
crystals

Article

Nanoindentation of HMX and Idoxuridine to
Determine Mechanical Similarity

Alexandra C. Burch 1, John D. Yeager 2 ID and David F. Bahr 1,*
1 School of Materials Engineering, Purdue University, West Lafayette, IN 47907, USA; burch12@purdue.edu
2 Explosive Science and Shock Physics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA;

jyeager@lanl.gov
* Correspondence: dfbahr@purdue.edu

Academic Editors: Ronald W. Armstrong, Stephen M. Walley and Wayne L. Elban
Received: 28 September 2017; Accepted: 28 October 2017; Published: 1 November 2017

Abstract: Assessing the mechanical behavior (elastic properties, plastic properties, and fracture
phenomena) of molecular crystals is often complicated by the difficulty in preparing samples.
Pharmaceuticals and energetic materials in particular are often used in composite structures or
tablets, where the individual grains can strongly impact the solid behavior. Nanoindentation is a
convenient method to experimentally assess these properties, and it is used here to demonstrate the
similarity in the mechanical properties of two distinct systems: individual crystals of the explosive
cyclotetramethylene tetranitramine (HMX) and the pharmaceutical idoxuridine were tested in their
as-precipitated state, and the effective average modulus and hardness (which can be orientation
dependent) were determined. Both exhibit a hardness of 1.0 GPa, with an effective reduced modulus
of 25 and 23 GPa for the HMX and idoxuridine, respectively. They also exhibit similar yield point
behavior. This indicates idoxuridine may be a suitable mechanical surrogate (or “mock”) for HMX.
While the methodology to assess elastic and plastic properties was relatively insensitive to specific
crystal orientation (i.e., a uniform distribution in properties was observed for all random crystals
tested), the indentation-induced fracture properties appear to be much more sensitive to tip-crystal
orientation, and an unloading slope analysis is used to demonstrate the need for further refinement
in relating toughness to orientation in these materials with relatively complex slip systems and
crystal structures.

Keywords: nanoindentation; molecular crystals; mechanical properties; hardness; elastic modulus;
fracture

1. Introduction

Molecular crystals are put to a variety of different uses, including some explosives,
pharmaceuticals, and foods. Despite having very different practical applications, these materials
often have similar molecular structures as well as physical and mechanical properties. Often, one type
of molecular crystal is used to simulate or “mock” another type of crystal for a given test or scenario.
Mock materials are commonly used when the simulant allows for increased safety, lower costs, or ease
of handling compared to the original material. Recently, several materials were identified as new
mocks for the explosive cyclotetramethylene-tetranitramine (HMX), in terms of density and thermal
stability [1]. However, the effectiveness of simulating mechanical properties with these new mocks
has not been addressed. Typically, sucrose has been used to mock HMX mechanically [2] but it has
a lower density and melt point, limiting the scenarios that can be simulated. In other cases, such as
with pharmaceuticals, the use of a model material allows for rapid or inexpensive assessment of
some processing parameters [3]. One possible way to identify materials with similar physical (elastic
properties) and mechanical responses (for plastic flow and fracture) is to utilize nanoindentation
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to probe the properties of individual single crystals of these materials with little need for complex
sample geometries.

Testing the mechanical properties of powders and small powder-like particles can be difficult both
due to the small size of many of these materials in their as-formed state; testing can also be difficult with
regard to forming or machining samples to meet standard mechanical test geometries. Nanoindentation
resolves this limitation, as indentation can be performed on samples with lateral dimensions on the
order of 10’s of µms or smaller. While it is possible to assess the properties of individual grains within
metallic systems (where the grains are often identified by electron backscattered diffraction [4]), it is also
possible to use indentation to characterize molecular crystals such as cyclotrimethylene-trinitramine
(RDX), HMX, 1,3,5-triamino-2,4,6-trinitrobenzene (TATB), sucrose, aspirin, and many more [5–10].
The small length scale of nanoindentation also enables the crystals to be tested without additional
processing, whereas other techniques or larger mechanical tests (such as using a Vickers hardness
test on RDX [11]) might require growing large and pristine single crystals. Nanoindentation therefore
allows molecular crystals to be tested in their as-received or as-used condition. This is critical for
evaluating the actual properties of the materials in application, since common techniques to grow
“better” samples can alter the measured properties. For example, individual crystal growth could be
enhanced using solution adjuncts which minimize nucleation, so growth rates may greatly exceed
nucleation rates, which could impact the defect density within the crystals [12].

Instrumented indentation has been used to quantify a wide variety of mechanical
properties including elastic modulus [13–15], which may be crystal orientation-dependent [16,17],
and hardness [18,19], which is often used as a surrogate for general plastic flow behavior. Additionally,
yield points during initial loading can be indicative of the onset of dislocation nucleation [20]. Finally,
indentation-induced fracture [21–26] has been used by many researchers as a surrogate to quantify
toughness in materials where meeting American Society for Testing and Materials (ASTM) standard
specimen geometries would be challenging. Elastic modulus, hardness, and yield behavior are often
measured using a Berkovich indenter probe, but more acute probes, such as the cube corner geometry,
can be useful in initiating fracture.

Indentation fracture, often with a Vickers geometry and testing system [27], conventionally uses
post-indentation characterization to assess if cracks are present in the sample, and then relates cracking
behavior to the stress fields which drove crack propagation. Experiments have demonstrated that
in some cases cracking can occur during loading of the indenter, while in other cases the cracks
initiate upon unloading, as shown by Cook and Pharr [21]. Identifying a crack after the indentation is
complete is typically done using optical, electron, or scanning probe microscopy, but a crack may also
be identified by the load-depth curve of the indentation. Morris and co-workers showed that when a
material is indented with two different indenter probes of varying acuteness, materials that have not
cracked have superimposable unloading portions of the load-depth curves, whereas when the material
has cracked the unloading curves will be nonsuperimposable [28]. This method of detecting fracture
allows cracks to be identified even when they cannot be seen optically, for more precise identification
of the onset of fracture. The need to identify fracture behavior is important in assessing materials
properties, not only in determining toughness, but if modulus or hardness of two different materials
are being compared it is crucial to ensure that the systems are behaving similarly. It is not appropriate
to compare hardness or modulus if, in one case, a crack had formed and in the other material it had not,
as the conventionally used models used to extract properties such as hardness and modulus during
nanoindentation were developed for bulk materials that exhibited uniform elastic-plastic deformation
and do not consider fracture.

In this paper we assess the suitability of using idoxuridine to serve as a surrogate for the
mechanical response of HMX using nanoindentation for granular solids in the sub-mm regime,
taking into account possible differences in material fracture behavior when comparing mechanical
properties. We use two different indenter tips to conduct unloading analysis to investigate cracking
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and supplement this with scanning probe microscopy. We also find that using the samples as-received
is sufficient for accurate data collection.

2. Results and Discussion

Hardness and elastic modulus measurements were taken using a Berkovich indenter probe at
1000 µN in both materials; the resulting load-displacement data is shown in Figure 1.
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the hardness of idoxuridine gave a p value of 0.9167, so the hardness of the two materials is not 
significantly different. For comparing elastic modulus, a Wilcoxon rank-sum test gave a p value of 
0.007, indicating that the elastic moduli of these materials are statistically different. However, because 
the elastic moduli of the two materials are within 10% of each other, they are likely similar enough to 
be considered “mocks” in many situations. For example, sucrose is considered a mechanical mock 
but has much higher elastic modulus, between 33 and 38 GPa depending on orientation [6]. 
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a fixed radius is used). In all indentations in HMX the indentation curve exhibited a yield point, while 
in the case of idoxuridine only half of the indents exhibited a yield point. Figure 3 shows the 
difference in the distribution of load at the first yield point for all indentations performed in this 
study. Using a cumulative distribution plot is a convenient way to determine if different defect 
densities or mechanisms are being probed [29], and the relative curvature and position are indicative 
of an activation energy to nucleate a dislocation when one compares the only the fraction that yielded 
(ignoring those that exhibit no yield point). In metallic systems, higher defect densities are linked to 
larger numbers of indentations that do not exhibit a yield point [30], and surface preparation can shift 
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Figure 1. (a) Typical load-depth curves for HMX and idoxuridine, with indentations in two random
crystals of each material shown. Modulus values reported in the figure are the average values of
≈20 indents in each material. (b) The same load-depth curves as in (a), showing only data below
150 µN. Note there is evidence of yield point behavior at loads less than 100 µN, and multiple yield
events on loading, which are common in materials with limited slip systems.

For HMX, 22 indents were done on approximately 10 different crystals. Some crystals were only
measured once, while others were large enough to accommodate multiple indents; all indentations
were spaced at least 10 times across the residual impression diameter to ensure the pristine material
was being evaluated. The average hardness measured for HMX was 1.00 ± 0.11 GPa, and the average
reduced elastic modulus measured for HMX was 25.2 ± 2.1 GPa. On idoxuridine, 19 indents were
done on approximately 10 crystals, with an average hardness measurement of 1.00 ± 0.15 GPa,
and an average reduced elastic modulus measurement of 23.3 ± 2.2 GPa. The distribution of these
measurements is shown in Figure 2. A Wilcoxon rank-sum test comparing the hardness of HMX
to the hardness of idoxuridine gave a p value of 0.9167, so the hardness of the two materials is not
significantly different. For comparing elastic modulus, a Wilcoxon rank-sum test gave a p value of
0.007, indicating that the elastic moduli of these materials are statistically different. However, because
the elastic moduli of the two materials are within 10% of each other, they are likely similar enough to
be considered “mocks” in many situations. For example, sucrose is considered a mechanical mock but
has much higher elastic modulus, between 33 and 38 GPa depending on orientation [6].

As noted in Figure 1, many indentations exhibited a “pop-in” or “excursion” in the load depth
curve. This is commonly considered to be indicative of the transition from elastic to plastic deformation.
Yield point behavior can be quantified by the load at yield (which is proportional to the maximum
applied shear stress for materials with the same elastic modulus when a common tip with a fixed
radius is used). In all indentations in HMX the indentation curve exhibited a yield point, while
in the case of idoxuridine only half of the indents exhibited a yield point. Figure 3 shows the
difference in the distribution of load at the first yield point for all indentations performed in this
study. Using a cumulative distribution plot is a convenient way to determine if different defect
densities or mechanisms are being probed [29], and the relative curvature and position are indicative
of an activation energy to nucleate a dislocation when one compares the only the fraction that yielded
(ignoring those that exhibit no yield point). In metallic systems, higher defect densities are linked
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to larger numbers of indentations that do not exhibit a yield point [30], and surface preparation can
shift (in load) or “tilt” in probability the cumulative fraction plot in RDX [31]. The mean load at
yield for indentations that did exhibit a yield pinot for idoxuridine was 98 µN and for HMX was
93 µN, (very similar results); the maximum load exhibited (which previous studies have considered to
be linked to approaching the theoretical shear stress in the crystal) are also of a similar magnitude,
as one might expect for materials with similar elastic modulus values. Finally, the median of the loads
which caused yield are similar for these indentations, 78.5 µN for HMX and 62.8 µN for idoxuridine.
The implication here is that while the average shear stress needed to nucleate dislocations in both
materials is almost identical, suggesting the nucleation phenomena is based on the same mechanism
in both these samples, and the maximum shear stress is of the same order, based on the similarity of
the maximum observed value in yield point, the likelihood of probing a mechanical defect (such as
a pre-existing dislocation) is much higher in the idoxuridine than in the HMX for the forms of the
materials tested in this study.
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Figure 2. (a) HMX hardness measurement distribution. (b) HMX reduced elastic modulus measurement
distribution. (c) Idoxuridine hardness measurement distribution. (d) Idoxuridine reduced elastic
modulus measurement distribution.
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Figure 3. Cumulative fraction of yield behavior for HMX and idoxuridine. While the mean load at
yield for indentations that did exhibit a distinct yield point was statistically similar (93 and 98 µN
for HMX and idoxuridine, respectively), the materials exhibit different behavior in yield distribution.
While all indentations in HMX showed a yield point, only half the indentations in idoxuridine showed.



Crystals 2017, 7, 335 5 of 9

One concern with assessing brittle molecular solids is the possibility of cracking. Critical loads
beyond which there is fracture are often reported for many brittle materials such as RDX [24] and
glass [23]. Identifying cracking in molecular crystals can be challenging. Two approaches to identifying
indent-induced cracking are with post-indent microscopy and with unloading analysis [28]. Figure 4
shows scanning probe images of indents on HMX and idoxuridine with both Berkovich and cube
corner indenter probes, at loads of 500 µN and 5000 µN, where cracking could not be confirmed via
microscopy in any of these cases.
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Figure 4. Scanning probe images (in deflection mode using the Hysitron Triboindenter imaging mode,
which are therefore indicative of slope, not height, to accentuate small surface topography changes) of
(a) 500 µN Berkovich indent on idoxuridine, (b) 5000 µN Berkovich indent on idoxuridine, (c) 5000 µN
cube corner indent on idoxuridine, (d) 500 µN Berkovich indent on HMX, (e) 5000 µN Berkovich indent
on HMX, and (f) 5000 µN cube corner indent on HMX. Slip steps are evident in (b,c,e) (noted with
arrows), but it is not possible to conclusively state if cracks are present in some of the images, such as
the dark band in the lower left of (c).

Though scanning probe images do not conclusively show surface cracks, there is still the possibility
of subsurface cracking. To attempt to determine whether subsurface cracking occurred, the unloading
analysis method of Morris and co-workers was used [28]. For a specific load, in this case nominal
loads of 500 µN and 5000 µN, each material was indented four times with a Berkovich probe and four
times with a cube corner probe, and the unloading segment of these indents were averaged, as shown
in Figure 5.
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Figure 5. (a) HMX unloading comparison at 500 µN. (b) HMX unloading comparison at 5000 µN.
(c) Idoxuridine unloading comparison at 500 µN. (d) Idoxuridine unloading comparison at 5000 µN.

These indentations were carried out on random crystals with no specific orientation. Morris
et al. showed that when unloading curves from the same load, using tips of different acuity was
superimposable and there was no evidence of cracking, and when the unloading curves were more
compliant for the sharper tip this was indicative of cracking during the indentation. While it was not
possible to exactly reproduce the conditions used by Morris and coworkers in this study, the general
similarity, or lack thereof, was used in this study to indicate a propensity for indentation induced
fracture. For some crystals (orientations), there is no significant evidence of cracking with acute probes
(Figure 5a,d show very similar unloading slopes), while other individual crystals exhibit evidence of
cracking (Figure 5b,c). In all cases, there has been no direct evidence of cracking caused by a Berkovich
indenter using post indent microscopy. The range of unloading behavior suggest that there is a
variation between crystal faces, crystal orientations, and probe orientations in the subsequent fracture
behavior that is not present in the more uniformly distributed hardness and modulus measurements.
In particular, for HMX there appears to be a cracking threshold (at loads above 1 mN we consistently
observed a more compliant unloading curve, indicative of fracture), while for idoxuridine some
indentations at low loads show fracture with the cube corner tip (Figure 5c), while fracture doesn’t
appear at higher loads (Figure 5d). This variation in idoxuridine may be tied to the behavior noted in
Figure 3, which indicated that the crystal to crystal variation in defect density was more significant
for idoxuridine than HMX. However, without the current ability to index the individual crystals that
were tested, the supposition that it is orientation-dependent cracking, and not some other crystal to
crystal variation, that is leading to the less reproducible behavior in compliance on unloading is only
one possible explanation, and this area of inquiry requires further study.
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3. Materials and Methods

HMX and idoxuridine, shown in Figure 6, were provided by Los Alamos National Laboratory.
HMX single crystals were recrystallized in acetone from Class 1 HMX produced by Holston.
Idoxuridine was originally purchased from Chem-Impex International, Inc. and recrystallized in water.
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Figure 6. Optical micrographs of (a) an HMX crystal (b) and an idoxuridine crystal.

All samples were mounted using the technique described by Maughan et al. [32] for mounting
small crystals. To briefly summarize, a flat face of a crystal was placed on an aluminum block, and a
commercially available AFM “puck” (a 7 mm diameter steel disc) was suspended above the crystal
by a magnet with an adhesive on the downward face of the disc. The disc was lowered such that the
adhesive came in contact with the crystal, and upon inversion of the disc, the surface of the crystal was
the flat face that had previously rested on the aluminum block and was therefore parallel to the AFM
disc and normal to the indenter probe. Nanoindentation was performed using a Hysitron Triboindenter
950, with both Berkovich and cube corner indenter probes with tip radii of approximately 600 nm
and 140 nm, respectively. All indents were quasistatic open-loop with 30 s loading, 5 s hold, and 5 s
unload times; this loading profile was used in prior studies of RDX and some other organic molecular
crystals [5]. The unloading curves were analyzed using the Oliver and Pharr technique; the tip had
been calibrated in fused quartz and aluminum prior to indentation accounting for S (unloading
stiffness), P, h, and A being load, depth, and contact area, respectively, a geometric constant γ.

S =
dP
dh

=
2γEr

√
A√

π
(1)

and modulus,
1
Er

=
1− ν2

Ei
+

1− ν2

Es
(2)

where Er is the reduced modulus, accounting for the Young’s Modulus, E and Poisson’s ratio, υ, of the
indenter tip (i) and sample (s). While E and υ of the diamond indenter tip are well known (1249 GPa
and 0.07, respectively), we do not know for certain the Poisson’s ratio of these samples, and therefore
this paper reports only Er. Imaging (Figure 4) was carried out using the Hysitron scanning probe
mode, where the tip making the indentation is used to image as a fixed load (in this case 2 µN).

4. Conclusions

We have successfully determined that idoxuridine has similar elastic and plastic mechanical
properties to HMX, which can be difficult to perform tests on due to safety concerns. The similarity in
hardness and elastic modulus indicate that idoxuridine can be used to test the mechanical response
of composite structures typically containing HMX. When yield behavior occurs in both materials,
the loads (and therefore stresses) at which dislocations are nucleated appear to be similar. However,



Crystals 2017, 7, 335 8 of 9

in the as-received state, it appears idoxuridine may have a higher mechanical defect density than
the HMX (for powders of the same size). Further work will be needed to quantify fracture behavior
and toughness with crystal orientation and initial defect distribution. As fracture appears to be more
sensitive to crystal orientation than low load hardness and the elastic modulus, the approach of
sampling many randomly oriented crystals to determine average polycrystalline behavior may not be
appropriate for fracture studies. Crystal orientation and the relative orientation of the indent corners
to the crystal geometry mean that assessing fracture properties will have to consider both out-of-plane
and relative in-plane orientation between the crystal and the indenter probe.
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