microscale or nanoscale can be investigated via these induced fine cracks. Meanwhile, the Cube-
corner indenter is fairly fragile and easily broken. The spherical indenter can be used to examine 
yielding and work hardening theoretically. Moreover, the elastic-plastic transition can also be 
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In 1992, Oliver and Pharr [18] proposed a method to measure the Young’s modulus based on the 
indentation load-displacement curve, which was frequently used until now. Subsequently, they [19] 
provided a update of how to implement the method to make the most accurate measurents as well 
as the discussion of its limitations. Kucharski and Mroz [20] presented a new procedure for 
determining the plastic stress—strain curve by means of a cyclic spherical indentation test in 2007, 
which constitutes an ground-breaking improvement with respect to the traditional method. Kruzic 
et al. [21] improved the indentation techniques of evaluating the fracture toughness of biomaterials 
and hard human bones although accurately measuring the fracture toughness of brittle materials can 
be quite challenging. The fracture toughness can be obtained directly from indent crack length 
measurements, as shown in Figure 5.  

Figure 4. Shapes of different indenters: (a) Conical indenter; (b) Berkovich indenter; (c) Vickers
indenter; (d) Knoop indenter; (e) Cube-corner indenter; (f) Spherical indenter [16].

The Knoop indenter is originally designed for hard metals. It is also can be used to probe
anisotropy in sample surface. The Cube-corner indenter is a three-sided pyramid with mutually
perpendicular faces, which is like the corner of a cube. The sharpness of the cube corner produces
much higher stresses and strains in the area in contact with the indenter, thus makes it capable of
producing very small and well-defined cracks around imprint in brittle materials. The toughness at
microscale or nanoscale can be investigated via these induced fine cracks. Meanwhile, the Cube-corner
indenter is fairly fragile and easily broken. The spherical indenter can be used to examine yielding
and work hardening theoretically. Moreover, the elastic-plastic transition can also be investigated.
The reason is, the contact stresses with spherical indenter are initially small and produce only elastic
deformation, and with increasing indentation depth, a transition from elastic to plastic deformation
can be captured. The parameters of all these indenters are listed in Table 1. Here, A denotes the
projected area; R represents the contact radius of the indent pressed by spherical indenter; hp is the
contact indentation depth; θ represents the semi angle of indenters; a is the effective cone angle and β

denotes the geometry correction factor.

Table 1. Parameters of different indenters [17].

Indenter Type Projected Area Semi Angle (θ) Effective Cone
Angle (a)

Intercept
Factor

Geometry Correction
Factor (β)

Sphere A ≈ π2Rhp N/A N/A 0.75 1
Berkovich A = 3hp

2tan2θ 65.3◦ 70.2996◦ 0.75 1.034
Vickers A = 4hp

2tan2θ 68◦ 70.32◦ 0.75 1.012
Knoop A = 2hp

2tanθ1tanθ2 θ1 = 86.25◦ θ2 = 65◦ 77.64◦ 0.75 1.012
Cube-corner A = 3hp

2tan2θ 35.26◦ 42.28◦ 0.75 1.034
Conical A = πhp

2tan2a a a 0.72 1

3. Application of Nanoindentation in Materials

In 1992, Oliver and Pharr [18] proposed a method to measure the Young’s modulus based on the
indentation load-displacement curve, which was frequently used until now. Subsequently, they [19]
provided a update of how to implement the method to make the most accurate measurents as well as
the discussion of its limitations. Kucharski and Mroz [20] presented a new procedure for determining
the plastic stress—strain curve by means of a cyclic spherical indentation test in 2007, which constitutes
an ground-breaking improvement with respect to the traditional method. Kruzic et al. [21] improved
the indentation techniques of evaluating the fracture toughness of biomaterials and hard human bones
although accurately measuring the fracture toughness of brittle materials can be quite challenging.
The fracture toughness can be obtained directly from indent crack length measurements, as shown
in Figure 5.
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bottom corner of the indentation; (e) shows a crack with 1 = 10 μm, which is one of the two cracks 
emanated from indent corners among 30 corners. High-magnification imaging of the top right corner; 
(f) revealed that no cracks were generated from this indent corner [21]. 

Huber and Tsakmakis [22] proposed that nanoindentation tests can be used to identify effects of 
kinematic hardening on the material response. They also indicated that the identification may rely 
on the measurement of the opening of the hysteresis loop produced in the indentation load-
displacement curve as shown in Figure 6. It is obvious that each material has a unique opening 
diagram indicating the corresponding effect of kinematic hardening.  

 
Figure 6. Opening of experimental measured hysteresis loops [22]. 

Durban and Masri [23] in 2007 found that the nanoindentation test data with conical indenter 
over a range of cone angles can be used to reconstruct the axial stress-strain curve. Mata et al. [24] 
modified the previous hardness formulation within the elastic-plastic transition derived for solids by 
Hill [25] in 1950 and Marsh [26] in 1964 as it did not exhibit strain hardening. 

Application of nanoindentation tests to determine the mechanical properties of surface coatings 
is another milestone. Normally, the investigations of the mechanical properties of the coatings are 
difficult as the traditional compression and tensile tests are unable to apply well at very small scales. 
Rodriguez et al. [27] performed depth sensing indentation in plasma sprayed Al2O3–13% TiO2 nano-
coatings in order to determine the Young’s modulus and hardness. It was found the mechanical 
properties were dramatically enhanced in the nanostructured coating compared to the conventional 
one, which is shown in Figure 7. Swain, Menčík and their coworkers [28,29] investigated the 
application of five approximation functions (linear, exponential, reciprocal exponential, Gao’s, and 
the Doerner and Nix functions) for determining the Elastic modulus of thin homogeneous films. By 

Figure 5. Indentation site on the transverse section of human cortical bone. Images are of
(a) as-indented; (b) dehydrated; (c) ESEM (environmental scanning electron microscope) and (d) SEM.
The bottom corner of the indentation; (e) shows a crack with 1 = 10 µm, which is one of the two cracks
emanated from indent corners among 30 corners. High-magnification imaging of the top right corner;
(f) revealed that no cracks were generated from this indent corner [21]. Reproduced with permission
from J.J. Kruzic et al., Journal of the Mechanical Behavior of Biomedical Materials; published by
Elsevier, 2009.

Huber and Tsakmakis [22] proposed that nanoindentation tests can be used to identify effects of
kinematic hardening on the material response. They also indicated that the identification may rely on
the measurement of the opening of the hysteresis loop produced in the indentation load-displacement
curve as shown in Figure 6. It is obvious that each material has a unique opening diagram indicating
the corresponding effect of kinematic hardening.
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Figure 6. Opening of experimental measured hysteresis loops [22]. Reproduced with permission from
N. Huber et al., Mechanics of Materials; published by Elsevier, 1998.

Durban and Masri [23] in 2007 found that the nanoindentation test data with conical indenter
over a range of cone angles can be used to reconstruct the axial stress-strain curve. Mata et al. [24]
modified the previous hardness formulation within the elastic-plastic transition derived for solids by
Hill [25] in 1950 and Marsh [26] in 1964 as it did not exhibit strain hardening.

Application of nanoindentation tests to determine the mechanical properties of surface coatings is
another milestone. Normally, the investigations of the mechanical properties of the coatings are
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difficult as the traditional compression and tensile tests are unable to apply well at very small
scales. Rodriguez et al. [27] performed depth sensing indentation in plasma sprayed Al2O3–13% TiO2

nano-coatings in order to determine the Young’s modulus and hardness. It was found the mechanical
properties were dramatically enhanced in the nanostructured coating compared to the conventional
one, which is shown in Figure 7. Swain, Menčík and their coworkers [28,29] investigated the application
of five approximation functions (linear, exponential, reciprocal exponential, Gao’s, and the Doerner
and Nix functions) for determining the Elastic modulus of thin homogeneous films. By conducting
various experimental testes, they found that generally the Gao analytical function is able to predict
the indentation response of film/substrate composites. For determining the thin film modulus from
experimental data, satisfactory results can also be obtained with the exponential function, while
linear function can only be used for thick films where the relative depths of penetration are small.
For determing the hardness of thin films, Jönsson and Hogmark [30] built a physical model which was
verified for chromium films on four different substrate materials.
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Thin water film was studied by Opitz et al. [31] in 2003. It was believed that the thin water films
which covered most of the micro-scale and nano-scale surfaces could be particularly important for
microelectromechanical systems (MEMS) and the upcoming nanoelectromechanical systems (NEMS),
as they played a critical role in defining the micro- and nano-tribological properties of a system.
Kim et al. [32] presented a nanoindentation method to measure the Poisson’s ratio of thin films
for MEMS applications. In their test, a double-ring-shaped sample was designed to conduct the
measurement of the Poisson’s ratio as shown in Figure 8. The load-deflection data of the double
ring sample after nano-indenter loading was analysed to obtain the Poisson’s ratio. Lou et al. [33]
investigated the mechanical behaviour of LIGA (an acronym of the German words “lithographie,
galvanoformung, abformung”) nickel MEMS structures which were developed for applications in
micro-switches and accelerometers via the nanoindentaion method. Both Berkovich and Cube-corner
indenter were used to conduct the nanoindentation tests and study the effects of residual indentation
depth on the hardness of LIGA Ni MEMS structures between the mico-scale and nano-scales. Almost no
apparent size dependence has been found for LIGA Ni films indented by a Berkovich indenter.
In contrary, the hardness dramatically increased with decreasing residual indent depth for films
indented by the Cube-corner indenter.
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Jong-Hoon Kim et al., Sensors and Actuators A: Physical; published by Elsevier, 2003.

Indentation tests were also used to evaluate adhesion strength of the thermal barrier coatings
(TBCs) which were used to improve the performance and efficiency of advanced gas turbines [34–38].
Interfacial strength was one of the most important properties in TBCs, and traditional tensile method
was found to be restricted due to the size dependence. Yamazaki et al. [39] used the indentation
method to investigate the interfacial strength of TBC which was subjected to thermal cycle fatigue.
An indent was made directly at the interface on the polished surface of the sample as shown in Figure 9.
The crack length and the diagonal length of the indentation were measured using SEM right after
indentation as shown in Figure 10. The typical interfacial crack initiated by the indentation test in
Figure 10a showed the crack mainly propagated in the ceramic top coat near the interface. Even after
500 thermal cycles with the formation and growth of TGO (thermally grown oxide) layer shown in
Figure 10b, the crack propagated only in the ceramic top coat too.
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The dependence of nanoindentation piling-up patterns and of micro-textures on the
crystallographic orientation was studied by Wang et al. [40] using high purity copper single crystal with
three different initial orientations. The indentation tests were performed on a Hysitron nanoindentation
setup using a conical indenter to avoid symmetries. The results are shown in Figure 11. Four-, two-,
and sixfold symmetrical piling-up patterns were captured on the surface of (001), (011) and (111) initial
oriented single crystal, individually, which could be explained in terms of the strong crystallographic
anisotropy of the out-of-plane displacements around the indenter.
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and (c) (111) oriented copper single crystal surfaces after indentation with a conical indenter [40].
Reproduced with permission from Y. Wang et al., Acta Materialia; published by Elsevier, 2004.

With the development of focused ion beam milling of site-specific electron transparent foils, the
investigation of cross-sections of nanoindentations with the transmission electron microscope (TEM)
or electron backscatter diffraction has recently become feasible [41]. Lloyd [42] and his colleagues
combined nanoindentation and TEM to survey the deformation behaviour in a range of single crystal
materials with different resistances to dislocation flow as shown in Figure 12. The principal deformation
models included phase transformation (silicon and germanium), twinning (gallium arsenide and
germanium at 400 ◦C), lattice rotations (spinel), shear (spinel), lattice rotations (copper) and lattice
rotations and densification (TiN/NbN multilayers). Generally, the residual impresses were sectioned
through the tip of the indent with the thin foil normal approximately parallel to either [110] or [100]
zone axis.
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structure is observed here after the load has been removed, allowing the high-pressure phase to 
transform back to a mixture of other structures [43]. 

Figure 12. (a) Schematic illustrating how the indents were sectioned in the FIB to allow examination
with a TEM; (b) Secondary electron FIB image of the final stages of preparation of a thin foil through
a 50 mN indent in silicon [42]. Reproduced with permission from S.J. Lloyd et al., Proceedings of the
Royal Society A; published by The Royal Society, 2005.



Crystals 2017, 7, 258 10 of 38

The indents in (001) silicon at loads of 30 mN and 60 mN are shown in Figure 13. It was found
a transformed region was under the area of the Berkovich indenter in both cases, and a crack was
originating at the base of the transformed region in the case of 60 mN.

Crystals 2017, 7, 258  9 of 35 

 

With the development of focused ion beam milling of site-specific electron transparent foils, the 
investigation of cross-sections of nanoindentations with the transmission electron microscope (TEM) 
or electron backscatter diffraction has recently become feasible [41]. Lloyd [42] and his colleagues 
combined nanoindentation and TEM to survey the deformation behaviour in a range of single crystal 
materials with different resistances to dislocation flow as shown in Figure 12. The principal 
deformation models included phase transformation (silicon and germanium), twinning (gallium 
arsenide and germanium at 400 °C), lattice rotations (spinel), shear (spinel), lattice rotations (copper) 
and lattice rotations and densification (TiN/NbN multilayers). Generally, the residual impresses were 
sectioned through the tip of the indent with the thin foil normal approximately parallel to either [110] 
or [100] zone axis.  

 
Figure 12. (a) Schematic illustrating how the indents were sectioned in the FIB to allow examination 
with a TEM; (b) Secondary electron FIB image of the final stages of preparation of a thin foil through 
a 50 mN indent in silicon [42]. 

The indents in (001) silicon at loads of 30 mN and 60 mN are shown in Figure 13. It was found a 
transformed region was under the area of the Berkovich indenter in both cases, and a crack was 
originating at the base of the transformed region in the case of 60 mN.  

 
Figure 13. Bright field images of indents in silicon formed with loads of (a) 30 mN and (b) 60 mN. The 
structure is observed here after the load has been removed, allowing the high-pressure phase to 
transform back to a mixture of other structures [43]. 

Figure 13. Bright field images of indents in silicon formed with loads of (a) 30 mN and (b) 60 mN.
The structure is observed here after the load has been removed, allowing the high-pressure phase to
transform back to a mixture of other structures [43]. Reproduced with permission from S.J. Lloyd et al.,
Philosophical Magazine A; published by Taylor & Francis, 2002.

Shear bands were captured in spinel crystals, which are shown in Figures 14 and 15. It was
found the shear band spacing increased with increasing distance from the indent tip, and the spacing
on the steep side of the indent was a little smaller for the large load. Lloyd [43] concluded that the
increase of the shear band spacing with distance far away from the indenter tip indicated there was
a limit to the amount of displacement occurring through any shear band due to strain hardening.
Consequently, a high concentration of shear bands was close to the indenter tip where had the largest
vertical displacements, while a low density of slip bands was sufficient to accommodate the relatively
small vertical displacement in the region far away from the indenter tip.
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Figure 14. (a) Bright field image of an 80 mN indent in spinel with an inset diffraction pattern; (b) Bright
field image of a 60 mN indent in spinel showing the region of shear bands under the indent more
clearly; (c) Schematic illustrating the principle components of the deformation pattern in spinel [42].
Reproduced with permission from S.J. Lloyd et al., Proceedings of the Royal Society A; published by
The Royal Society, 2005.
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Figure 15. Slip band spacing in spinel as a function of distance from the indenter tip (see Figure 14b) for
the 50 mN and 80 mN indents. The error in measurement of the shear band spacing is approximately
10 nm [42]. Reproduced with permission from S.J. Lloyd et al., Proceedings of the Royal Society A;
published by The Royal Society, 2005.

Lattice rotation angles around an axis perpendicular to the [110] zone axis were investigated [42]
and are shown in Figure 16. It was found the rotations only occurred in the region immediately below
the indent impression. The greatest rotations were quite near the indent tip and the magnitude of
rotation angles decreased significantly with the increasing distance from the indent tip along the
surface on the shallow side.
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Figure 16. (a) Bright field image of a 50 mN indent in spinel with lattice rotations (in degrees) at
selected positions indicated; (b,c) are dark field images of the surface of the same indent taken using
streaks from either side of the 004 reflection [42]. Reproduced with permission from S.J. Lloyd et al.,
Proceedings of the Royal Society A; published by The Royal Society, 2005.

The indentation-induced plastic zones below indentations in copper single crystals, with depths
ranging from 250 nm to 250 µm, were examined by Rester et al. [44] via the implementation of focussed
ion beam (FIB) and electron backscatter diffraction (EBSD) techniques. Two or three distinguishable
regimes shown in Figure 17 were captured by analysing scanned orientation micrographs. Meanwhile,
the changes in the evolution of the microstructure were reflected in the hardness curve shown in
Figure 18. Regime α described the impression which is smaller than 300 nm, in which no significant
orientation changes are observed by EBSD (Figure 17a). Regime β describes the indentation depth
between 300 nm and 30 µm, which is characterized by regions having noticeable changes of the
orientation (Figure 17c,d). It was also found that the orientation differences increase with growing
indentation depth in this regime. Regime γ is associated with indentation depth larger than 30 µm
exhibiting a typical substructure of FCC (face centered cubic) single crystal of pure metals during
indentation. Therefore, Rester et al. [44] concluded that the hardness of a material varies with the
size of the indent impression and the source size becomes the dominant effect only for very small
impressions (i.e., in regime α).
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Zaafarani et al. [45] investigated texture and microstructure below a conical nano-indent in a
(111) oriented Cu single crystal using 3D EBSD. The tests were performed using a joint high-resolution
field emission scanning electron microscopy/electron backscatter diffraction (EBSD) set-up coupled
with serial sectioning in a focused ion beam system in the form of a cross-beam 3D crystal orientation
microscope (3D EBSD) as shown in Figure 19.

The EBSD tests conducted in sets of subsequent
(
112
)

cross-section planes exhibited a pronounced
deformation-induced 3D patterning of the lattice rotations below and around the indent, which are
shown in Figure 20.
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together with a focussed ion beam (FIB) system in the form of a cross-beam 3D crystal orientation 
microscope for conducting 3D EBSD measurements by serial sectioning (Zeiss); (b) Schematic of the 
joint FIB/EBSD set-up; (c) Schematic of the FIB sectioning geometry [45]. 
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Figure 19. (a) Joint high-resolution field emission SEM/electron backscatter diffraction (EBSD) set-up
together with a focussed ion beam (FIB) system in the form of a cross-beam 3D crystal orientation
microscope for conducting 3D EBSD measurements by serial sectioning (Zeiss); (b) Schematic of the
joint FIB/EBSD set-up; (c) Schematic of the FIB sectioning geometry [45]. Reproduced with permission
from N. Zaafarani et al., Acta Materialia; published by Elsevier, 2006.
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4. Nanoindentation Size Effect of Materials

Over the past several decades, with the development of new technologies, people felt that it was
very important to understand how materials perform at small scales because the mechanical properties
are significantly different from those at macro-scales. Therefore, a great number of researchers became
interested in micro- and nano-scale deformation phenomena which also made them try to look for
a new method to examine these physical phenomena at ever-decreasing length scales. In the field
of the mechanical behaviour of materials, one of the more interesting small-scale phenomena is an
increase in yield or flow strength that is often observed when the size of the test sample is reduced
to micro-meter and sub-micrometer dimensions [46]. Pharr et al. [46] believed such size-dependent
increases in strength were due to unique deformation phenomena which could be observed only when
the sample dimensions approached the average dislocation spacing and when plastic deformation was
controlled by a limited number of defects.

In the metal micro-forming process, grain size, grain orientation and material’s dimension are the
important influence factors for the material’s deformation. It is reported that when the dimension of
the material is downscaled to a much smaller scale, the mechanical properties are significantly different
from those on the macro-scale, which is called ‘size effect’ [47]. Size effect is an interesting and important
topic for the development of micro-forming technologies. Recently, numerous experiments have shown
that metallic materials display noticeable size effects once the size of non-uniform plastic deformation
zone associated their characteristic length size are on the order of microns [47]. Fleck et al. [48] found
a dramatic increase of plastic work hardening when the wire’s diameter decreased from 170 µm to
12 µm via doing thin copper wire’s torsion experiments. Stolken and Evans [49] observed that the
plastic work hardening increased significantly when the nickel beam thickness was decreased from
50 µm to 12.5 µm while doing a micro-bend test. Gau et al. [50] found that the conventional concept of
spring-back cannot be applied on brass sheet metal when its thickness is less than 350 µm by studying



Crystals 2017, 7, 258 16 of 38

the spring-back behaviour of brass in micro-sheet forming. Geiger et al. [51] and Kals and Eckstein [52]
have conducted compression tests, tension tests, and bending tests, respectively, in order to study
how the material properties change due to size effect. Saotome et al. [53] carried out investigations in
micro-deep drawing, and found that the relative punch diameter (punch diameter related to the sheet
thickness) has a significant influence on the limit draw ratios (LDR).

The indentation size effect (ISE) is often observed for materials that are indented with
geometrically self-similar indenters like pyramidal or conical tips (see Figure 21) [46]. In general, the
hardness, H, defined as the load on the indenter normalized with the projected contact area of the
hardness impression (see Figure 21), should be independent of the depth of penetration, h. However,
over the past 60 years, it was observed that there were significant variations of hardness with respect
to penetration depth, especially when the depths decreased to less than a few micro-meters [54–60].
In addition, two types of indentation size effects have been reported. One is the normal ISE (the
tip is pyramidal or conical)—the hardness increases with decreasing penetration depths, according
to the expression “smaller is stronger” (see Figure 21). Another one is the reverse ISE (the tip is
spherical) [55,56,61], which displayed that the hardness decreases with increasing depths. However,
for the reverse ISE, it was observed that the hardness also increases with the decreasing of tip radius.
The reverse ISE is thought to be derived from testing artefacts such as vibration in the testing system
or problems with accurate imaging and measuring the sizes of hardness impressions at dimensions
approaching the limits of optical microscopy [46].

Although classical descriptions of the ISE show a decrease in hardness for increasing indentation
depth (Figure 22), recently new experiments [62] have shown that after the initial decrease, hardness
increases with increasing indentation depth. After this increase, eventually the hardness decreases
with increasing indentation (Figure 23). This phenomenon is very prominent for copper, but not
noticeable for aluminium.Crystals 2017, 7, 258  15 of 35 

 

 
 
 

 

 

 

 
Figure 21. Indentation size effect (ISE) (a) for geometrically self-similar indenters such as a conical or 
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Figure 21. Indentation size effect (ISE) (a) for geometrically self-similar indenters such as a conical
or pyramidal tip (b) [46]. Reproduced with permission from George M. Pharr et al., Proceedings of
Annual Review of Materials Research; published by Annual Reviews, 2010.
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Figure 22. Visualization of the ISE: hardness decreases with increasing indentation depth for
cold-worked polycrystalline copper [62]. Reproduced with permission from G.Z. Voyiadjis et al.,
Acta Mechanica; published by Springer, 2010.
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Figure 23. Visualization of the ISE with the incorporated hardening effect. For h < h1, hardness
decreases, for h1 < h < h2, hardness increases and for h > h2, hardness decreases again [62]. Reproduced
with permission from G.Z. Voyiadjis et al., Acta Mechanica; published by Springer, 2010.

There are different theories to explain ISE. The most popular theory is based on strain gradient
plasticity which is a class of continuum theories aimed to bridge the gap between classical plasticity
and dislocation. This theory assumes that the flow stress of metals depend on the density of statistically
stored dislocations (SSD) which relate to effective strain, and the density of the geometrically necessary
dislocations (GND) which relate to the strain gradient. Dislocations are generated, moved and stored
during the process of plastic deformation. The process of storing dislocation is also a process of strain
hardening. It is assumed that dislocations become stored because they either accumulate by randomly
trapping each other or they are required for compatible deformation of various parts of the material.
When they randomly trap each other, they are often known as the statistically stored dislocation [63],
whereas when they are required for the compatibility purpose, they are often called geometrically
necessary dislocations and related to the gradient of plastic shear strain in a material [63,64].

The most famous strain gradient plasticity model for nanoindentation was proposed by Nix and
Gao [65] in 1998. It has been assumed that plastic deformation of the surface is accompanied by the
generation of dislocation loops below the surface, which are contained in an approximately hemispherical
volume below the region in contact, as shown schematically in Figure 24. The deformation is self-similar
and the angle (θ) between the conical indentation tip and indented surface remains constant.



Crystals 2017, 7, 258 18 of 38

Crystals 2017, 7, 258  16 of 35 

 

There are different theories to explain ISE. The most popular theory is based on strain gradient 
plasticity which is a class of continuum theories aimed to bridge the gap between classical plasticity 
and dislocation. This theory assumes that the flow stress of metals depend on the density of 
statistically stored dislocations (SSD) which relate to effective strain, and the density of the 
geometrically necessary dislocations (GND) which relate to the strain gradient. Dislocations are 
generated, moved and stored during the process of plastic deformation. The process of storing 
dislocation is also a process of strain hardening. It is assumed that dislocations become stored because 
they either accumulate by randomly trapping each other or they are required for compatible 
deformation of various parts of the material. When they randomly trap each other, they are often 
known as the statistically stored dislocation [63], whereas when they are required for the 
compatibility purpose, they are often called geometrically necessary dislocations and related to the 
gradient of plastic shear strain in a material [63,64]. 

The most famous strain gradient plasticity model for nanoindentation was proposed by Nix and 
Gao [65] in 1998. It has been assumed that plastic deformation of the surface is accompanied by the 
generation of dislocation loops below the surface, which are contained in an approximately 
hemispherical volume below the region in contact, as shown schematically in Figure 24. The 
deformation is self-similar and the angle (θ) between the conical indentation tip and indented surface 
remains constant.  

 
Figure 24. Model of geometrically necessary dislocation for a conical indent: (a) Sample being 
indented by a rigid conical indenter; (b) Deformation loops created during indentation process [62]. 

The angle θ can be calculated by  	(ߠ)݊ܽݐ =  = ృృ , ୋܮ = ృ   (6) 

where h is the residual plastic depth, and a is the contact radius, and bG is Burger’s vector. The number 
of geometrically necessary dislocation loops is h/bG. S is the spacing between individual slip steps on 
the indentation surface, as shown in Figure 24. Assume that λ is the total length of the injected loops, 
thus between r and r + dr we have  d ߣ = 2πݎ ௗௌ = 2πݎ   (7)  ݎ݀

which after integration from 0 to a gives the total length of dislocation loops, ߣ =   2πݎ݀ݎ =    (8) 

The model assumes that the dislocations are distributed uniformly in a hemispherical volume 
with the contact radius.Thus, we have ܸ = 2πܽଷ/3 , and therefore the density of geometrically 
necessary dislocation is  ߩୋ = ఒ = ଷଶ  (9)  ߠଶ݊ܽݐ

Taylor hardening model has been used to find the shear strength which can be used to measure 
the deformation resistance: 	߬ = αμܾඥߩ = αμܾඥߩୋ + ୗߩ   (10) 
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The angle θ can be calculated by

tan(θ) =
h
a
=

bG

LG
, LG =

bGa
h

(6)

where h is the residual plastic depth, and a is the contact radius, and bG is Burger’s vector. The number
of geometrically necessary dislocation loops is h/bG. S is the spacing between individual slip steps on
the indentation surface, as shown in Figure 24. Assume that λ is the total length of the injected loops,
thus between r and r + dr we have

d λ = 2πr
dr
S

= 2πr
h
ba

dr (7)

which after integration from 0 to a gives the total length of dislocation loops,

λ =
∫ a

0

h
ba

2πrdr =
πha

b
(8)

The model assumes that the dislocations are distributed uniformly in a hemispherical volume with
the contact radius.Thus, we have V = 2πa3/3, and therefore the density of geometrically necessary
dislocation is

ρG =
λ

V
=

3
2bh

tan2θ (9)

Taylor hardening model has been used to find the shear strength which can be used to measure
the deformation resistance:

τ = αµb
√

ρT = αµb
√

ρG + ρS (10)

where τ is the resolved shear stress, µ is the shear modulus, b is the Burgers vector and α is a constant
which is usually in the range 0.3–0.6 for FCC metals [66]. Here, they note that ρS does not depend on
the depth of indentation. Rather it depends on the average strain in the indentation, which is related
to the shape of the indenter (tan(θ)). They also assume that the von Mises flow rule applies and that
Tabor’ factor of 3 can be used to convert the equivalent flow stress to hardness:

σ =
√

3τ, H = 3σ (11)

According to these relations the hardness can be expressed by as:

H
H0

=

√
1 +

h∗

h
(12)

where
H0 = 3

√
3 αµb

√
ρS (13)
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is the macroscopic hardness from the statistically stored dislocations alone, in the absence of any
geometrically necessary dislocations, and

h∗ =
81
2

bα2tan2θ(
µ

H0
)

2
(14)

is a length scale for the depth dependence of hardness.
From Equation (12), it can be seen that the indentation hardness H is related only to indentation

depth h as h∗ and H0 are material constants which can be obtained by fitting the experimental results.
After Nix and Gao [67], many other researchers continue to observe ISE through experiments and

simulations. Most of them explained the size effect via the strain gradient theory (Ma and Clarke [68],
Fleck et al. [48], Nix and Gao [65], Poole et al. [69], Stelmashenko et al. [70], Gao et al. [71,72], Acharya
and Bassani [73], Huang et al. [74], and Gurtin [75]). They believed that ISE must have a relationship
with the strain gradient as the geometrically necessary dislocation density ρG is usually related to an
effective strain gradient η as

ρG =
2η

b
(15)

According to Equation (9), strain gradient was inversely proportional to the indentation depth h,
which meant strain gradient should be larger at the shallow depth.

However, Demir, Raabe and Zaafarani [76] expressed a different theory about ISE. They thought
as ρG is the GND density that is required to accommodate a curvature ω, the crystallographic
misorientation between two neighboring points can be used as an approximate measure for the
GNDs as shown in the following equation:

ρG =
ω

b
(16)

According to Equations (15) and (16), the size dependence of indentation hardness has been
associated with strain gradients which exist in the lattice through GNDs. Thus, these researchers
decided to directly measure lattice rotations below indents with the aim of quantifying the
density of these defects. For this purpose they performed an experiment using a tomographic
high-resolution electron backscatter diffraction orientation microscope in conjunction with a focused
ion beam instrument to map the orientation distribution below four nanoindents of different depths.
Unfortunately, the experimental result contradicted the commonly expected inverse relationship
between the indentation depth and the density of the GNDs. In terms of GND-based strain gradient
theories, larger GND densities should appear at shallow indentation depth, not at a deep one.
But their experiment showed an opposite trend that the total GND density below the indents reduces
with decreasing indentation depth. According to the experimental results, they concluded that the
explanation size-dependent material strengthening effects by using average density measure for GNDs
was not sufficient to understand the indentation size effect.

Kiener [57] investigated Nix-Gao model with the cross-sectional EBSD method and proposed
that Nix-Gao model’s physical basis was still under debate, and its validity cannot be addressed
alone with load versus displacement characteristics. There were two assumptions with respect to the
Nix-Gao model, hemispherical plastic zone and self-similarity of the evolving deformation structure.
However, according to the EBSD observation shown in Figure 17, it is clear that the true plastic
deformed zone deviates from the assumption of a half-sphere. Other reports indicated that there were
differently shaped deformation areas, depending on the indenter geometry [45,77,78]. Regarding the
self-similarity, based on the Nix-Gao model, the strain gradient induced by the indenter should be
determined solely by the indenter geometry. Therefore, it should be constant for self-similar indenter
shapes, which means the observed misorientations should depend only on the indenter angle and not
on the indent size. However, the observations for Vickers indents in copper and tungsten displayed
that the maximum misorientation was along the indent flanks for different sizes, as shown in Figure 25.
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Furthermore, Nix-Gao model assumed that GNDs would accommodate the impression geometry
at very low indentation depth for metallic materials with no pre-existing defects, such as single-crystal
metals without any deformation. Subsequently, it was generally accepted that ISE would not exist
in materials with pre-existing high dislocation densities, such as ultrafine-grained materials [79] and
amorphous materials. However, recently Smedskjare [80] and Liu et al. [81] found ISE existing in oxide
glasses and photonic crystals, respectively. Obviously, all of these materials are not crystalline metallic
materials. Therefore, it is concluded that ISE may commonly exist in natural materials, not only in
crystalline materials.
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Figure 25. Maximum misorientation angle measured along the flanks of the indent for different sized
Vickers indents into fcc copper (closed squares) and bcc tungsten (open squares) [82,83]. Reproduced
with permission from D. Kiener et al., JOM; published by Springer, 2009.

Meyer’s law is another widely used method to describe ISE. For the indenters which have ideal
geometry, the relationship between the test load and the resultant indentation diagonal length curve
could be obtained from [67]

P = C·dn (17)

where P is the load, d is the diagonal length of impression, C is the material/indenter constant and n
is the Meyer index due to the curvature of the curve. Since d is proportional to the contact depth hc

which in turn is proportional to the indentation depth h, Equation (17) could be expressed as follows:

P = C′·hn (18)

where C′ is constant and h is the indentation depth.
Fischer-Cripps [84] mentioned that if the plastic zone was fully developed (beyond elastic-plastic

transition point), the load-displacement (P-h) curve of the loading section could be related to the square
of the displacement (P = C′h2). As for the loading stage of the P-h curve in the elastic-plastic field.
Sakai [85] stated that the load is proportional to the square of the indentation depth. According to
Equatoion (17), if n = 2, the materials shows no ISE. But if n < 2, the materials shows ISE and this case
was confirmed by different materials [86,87].

Considering aforementioned facts, Ebisu and Horibe [67] analyzed the relationship between
the P-h curve and ISE behaviour in their experiments by differentiating the P-h curves of the three
samples. They found that for single 8Y-FSZ (8 mol %Y2O3–ZrO2 single crystal) in the load range of
200–1900 mN, the index n calculated from the P-h curve was 1.873, which suggests that single 8Y-FSZ
showed ISE behaviour. They also found this ISE result agreed well with the experimental results of
another report [88] in which the hardness decreased as the indentation increased between the load
range of 100–2000 mN. The same procedure was conducted in the 12Ce-TZP P-h curve and they found
n = 1.808 within the load range 200–1900 mN. It also was consistent with the results (ISE behaviour)
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from zirconia ceramics [88,89]. However, for fused quartz, index n = 1.961 calculated from P-h curve
in the load range of 200–1900 mN meant that this material showed almost no ISE behaviour [67].
This agreed with Oliver and Pharr’s report [18] which stated that quartz showed very little indentation
size effect.

Kolemen [90] conducted the same experiments with superconductors, which showed a apparent
ISE. He then concluded that for hard materials like brittle ceramics at low indentation loads, n is
significantly less than 2. According to Onitsch [82], n lied between 1 and 1.6 for hard materials and
higher than 1.6 for soft materials.

However, Peng et al. [91] pointed out the correlation between n and C seemed to be of little
significance for understanding the ISE, as their previous study has showed that the best-fit value of
the Meyer’s law coefficient C depended on the unit system used for recording the experimental data
and completely different trends of n versus C may be observed in different unit systems [92] as shown
in Figure 26.
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Figure 26. Variation of Meyer’s law coefficient C with Meyer’s exponent n. Note that completely different
trends are observed when different unit systems were used for recording the experimental data [92].
Reproduced with permission from JianghongGong et al., Proceedings of Journal of the European
Ceramic Society; published by Elsevier, 2000.

The first unit system used is P in Newton (N) and d in millimeter (mm) and the second is P in
gram (g) and d in micrometer (mm). As can be seen from Figure 26, completely different trends of
n versus A were observed in different unit systems. Similar conclusions were reported by Li and
Bradt [93] when they analyzed the experimental data on single crystals. Therefore, they concluded
that a particular care should be taken when analyzing the microstructural effects on the measured
hardness based on Meyer’s power law.

It should be noted that only n plays an important role in determining ISE in Meyer’s law and it is
not necessary to consider the variation of Meyer’s law coefficient C. Although numerous researchers
used Meyer’s law to analyse ISE, all of them just fit the whole P-h curve. In fact, the P-h curve can be
fitted separately from the ISE-boundary which is shown as in Figure 27. In the left side of ISE-boundary
an n-value smaller than 2 can be obtained, while an n-value of about 2 can be achieved in the right side.
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Some other factors may influence the ISE, which include: inadequate measurement capabilities
of extremely small indents [94], presence of oxides or chemical contamination on the surface [95],
indenter-sample friction [96], and increased dominance of edge effects with shallow indents [68].

Elmustafa and Stone [97] proposed a vast number of hypotheses to explain the ISE, including:
friction, and lack of measurement capabilities, and surface layers, oxides, chemical contamination and
dislocation mechanisms. To calculate the hardness for the nanoindentation measurements, indents
were imaged in calibrated optical and scanning electron microscopes. However, because of the
inaccuracies inherent to “optical” method, they did not just rely on them alone. In addition, they used
contact stiffness as a method to determine indirectly the projected contact area. Interestingly, the two
methods agreed very well.

Elmustafa et al. [97] conducted experiments using alpha brass and aluminium as samples. It has
been found that the oxide on a fresh surface of alpha brass is less than 5 nm thick, while the oxide
thickness on an aluminium surface is only 1–3 nm [98]. For Elmustafa et al.’s experiment, the smallest
indents were approximately 0.3 um across or 60 times larger in lateral dimensions than the oxide
thickness. Therefore, the oxide layer would not greatly affect the hardness.

The indenter piling-up or sinking-in was also seen as a factor that influences ISE. McElhaney et al. [99]
did numerous experiments and found that the indenter piling up and sinking in had a huge effect on
the micro-indentation hardness. However, after very careful examination, they found the indentation
hardness still displayed strong dependence on the penetration depth. This observation displayed that
the indenter piling up and sinking in cannot explain the depth-dependent indentation hardness alone.

Loading rate was raised as another influence factor for ISE because usually materials tended
to display larger a plastic work hardening at a large strain rate (loading rate) [100]. The strain rate

in the indented material should be proportional to the ratio
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h
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indentation depth and h is the indentation depth. It is not hard to understand that for a constant rate
of indentation depth (
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Indenter tip radius was regarded as another factor which affected ISE. However, McElhaney et al. [99]

and Huang et al. [102] found that the sharp indenter tip radius less than 100 nm had definitely no influence
on the micron and sub-micron scale indentation, which indicated that indenter tip radius cannot be used
to explain the ISE observed in the indentation test with sharp indenters.
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5. Simulations of Mechanical Behaviours of Materials Undergoing Nanoindentation

5.1. Conventional Finite Element Method (FEM) Simulations

Lee and Kobayashi’s work [103] was the first to conduct the finite element simulation (FEM) of
indentation in 1969. Plane strain and axisymmetric flat punch indentation was simulated to study
the development of the plastic zone, the load-displacement relationships, and the stress and strain
distributions during continued loading, taking into account the changes of the punch friction and
sample dimensions. However, problems such as the accuracy of the solutions and the efficiency of the
computation still existed. Then three years later, Lee and his colleagues [83] performed another finite
element simulation of indentation using ball indenter, and compared all the results with their own
experiments for heat-treated SAE4340 steel. It was found that the simulated load-displacement curve,
plastic zone development and indentation pressure were in good agreement with the experimental
observations. In addition, by calculating the mean effective strains with FEM, the representative strains
defined by Tabor were found to be equal to the mean effective strains of the plastic zone under the
indenters shown in Figure 28.
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Figure 28. Strain contours and elastic-plastic boundaries under the load of (a) 978 kg; (b) 1423 kg;
(c) 2224 kg and (d) 3000 kg (—FEM; —-experiment) [83]. Reproduced with permission from
C.H. Lee et al., International Journal of Mechanical Sciences; published by Elsevier, 1972.

Bhattacharya and Nix [104] performed elastoplastic FEM simulations of nanoindentation using
conical indenter to study the elastic and plastic properties of materials on a sub-micro scale under the
conditions of frictionless and completely adhesive contact. The simulated load-displacement curves for
nickel and silicon were compared with experimental results as shown in Figures 29 and 30, respectively.
It was concluded that the FEM is suitable to simulate nanoindentation behaviour at a sub-micro scale
for different types of materials. Bhattacharya and Nix [105] then investigated the relationship between
Young’s modulus and yield strength, and concluded from FEM simulation that the shapes of the plastic
zones for an elastic-plastic bulk material under a conical indenter depend strongly on the ratio E/σy

(Young’s modulus/yield stress) with a fixed indenter angle as shown in Figure 31.
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Figure 29. Comparison between the results from the present Finite Element Method (FEM) analysis
and those from Pethica et al. [106] on indentation of nickel [104]. Reproduced with permission from
A.K. Bhattacharya et al., International Journal of Solids and Structures; published by Elsevier, 1988.
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Most of the researchers thought the conventional plasticity theory cannot be used to explain ISE 
because its constitutive models possess no intrinsic (internal) material lengths. However, Storakers 
et al. [127] did observe the reversed ISE through simulation by using a parabola-shaped indenter.  

5.2. Crystal Plasticity FEM Simulation 

The evolution of crystallographic texture and grain lattice rotation under the indentation has not 
been well understood. This work must be done through the crystal plasticity based simulation. 

Casals and Forest [128] investigated the anisotropy in the contact response of FCC and HCP 
(hexagonal closest-packed) single crystal via simulating spherical indentation experiments of bulk 
single crystals and thin films on hard substrates. Their simulations predicted that the plastic zone 
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International Journal of Solids and Structures; published by Elsevier, 1991.

Subsequently, FEM nanoindentation simulation of thin films [107–110], stress distribution [111–113],
hardness [114–116], friction effects [109,117], brittle cracking behaviour [118–120] and coatings [121,122]
were extensively developed.

Furthermore, recently Maier et al. [123–125] proposed an inverse analysis method to identify
elastic-plastic material parameters via FEM indentation simulation, and their proposed methodology
was validated using “pseudo-experimental” (computer generated) data with and without noise.
Chen et al. [126] proposed two alternative indentation techniques to effectively distinguish elastoplastic
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properties of the mystical materials which have distinct elastoplastic properties yet they yield almost
identical indentation behaviors, even when the indenter angle is varied in a large range

Most of the researchers thought the conventional plasticity theory cannot be used to
explain ISE because its constitutive models possess no intrinsic (internal) material lengths.
However, Storakers et al. [127] did observe the reversed ISE through simulation by using
a parabola-shaped indenter.

5.2. Crystal Plasticity FEM Simulation

The evolution of crystallographic texture and grain lattice rotation under the indentation has not
been well understood. This work must be done through the crystal plasticity based simulation.

Casals and Forest [128] investigated the anisotropy in the contact response of FCC and HCP
(hexagonal closest-packed) single crystal via simulating spherical indentation experiments of bulk
single crystals and thin films on hard substrates. Their simulations predicted that the plastic zone
beneath the indenter preferentially grew along the slip system directions as shown in Figures 32 and 33.
Consequently, in coated thin film systems, a prominent localization of plastic deformation occurred
at those specific regions where slip system directions intersected the substrate. Meanwhile, these
specific areas were prone to crack nucleation in terms of accumulative plastic damage. Therefore,
the identification of these areas was meaningful for the prediction of potential delamination and
failure of the coatings. Casals et al. [129] also used three-dimensional crystal plasticity finite element
simulations to examine Vickers and Berkovich indentation experiments of strain-hardened copper.
The results showed that the simulation was in a good agreement with experimental observations with
respect to hardness, load-displacement curves, material piling up and sinking in development at the
contact boundary.
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Figure 33. Details of the indentation-induced plastic zone in the simulations concerning hexagonal 
closest-packed (HCP) zinc crystals. (a,c) correspond to the basal and prismatic indented planes of bulk 
crystals. (b,d) correspond to their thin film counterparts. White arrows point to the specific locations 
where high plastic strain localization occurs within the coating-substrate interface. Penetration depth 
in the figures is hୱ = 3.5 μm [128]. 

Figure 32. Details of the indentation-induced plastic zone in the simulations concerning face centered
cubic (FCC) copper crystals. (a,c,e) correspond to the (001), (011) and (111) indented planes of bulk
crystals. (b,d,f) correspond to their thin film counterparts. Plastic zone is assessed by considering the
total acumulated plastic strain variable. White arrows point to the specific locations where high plastic
strain localization occurs within the coating-substrate interface. Penetration depth in the figures is
hs = 3.5 µm [128]. Reproduced with permission from O. Casals et al., Computational Materials Science;
published by Elsevier, 2009.
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Figure 33. Details of the indentation-induced plastic zone in the simulations concerning hexagonal
closest-packed (HCP) zinc crystals. (a,c) correspond to the basal and prismatic indented planes of bulk
crystals. (b,d) correspond to their thin film counterparts. White arrows point to the specific locations
where high plastic strain localization occurs within the coating-substrate interface. Penetration depth
in the figures is hs = 3.5 µm [128]. Reproduced with permission from O. Casals et al., Computational
Materials Science; published by Elsevier, 2009.

Alcala et al. [130] analysed Vickers and Berkovich indentation behaviour via extensive crystal
plasticity finite element simulation by recourse to the Bassani and Wu hardening model for pure
FCC crystals. The simulated results have been used to illustrate the impact of the crystallographic
orientation, as shown in Figure 34. It was clear that the irregular appearance of pyramidal indentations
was governed by the crystallography of FCC crystals on the indented surface.
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Figure 34. Imprint morphologies for Vickers indentation in the (001) plane for different orientations
(rotations) of the tip. (a) The slip directions at the surface coincide with the edges of the indenter
(arrows indicate development of pincushion effects); (b) The slip directions coincide with the sides of
the indenter; (c) Intermediate orientation to those described in (a,b) [130]. Reproduced with permission
from J. Alcala et al., Journal of the Mechanics and Physics of Solids; published by Elsevier, 2008.
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Liu et al. [131] implemented crystal plasticity constitutive model initially developed by
Peirce et al. [132] in a finite element code Abaqus/Explicit to study the material behaviour
of nanoindentation on (001) oriented surface of single crystal copper. All of the appropriate
meso-plastic parameters used in the hardening model was determined by fitting the simulated
load-displacement curves to the experimental data. Their studies demonstrated that the combined
nanoindentation/CPFEM simulation approach for determining meso-plasitc model parameters works
reasonably well from micro level to the macro level as shown in Figure 35. They also investigated
the orientation effects in nanoindentation of single crystal copper [133]. Simulated load-displacement
curves were found to be in agreement with those from experimental tests as shown in Figure 36.
Meanwhile, two-, three-, and four-fold symmetric piling-up patterns were observed on (011), (111),
and (100) oriented surface with respect to CPFEM simulation. The anisotropic nature of the surface
topographies around the imprints in different crystallographic orientations of the single crystal copper
samples then were related to the active slip systems and local texture variations. Wang et al. [40] had
similar observations while performing a 3D elastic-viscoplastic crystal plasticity finite element method
simulation to study the dependence of nanoindentation piling-up patterns. Their simulation showed
that the piling-up patterns on the surface of (001)-, (011)- and (111)-oriented single crystal copper had
four-, two-, and sixfold symmetry, respectively. All the simulated piling-up patterns were in agreement
with those from the experiments. The explanations of the anisotropic surface profiles were also related
to the active slip systems and local texture variations.
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Figure 35. (a) Results of FEM simulations showing the variation of the indentation force, F with indent
diameter, 2a for different indenter radii, R; (b) Results of indentation experiments showing the variation
of the indentation force, F with indent diameter, 2a for different indenter radii, R [131]. Reproduced
with permission from Y. Liu et al., Journal of the Mechanics and Physics of Solids; published by
Elsevier, 2005.
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Figure 36. Comparisons between numerical and experimental load-displacement curves on copper
samples of different crystallographic orientations made with a spherical indenter (tip radius 3.4 µm):
(a) (100) plane; (b) (011) plane and (c) (111) plane [133]. Reproduced with permission from Y. Liu et al.,
International Journal of Plasticity; published by Elsevier, 2008.

Zaafarani et al. [45] carried out the 3D elastic-viscoplastic crystal plasticity finite element
simulations with the same geometry of indenter and boundary conditions as those from experiments.
Their CPFEM simulations predicted a similar pattern for the absolute orientation changes as the
experiments as shown in Figure 37. However, it was found that the simulations over-emphasized
the magnitude of the rotation field tangent to the indenter relative to that directly below the indenter
tip. The reason was then found to be due to edge effects at the contact zone and milling-induced
curvature caused by ion beam so that no complete EBSD mapping could be made up to the actual
contact interface [134].
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Figure 37. Rotation maps for a set of successive (112) sections perpendicular to the (111) indentation
plane (surface plane perpendicular to the plane presented) with different spacing to the actual
indent [45]. The images on the left-hand side (a–h) were obtained from viscoplastic crystal plasticity
simulations. The corresponding maps on the right-hand side (i–p) were determined via EBSD
measurements in succeeding planes prepared by serial FIB sectioning. The color code shows the
magnitude of the orientation change relative to the initial crystal orientation without indicating the
rotation axis or rotation direction. Scaling is identical for all diagrams. Reproduced with permission
from N. Zaafarani et al., Acta Materialia; published by Elsevier, 2006.

Eidel [135] simulated pyramidal micro-indentation on the (001) surface of Ni-base superalloy
single crystal with three different azimuthal orientations of the pyramidal indenter. The numerical
piling-up patterns were compared with the experimental results. It was found that the resultant
material piling-up was insensitive to different azimuthal orientations of the pyramidal indenter as
shown in Figure 38. The reason could be due to the piling-up formation determined by crystallographic
processes rather than by the stress distribution pattern, induced under the non-isotropic pyramidal
indenter. He then also found that the piling-up was independent of the indenter shape (sphere or
pyramid) and the elastic anisotropy, which further confirmed that only the geometry of the slip systems
in the (001) oriented crystal governed piling-up, whereas stress concentrations introduced by different
indenter shapes, by the azimuthal orientation of a pyramidal indenter and also by the characteristics
of the elasticity law, had no significant influence.

Liu et al. [136] simulated indentation process of single-crystal aluminium with three different
initial orientations via using three-sided Berkovich indenter, and all the numerical load-displacement
curves and pile-up patterns from CPFEM have been validated by experimental observations, as shown
in Figures 39–41. CPFEM simulation was also used to explain the anisotropic feature of pile-up
patterns for different single crystals in details [137,138]. Recently, indentation on severely deformed
materials [139] and bicrystalline ones [139] were also investigated via CPFEM modelling.
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Figure 38. Pyramidal indentation experiments into (001) FCC CMSX-4. Left: experiment (SEM); right: 
simulation with isolines of height, uz (μm), for azimuthal orientation angle θ = 0°, 22.5°, 45° in row 1–
3. In the coordinate system, X-, Y-, Z-axes each represent h001i directions. The white stains in the 
experimental indentation craters are debris from sputtering [135]. 

Figure 38. Pyramidal indentation experiments into (001) FCC CMSX-4. Left: experiment (SEM);
right: simulation with isolines of height, uz (µm), for azimuthal orientation angle θ = 0◦, 22.5◦, 45◦ in
row 1–3. In the coordinate system, X-, Y-, Z-axes each represent h001i directions. The white stains in
the experimental indentation craters are debris from sputtering [135]. Reproduced with permission
from Y. Liu et al., International Journal of Plasticity; published by Elsevier, 2008.
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Al workpiece with a Berkovich indenter (tip radius 200 nm) at different crystallographic orientations:
(a) (001), (b) (101) and (c) (111) surfaces [136].
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Figure 41. Simulated images of the indent impressions on a single-crystal Al workpiece with
a Berkovich indenter (tip radius 200 nm) at different crystallographic orientations: (a) (001); (b) (101)
and (c) (111) surfaces [136].
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6. Conclusions

Nanoindentation is the most popular method to investigate the mechanical properties of materials
at mico- and nanoscale. The key advantage of this technology is its convenience and applicability
on a very small sample where normal tensile test cannot be applied. A vast number of experiments
have been conducted to investigate different characters during indentation deformation, including
hardness, Young’s modulus, load-displacement curve, ISE, piling up and sinking in, cracks, texture
evolution and lattice rotation and so on. Meanwhile, a wide range of materials were studied, such as
metals, ceramics, rubbers, human bones, coatings, etc.

Indentation size effect has been extensively studied by numerous researchers. Among all of these
researchers, Nix and Gao has proposed a strain gradient model which was believed to be the best way
to simulate and explain ISE in the past. However, it has been found that the main assumptions for
that model are in conflict with the experimental observations. Other potential influence factors, such
as inadequate measurement capabilities of extremely small indents, presence of oxides or chemical
contamination on the surface, indenter-sample friction, increased dominance of edge effects with
shallow indents and tip radius have been eventually proven to be ineffective in determining the ISE.
Therefore, the mechanism of ISE needs to be further investigated and discussed.

The conventional FEM has been used to study the indentation process on materials and to predict
their hardness, stress distribution, friction effects, Young’s Modulus, load-displacement curves, and
brittle cracking behaviour and so on. However, the anisotropic characters of materials could not
be taken into account in the conventional FEM. Therefore, Crystal plasticity FEM (CPFEM) which
considers the lattice rotation and the plastic slip as the key deformation mechanism has been used to
simulate the texture evolution of materials during indentation deformation. All the numerical results
can be accurately validated by comparing with experimental observations. In addition, CPFEM is also
the best candidate to investigate the deformation mechanism of materials at smaller scale.
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