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Abstract: Groups III–V semiconductors have received a great deal of attention because of their
potential advantages for use in optoelectronic and electronic applications. Gallium antimonide
(GaSb) and GaSb-related semiconductors, which exhibit high carrier mobility and a narrow band gap
(0.725 eV at 300 K), have been recognized as suitable candidates for high-performance optoelectronics
in the mid-infrared range. However, the performances of the resulting devices are strongly dependent
on the structural and emission properties of the materials. Enhancement of the crystal quality,
adjustment of the alloy components, and improvement of the emission properties have therefore
become the focus of research efforts toward GaSb semiconductors. Molecular beam epitaxy (MBE)
is suitable for the large-scale production of GaSb, especially for high crystal quality and beneficial
optical properties. We review the recent progress in the epitaxy of GaSb materials, including films and
nanostructures composed of GaSb-related alloys and compounds. The emission properties of these
materials and their relationships to the alloy components and material structures are also discussed.
Specific examples are included to provide insight on the common general physical and optical
properties and parameters involved in the synergistic epitaxy processes. In addition, the further
directions for the epitaxy of GaSb materials are forecasted.

Keywords: gallium antimonide; alloys and compounds; nanostructures; photoluminescence;
molecular beam epitaxy

1. Introduction

The mid-infrared (MIR) spectral region is of great research interest because the practical realization
of optoelectronic devices that operate in the 2–5 µm wavelength region would bring potential
applications in a wide range of areas, including optical gas sensing, environmental monitoring,
free-space optical communications, infrared countermeasures, and thermal imaging [1–3]. Research
into MIR semiconductor devices has thus become a focus of research attention worldwide. Groups
III–V semiconductors are the most promising candidate infrared materials for use in lasers and
detectors, owing to their high absorption coefficients, high carrier mobilities and widely tunable
band gaps [1,4]. Among these materials, gallium antimonide (GaSb)-based alloys and compounds
offer a wide range of electronic band gaps, band gap offsets and electronic barriers along with
extremely high electron mobility; these materials would thus enable a variety of devices that are
much faster than the equivalent InP- and GaAs-based devices and infrared light sources, and would
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facilitate lower power consumption [5,6]. Therefore, GaSb materials in the forms of epitaxial layers,
multi-element alloys, quantum wells, superlattices and low-dimensional nanostructures have been
attracting considerable attention. Additionally, based on the GaSb materials described above, a variety
of advanced optoelectronic devices, including laser diodes, detectors, and transistors, have been
realized [1–4].

Therefore, considerable effort has been devoted to the growth of high-quality GaSb-based
semiconductor materials. To date, the growth of GaSb-based semiconductors has mainly been
dependent on liquid phase epitaxy (LPE), metal-organic chemical vapor deposition (MOCVD),
and molecular beam epitaxy (MBE). MBE is preferred as a high-efficiency epitaxial growth technique
that is used to manufacture light-emitting diodes, lasers, and detectors for MIR waveband operation
by varying the material components to adjust their energy bands [1,5,7]. By tuning of the growth
parameters, a variety of complex quantum structures with high surface and interface quality can be
realized. Problems that occur on the GaSb surface during reactive processing, such as high surface
state densities, surface Fermi level pinning and a residual native oxide layer, have affected the optical
properties, including their photoresponse range and luminescence intensities, of GaSb-based devices.
Therefore, procedures that involve the removal of native oxides and the fabrication of passivation
coatings are necessary to overcome such problems [8]. Improvements in the surface properties of GaSb
materials have led to excellent optoelectronic device performances. As the research into optoelectronic
devices has advanced, spectroscopic techniques have become increasingly important because they
are highly efficient and rapid modern analysis methods. These techniques can effectively determine
the photophysical properties of the materials and reveal their excited-state processes to determine
their potential use in optoelectronic devices. Further development of spectroscopic techniques will
therefore be helpful in the design and improvement of the next generation of optoelectronic devices.
Additionally, two-dimensional (2D) materials offer further promise for the development of a new
range of fundamental optoelectronic materials owing to their high crystal quality features and rich
photophysical properties that will provide new material options for next generation optoelectronic
devices [2,8–10]. Therefore, owing to the advantages of 2D materials, further research should be
directed to the epitaxy and optical properties of GaSb materials.

In this paper, we briefly review the literature for the recent progress in the growth and the optical
properties of GaSb and GaSb-related materials, and describe the evolution and the current status of
epitaxial growth processes and the optical properties of GaSb and related semiconductors. Section 2
provides a brief introduction to some of the epitaxial GaSb materials that have already been grown
by the MBE method, Section 3 covers the luminescence mechanism and the spectral characteristics of
these materials, along with the factors that influence their optical properties. Section 4 is devoted to the
effects of low-dimensional nanostructures on the luminescence properties of these materials. Finally,
we discuss GaSb materials fabricated by the MBE method that exhibit unusual optical properties and
provide a foundation for the application of these materials in optoelectronic devices.

2. Epitaxy of GaSb Materials

In this review, GaSb and related semiconductors refers to the groups III–V semiconductors that
contain the Sb element, including GaAsSb, InAsSb, InGaAsSb and AlGaAsSb. Among these materials,
GaSb has a prominent position among the III–V compound semiconductors. GaSb has a lattice constant
of 6.0959 Å that mediates between ternary and quaternary III–V compound semiconducting materials
(as shown in Figure 1), which enables perfect lattice matching of GaSb to be achieved with many III–V
phosphonium-type materials, which is then favorable for high-quality antimony material growth.
Additionally, GaSb has a zinc blende (ZB) structure similar to that of GaAs, and its band gap is 0.822 eV
at 0 K and 0.725 eV at 300 K [11–13].
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Figure 1. Band gap as a function of lattice constant for III–V compounds and their ternary and 
quaternary alloys. Reproduced with permission from [11], copyright AIP Publishing LLC (2009). 

Liquid phase epitaxy (LPE) was the earliest method used in the extended growth of 
GaSb-based materials, and there are numerous reports on the growth of GaSb by LPE techniques. In 
the early studies of the surface morphology and the electrical and optical properties of GaSb layers, 
it was observed that the growth temperature range of 500–550 °C for the Ga melt is the optimal 
range to produce high-quality layers with excellent surface morphologies [14]. While epilayers 
grown at low temperatures have low native defect concentrations, they have poor morphologies 
and thus are unsuitable for device applications [15]. The typical surface morphologies of GaSb 
epilayers that were grown at 550 °C from a 660 °C from an Sb-rich melt are as shown in Figure 2. 
CVD growth of GaSb has been reported by Jakowetzet et al. and MOCVD growth of GaSb has also 
been performed [16,17]. 

 
Figure 2. Typical surface morphologies of GaSb epilayers (a) grown on a (100) substrate at 550 °C 
from a Ga-rich melt and (b) on a 7° off-axis (111) substrate at 660 °C from an Sb-rich melt. 
Reproduced with permission from [15], copyright Springer (1995). 

At present, antimony is mainly grown using molecular beam epitaxy (MBE) technology, which 
is based on a nonthermodynamic equilibrium. In recent years, following the development of the 
nonthermodynamic equilibrium, MBE has been widely used to fabricate a variety of both 
high-purity single crystals and ultra-fine structures and has thus greatly enhanced the evolution of 
research into antimony-based materials and devices. MBE is a technique in which single or complex 
components of an atomic beam or molecular beam are propelled to a heated substrate, are 
absorbed, migrate, and are deposited on that substrate under ultra-high vacuum conditions [18]. 

To improve the crystal quality of the epitaxy film, a buffer layer between the epitaxy film and 
substrate is commonly used, owing to the large difference in lattice constants. InAs, AlSb and GaSb 
can be used as buffer layers. Noh et al. reported that high quality GaSb films could be realized on a 
GaAs (001) substrate at low temperature, and the strain relief and structural properties of the GaSb 
films with different buffer layers were investigated [6]. Their results show that the insertion of an 
AlSb or GaSb buffer layer is very useful for improving the quality of the GaSb grown on GaAs 
substrates [6]. 

Figure 1. Band gap as a function of lattice constant for III–V compounds and their ternary and
quaternary alloys. Reproduced with permission from [11], copyright AIP Publishing LLC (2009).

Liquid phase epitaxy (LPE) was the earliest method used in the extended growth of GaSb-based
materials, and there are numerous reports on the growth of GaSb by LPE techniques. In the early
studies of the surface morphology and the electrical and optical properties of GaSb layers, it was
observed that the growth temperature range of 500–550 ◦C for the Ga melt is the optimal range
to produce high-quality layers with excellent surface morphologies [14]. While epilayers grown at
low temperatures have low native defect concentrations, they have poor morphologies and thus are
unsuitable for device applications [15]. The typical surface morphologies of GaSb epilayers that were
grown at 550 ◦C from a 660 ◦C from an Sb-rich melt are as shown in Figure 2. CVD growth of GaSb
has been reported by Jakowetzet et al. and MOCVD growth of GaSb has also been performed [16,17].

Crystals 2017, 7, 337 3 of 21 

 

 
Figure 1. Band gap as a function of lattice constant for III–V compounds and their ternary and 
quaternary alloys. Reproduced with permission from [11], copyright AIP Publishing LLC (2009). 

Liquid phase epitaxy (LPE) was the earliest method used in the extended growth of 
GaSb-based materials, and there are numerous reports on the growth of GaSb by LPE techniques. In 
the early studies of the surface morphology and the electrical and optical properties of GaSb layers, 
it was observed that the growth temperature range of 500–550 °C for the Ga melt is the optimal 
range to produce high-quality layers with excellent surface morphologies [14]. While epilayers 
grown at low temperatures have low native defect concentrations, they have poor morphologies 
and thus are unsuitable for device applications [15]. The typical surface morphologies of GaSb 
epilayers that were grown at 550 °C from a 660 °C from an Sb-rich melt are as shown in Figure 2. 
CVD growth of GaSb has been reported by Jakowetzet et al. and MOCVD growth of GaSb has also 
been performed [16,17]. 

 
Figure 2. Typical surface morphologies of GaSb epilayers (a) grown on a (100) substrate at 550 °C 
from a Ga-rich melt and (b) on a 7° off-axis (111) substrate at 660 °C from an Sb-rich melt. 
Reproduced with permission from [15], copyright Springer (1995). 

At present, antimony is mainly grown using molecular beam epitaxy (MBE) technology, which 
is based on a nonthermodynamic equilibrium. In recent years, following the development of the 
nonthermodynamic equilibrium, MBE has been widely used to fabricate a variety of both 
high-purity single crystals and ultra-fine structures and has thus greatly enhanced the evolution of 
research into antimony-based materials and devices. MBE is a technique in which single or complex 
components of an atomic beam or molecular beam are propelled to a heated substrate, are 
absorbed, migrate, and are deposited on that substrate under ultra-high vacuum conditions [18]. 

To improve the crystal quality of the epitaxy film, a buffer layer between the epitaxy film and 
substrate is commonly used, owing to the large difference in lattice constants. InAs, AlSb and GaSb 
can be used as buffer layers. Noh et al. reported that high quality GaSb films could be realized on a 
GaAs (001) substrate at low temperature, and the strain relief and structural properties of the GaSb 
films with different buffer layers were investigated [6]. Their results show that the insertion of an 
AlSb or GaSb buffer layer is very useful for improving the quality of the GaSb grown on GaAs 
substrates [6]. 

Figure 2. Typical surface morphologies of GaSb epilayers (a) grown on a (100) substrate at 550 ◦C from
a Ga-rich melt and (b) on a 7◦ off-axis (111) substrate at 660 ◦C from an Sb-rich melt. Reproduced with
permission from [15], copyright Springer (1995).

At present, antimony is mainly grown using molecular beam epitaxy (MBE) technology, which is
based on a nonthermodynamic equilibrium. In recent years, following the development of the
nonthermodynamic equilibrium, MBE has been widely used to fabricate a variety of both high-purity
single crystals and ultra-fine structures and has thus greatly enhanced the evolution of research into
antimony-based materials and devices. MBE is a technique in which single or complex components of
an atomic beam or molecular beam are propelled to a heated substrate, are absorbed, migrate, and are
deposited on that substrate under ultra-high vacuum conditions [18].

To improve the crystal quality of the epitaxy film, a buffer layer between the epitaxy film and
substrate is commonly used, owing to the large difference in lattice constants. InAs, AlSb and GaSb
can be used as buffer layers. Noh et al. reported that high quality GaSb films could be realized on a
GaAs (001) substrate at low temperature, and the strain relief and structural properties of the GaSb
films with different buffer layers were investigated [6]. Their results show that the insertion of an AlSb
or GaSb buffer layer is very useful for improving the quality of the GaSb grown on GaAs substrates [6].
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As an important part of GaSb materials, multi-component alloys have been intensively
investigated. By tuning the components in the alloys, the band gap and lattice constant can be
adjusted over a wide range. For example, by theoretical calculations, Wieder and Clawson determined
an expression for the band gap of InAsxSb1−x materials with composition x at temperature T,
as follows [19]:

Eg(x, T) = 0.441− 3.4× 10−4T2

210 + T
− 0.876x + 0.70x2 + 3.4× 10−4xT(1− x) (1)

Among the ternary alloys [20], GaAsxSb1−x is important owing to the advantage that its
wavelength can be modulated over the range from 0.8 µm to 1.7 µm, and such a wavelength band
would enable the production of optoelectronic devices with broad application prospects compared
with those of InP- and GaAs-based devices. Chou et al. reported on the effects of substrate tilting
on the material properties of MBE grown GaAsSb alloys that were closely lattice-matched to InP
substrates. GaAsSb alloys with a thickness of 1 µm were grown on InP(100) and off-axis InP substrates
(2◦, 3◦ and 4◦ off-axis) and were characterized by XRD, as shown in Figure 3. Their results are expected
to be applicable to devices that incorporate MBE grown GaAsSb in their active layer [21]. However,
using Sb as a surfactant would cause a difficulty in epitaxial growth, such as component distribution
aggregation. Therefore, the regulation of alloy composition is very important. For this purpose,
using a mixed beam, Wei’s group reported the carrier dynamics in GaAsSb ternary alloys grown by
MBE. The growth conditions and Sb component of the GaAsSb alloy samples were as those shown
in Table 1 [22]. The results indicated that the localized states are related to the Sb component of the
GaAsSb alloy; however, this component also leads to poor crystal quality in the material, and the
applications of GaAsSb alloys are limited owing to the deterioration in quality.
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Table 1. Growth conditions of the GaAsSb alloy samples. Reproduced with permission from [22],
copyright Nature Publishing Group (2016).

Sample Growth Temperature As/Sb Beam Ratio Sb Component

1 28:1 6%
2 600 ◦C 16:1 8%
3 7:1 9%
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InGaAsSb, which is lattice-matched to GaSb, has been studied in particular depth, in part
because it is an important active region constituent of diode lasers emitting in the 2–3 µm range [23].
Early work on the direct band gap in GaSb-rich GaInAsSb has been summarized by Karouta et al.,
who proposed a bowing parameter of 0.6 eV [24]. In a recent report, an absorption layer composition
of In0.28Ga0.72As0.25Sb0.75 allowed for lattice matching to GaSb and demonstrated cut-off wavelengths
of 2.9 µm at 250 K and 3.0 µm at room temperature [25]. Figure 4 shows the photoluminescence results
recorded between 4 and 300 K. Additionally, short-wave infrared barriode detectors can be realized.

Crystals 2017, 7, 337 5 of 21 

 

who proposed a bowing parameter of 0.6 eV [24]. In a recent report, an absorption layer 
composition of In0.28Ga0.72As0.25Sb0.75 allowed for lattice matching to GaSb and demonstrated cut-off 
wavelengths of 2.9 µm at 250 K and 3.0 µm at room temperature [25]. Figure 4 shows the 
photoluminescence results recorded between 4 and 300 K. Additionally, short-wave infrared barriode 
detectors can be realized.  

 
Figure 4. (a) Photoluminescence results measured between 4 and 300 K and (b) normalized spectral 
response data between 190 and 300 K. Reproduced with permission from [25], copyright AIP 
Publishing LLC (2015) 

In a similar way to InGaAsSb, AlGaAsSb is also important, as it is lattice-matched to GaSb and 
forms a natural barrier and cladding material for use in mid-infrared semiconductor lasers.  
The relationships for the direct and indirect energy gaps were calculated by Adachi and the 
experimental results were summarized by Ait-Kaci et al. [26,27]. An accurate determination of the 
chemical composition of AlGaAsSb layers is difficult. Figure 5 shows the band-gap energies as a 
function of the x-composition parameter for AlxGa1−xAsySb1−y when it is lattice-matched to GaSb. 

 
Figure 5. Band-gap energies as a function of the x-composition parameter for AlxGa1−xAsySb1−y when 
lattice matched to GaSb. Reproduced with permission from [26], copyright AIP Publishing LLC 
(1987) 

In a recent study, Jasik et al. reported on their investigation of the composition of MBE-grown 
AlGaAsSb layers in the context of unintentional arsenic incorporation. Based on the results 
obtained, a procedure for the determination of the chemical composition of AlGaAsSb materials 
was proposed. Table 2 lists the chemical compositions of multicomponent layers [28]. 

Figure 4. (a) Photoluminescence results measured between 4 and 300 K and (b) normalized spectral
response data between 190 and 300 K. Reproduced with permission from [25], copyright AIP Publishing
LLC (2015).

In a similar way to InGaAsSb, AlGaAsSb is also important, as it is lattice-matched to GaSb
and forms a natural barrier and cladding material for use in mid-infrared semiconductor lasers.
The relationships for the direct and indirect energy gaps were calculated by Adachi and the
experimental results were summarized by Ait-Kaci et al. [26,27]. An accurate determination of the
chemical composition of AlGaAsSb layers is difficult. Figure 5 shows the band-gap energies as a
function of the x-composition parameter for AlxGa1−xAsySb1−y when it is lattice-matched to GaSb.
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In a recent study, Jasik et al. reported on their investigation of the composition of MBE-grown
AlGaAsSb layers in the context of unintentional arsenic incorporation. Based on the results obtained,
a procedure for the determination of the chemical composition of AlGaAsSb materials was proposed.
Table 2 lists the chemical compositions of multicomponent layers [28].
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Table 2. Chemical compositions of multicomponent layers. (Reproduced with permission from Jasik
et al., Journal of Applied Physics; published by the American Institute of Physics, 2011 [28]).

Sample Relaxation
Degree (%)

Stoichiometry Coefficient
x y

Lattice
Constant

(Å)

Lattice
Mismatch (ppm),

Relaxed

Lattice
Mismatch

(ppm),(sinθs/sinθL)−1

#A01T 45 0.430 – 6.11255 2814 2837
#A02T 10 0.355 – 6.10956 2324 4267
#A03T 44 0.480 – 6.11455 3142 4782
#A01Q 0 0.430 0.0437 6.09277 −431 −820
#A02Q 10 0.355 0.0045 6.10753 1989 3664
#A03Q 0 0.480 0.0319 6.09997 750 1463

3. Optical and Emission Properties of GaSb Materials

Optical properties have also been intensely investigated as a standard for evaluating material
quality and device performance. At present, GaSb materials are believed to have potential for
optoelectronic applications. To exploit the full potential of these materials for structural design,
a clear understanding of the properties of the material system, e.g., the band parameters and carrier
dynamics, is required. Photoluminescence (PL) is a type of spontaneous emission in which light is
emitted from a material. The peak energy and intensity of PL are mostly dependent on the regions in
the materials that are excited. Basically, PL measurement is a useful tool for the characterization of
material parameters and is helpful for understanding the dynamic carrier processes in materials [29].
For example, PL measurements are advantageous in studies of optical emission processes, material
composition, and impurity content. To give an overview of the optical properties of GaSb materials,
we will first review the previous work in this field over recent decades.

3.1. GaSb Emission Properties

Undoped GaSb is a direct band gap semiconductor with a gap of approximately 0.8 eV, which is
always p-type. In 1997, Dutta et al. presented a comprehensive review of GaSb growth technology,
including the resulting structural, electronic and transport properties, along with a few optical
properties [11]. In this section, we will provide a brief review of the PL properties of GaSb materials.

The luminescence properties of undoped p-GaSb were studied as early as 1972 by Jakowetz
et al., who observed that a doubly-ionizable acceptor affected the concentration of holes in undoped
GaSb [16]. Figure 6 shows the experimental PL data for undoped GaSb. The peak emission at 810 meV
was attributed to a free exciton, and the emission line at 795.5 meV was identified as arising from
to a bound exciton [30]. The lines A, B and C were interpreted as transitions from the conduction
band to the three acceptor levels. The acceptor ionization energies denoted by EA, EB and EC were
34.5, 55 and 102 meV, respectively [16,31–33]. The energy positions and corresponding interpretations
are listed in Table 3. Jakowetz et al. concluded that the simplest possible model for the acceptor
is that of an antistructure defect, that is, as a Ga atom on an Sb site. However, they also admitted
that it may possible for more complex defect structures in undoped GaSb to exist. According to
the work of Lee et al., unintentionally doped GaSb can display approximately 20 transitions in
the 680–810 meV range in the low temperature PL spectra. While a few of these transitions have
clear associations with specific defects, the PL measurements offer great advantages for further
research. The PL properties can be very different when using a specific growth method or specific
growth conditions. For samples grown using MBE technology, better crystallinity is obtained when
using a growth temperature range of 500–550 ◦C and an Sb4:Ga flux ratio of more than 1.5 [34].
In another study, buffer layers were used to reduce the defect concentrations [35]. Clearly, high-quality
MBE-grown GaSb, which demonstrates higher carrier mobility, can be obtained by the optimization
of the growth conditions [33–36]. More importantly, PL measurements can serve to determine the
transitions that occur in good quality GaSb materials [33]. First, the free exciton (FE) transition is an
indication of high optical quality. However, several bound excitonic transitions (BE1–BE4) are generally
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observed and tend to dominate the emissions from MBE-grown samples. These acceptor-related
transitions are listed in Table 4. Additionally, the transition energy may be caused by a concentration
of unintentionally incorporated donors, strain effects, or competing free-to-bound and donor-acceptor
transitions. More recently, researchers found that the free electron to hole bound to unidentified
acceptor transition could dominate recombination after Te doping of GaSb, particularly at high doping
levels [36]. Since then, the PL properties caused by doping effects have attracted scientific and
technological interest motivated by optoelectronic device design considerations [37]. As the growth
techniques matured, the next challenge was to fabricate ternary and quaternary alloys to meet the
requirements of heterostructure fabrication.
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Figure 6. Experimental photoluminescence (PL) data for undoped GaSb. (a) PL spectrum of GaSb
sample W4, grown from a stoichiometric melt. p300 = 1.8 × 1017 cm−8, T = 2 K; (b) PL spectrum of
GaSb sample W7, grown from an antimony rich melt. p300 = 3.5 × 1016 cm−3, T = 2 K; Reproduced
with permission from [16], copyright Wiley-VCH (1972).

Table 3. Energetic positions and corresponding interpretations for GaSb. Reproduced with permission
from Jakowetz et al., Physica Status Solidi; published by the Weinheim, Germany: Wiley-VCH,
1972 [16].

Line hυ (mev)

FE 810 free exciton

BE 795.5 bound exciton

A 777.5 band-acceptor transition
EA = 34.5 meV

BE-LO 766 phonon replica of line BE
(LO)Γ-phonon: (hυ)Ph = 29.5 meV

B 757 band-acceptor transition
EB = 55 meV

A-LO 748.5 phonon replica of line A
(LO)Γ-phonon: (hυ)Ph = 29 meV

B-LO 728 phonon replica of line B
(LO)Γ-phonon: (hυ)Ph = 29 meV

C 710
band-acceptor transition

Ec = 102 meV
second ionization step of the acceptor involved in line A

D 803 band-acceptor transition?
ED = 9 meV
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Table 4. Acceptor-related transitions of GaSb. Reproduced with permission from Lee et al., Journal of
Applied Physics; published by the American Institute of Physics, 1986 [33].

Energy (meV) FWHM (meV) Notation

806 3 BE1
802 2 BE2 or BE3

800–790 Unresolved BE4 and other acceptor related transitions
785 10–15 Unidentified acceptor U1
775 5
757 Unresolved
746 7–8 ALO Phonon replica
725 10
722 Unresolved U2
717 2–3 U3
710 5 U4

3.2. GaSb Alloy Emission Properties

From the previous section, owing to band tailoring properties of GaAsSb being important for
devices with hetero-epitaxial structural designs, and particularly edge-emitting lasers [35,38] and
vertical cavity surface-emitting lasers (VCSELs), many research efforts have been made in epitaxy
growth of GaSb materials. In recent decades, MBE growth of GaAs1−xSbx over the entire composition
range has been reported [39,40], and ternary compounds have been estimated using Vegard’s law [41].
The relationship between the composition and the band gap energy can be expressed as [42]

Eg = 1.43− 1.9x + 1.2x2 (2)

However, with the component distribution aggregation effect, the optical properties would exhibit
a distinct phenomenon, such as emission related to localized states [22]. Unfortunately, there have
only been a few reports on the optical properties of GaAsSb materials [43–50]. In addition, GaAsSb
has been recognized as an important material for use in high-performance optoelectronic devices,
and its optical properties are thus significant for the improvement of the performance of these devices.
Basic knowledge of the properties of GaAsSb is thus important for further applications of the material.
Specifically, the incorporation of small fractions of antimony (Sb) in GaAsSb materials leads to the
reduction of the band gap and introduces some localized states that are caused by fluctuations in the
Sb content.

The GaAsxSb1−x transition process is an important advantage of the material when used in
potential band engineering applications, particularly in the research on GaAsxSb1−x grown by MBE
technology. Hsu et al. presented an optical study of low-Sb-component GaAsxSb1−x layers and
identified the conduction to heavy-hole (HH) band and conduction to light-hole (LH) band transitions
that were determined to originate from strain-induced valence band splitting by comparing the relative
intensities of the photoreflectance (PR) and piezoreflectance (PzR) spectra [48]. The splitting behavior
of the valence band relative to the Sb content is shown in Figure 7. Qiu et al. studied the optical
spin polarization properties of GaAs0.94Sb0.06 to demonstrate how Sb incorporation modified the spin
properties of GaAs [49]. Gao et al. focused on the carrier dynamics of GaAsxSb1−x epilayers with low
Sb content [22]. They discovered the phenomenon of carrier localization, and the degree of localization
showed a linear relationship with increasing Sb content. These localized states were related to the Sb
component in GaAsxSb1−x, and could lead to optical emission degeneration (as shown in Figure 8.).
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Figure 7. Valence band splitting behavior with respect to the Sb content of GaAsxSb1−x. PR spectra 
(dotted curves) of GaAs1−x Sbx samples for (a) Sb = 5.9%, (c)Sb = 8.4% and (e) Sb = 9.7% at 15, 77, 
150, and 300 K. The full lines are least-squares fits to FDLL; Temperature variations of the 
experimental PR values for HH and LH transition with representative error bars for GaAs1−xSbx with 
(b) Sb = 5.9%, (d) Sb = 8.4%, and (f) Sb = 9.7% as open-circles and open-diamonds, respectively. The 
obtained values of the transition energies are indicated by the arrows. Reproduced with permission 
from [48], copyright Elsevier S. A. (2010). 

 

Figure 8. (a) PL spectra of GaAsxSb1−x alloy samples at 10 K; the inset shows the PL spectrum of 
GaAs substrate at 10 K, (b) temperature-dependent PL characteristics of GaAsSb, and (c) (i) 
temperature dependent peak position and (ii) temperature dependent FWHM of the samples. 
Reproduced with permission from [22], copyright Nature Publishing Group (2016). 

Figure 7. Valence band splitting behavior with respect to the Sb content of GaAsxSb1−x. PR spectra
(dotted curves) of GaAs1−xSbx samples for (a) Sb = 5.9%, (c) Sb = 8.4% and (e) Sb = 9.7% at 15, 77, 150,
and 300 K. The full lines are least-squares fits to FDLL; Temperature variations of the experimental PR
values for HH and LH transition with representative error bars for GaAs1−xSbx with (b) Sb = 5.9%,
(d) Sb = 8.4%, and (f) Sb = 9.7% as open-circles and open-diamonds, respectively. The obtained values
of the transition energies are indicated by the arrows. Reproduced with permission from [48], copyright
Elsevier S. A. (2010).
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substrate at 10 K, (b) temperature-dependent PL characteristics of GaAsSb, and (c) (i) temperature
dependent peak position and (ii) temperature dependent FWHM of the samples. Reproduced with
permission from [22], copyright Nature Publishing Group (2016).
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The localized states may be generated by the composition fluctuation, which should therefore
be suppressed to optimize the optical properties of the material. However, post annealing treatment
has been commonly used to improve the structural and optical properties quality of semiconductors,
and can be used to reduce the localized states occurring in GaAsxSb1−x layers. It should be noted
that the formation of localized states was related to Sb cluster formation inside the GaAsxSb1−x
alloy, which was influenced by the rapid thermal annealing (RTA) temperature. Figure 9 shows the
effects of the RTA temperature on the emission properties [50]. During the RTA process, a significant
change in the PL, owing to the reduction of localized states, was observed. The distribution of the
composition in GaAsxSb1−x resulting from the annealing can cause a slight red-shift of the maximum
photoluminescence peak. More important, the RTA process can induce Sb migration and a fluctuation
in alloy composition; therefore, the optimal RTA temperature should be used to improve the optical
properties of the GaAsxSb1−x alloy material.

Crystals 2017, 7, 337 10 of 21 

 

The localized states may be generated by the composition fluctuation, which should therefore 
be suppressed to optimize the optical properties of the material. However, post annealing treatment 
has been commonly used to improve the structural and optical properties quality of 
semiconductors, and can be used to reduce the localized states occurring in GaAsxSb1−x layers.  
It should be noted that the formation of localized states was related to Sb cluster formation inside 
the GaAsxSb1−x alloy, which was influenced by the rapid thermal annealing (RTA) temperature. 
Figure 9 shows the effects of the RTA temperature on the emission properties [50]. During the RTA 
process, a significant change in the PL, owing to the reduction of localized states, was observed. The 
distribution of the composition in GaAsxSb1−x resulting from the annealing can cause a slight 
red-shift of the maximum photoluminescence peak. More important, the RTA process can induce 
Sb migration and a fluctuation in alloy composition; therefore, the optimal RTA temperature should 
be used to improve the optical properties of the GaAsxSb1−x alloy material.  

 

Figure 9. Effects of rapid thermal annealing (RTA) temperature on the emission properties of 
GaAsxSb1−x. Reproduced with permission from Gao et al., Optical Materials Express; published by 
the Optical Society of America, 2017 [50]. 

3.3. Effects of Surface States on GaSb Materials 

The superficial and interfacial characteristics can affect the performance of semiconductor 
devices. The surfaces of GaSb materials can oxidize rapidly in the atmosphere because of their 
highly reactive chemical properties, and the performance of devices based on these materials is 
largely dependent on the properties of the surfaces or interfaces. The development of GaSb-based 
devices could thus easily be hampered by the surface properties of the material. Generally, these 
surface states can lead to the poor photoelectric efficiency of optoelectronic devices. Specifically, an 
oxide layer forms during the oxidation process and an undesirable conduction path arises at the 
oxide/GaSb-based material interface because of the elemental Sb content [51]. Surface states are 
induced by these native oxides and can cause high surface recombination velocities and large 
leakage currents [52–55]. With the intent to improve these surface properties, various chemical 
treatments have been used to reduce the surface states in GaSb materials and thus improve the 
properties of the materials. In particular, the sulfuration technique (a surface treatment using a 
sulfur-containing solution) is showing potential to improve the density of surface states for surface 
passivation of III–V compounds. A number of works have focused on the use of models to describe 
the sulfur passivation process. One of the most widely accepted models can be expressed using the 
following form [54]: ܣூூூܤ + ିܵܪ + ଶܱܪ → ,(ூூூܣ) ܵ௬ + ,(ܤ) , ܵ௬ + ିܪܱ + ଶܪ ↑ (3)

The sulfur passivation process can be described using the schematic diagram shown in Figure 10. 
The first stage involves breaking the bonds between the AIII and BV−	atoms (as shown in Figure 10a). 

Figure 9. Effects of rapid thermal annealing (RTA) temperature on the emission properties of
GaAsxSb1−x. Reproduced with permission from Gao et al., Optical Materials Express; published
by the Optical Society of America, 2017 [50].

3.3. Effects of Surface States on GaSb Materials

The superficial and interfacial characteristics can affect the performance of semiconductor devices.
The surfaces of GaSb materials can oxidize rapidly in the atmosphere because of their highly reactive
chemical properties, and the performance of devices based on these materials is largely dependent
on the properties of the surfaces or interfaces. The development of GaSb-based devices could thus
easily be hampered by the surface properties of the material. Generally, these surface states can lead to
the poor photoelectric efficiency of optoelectronic devices. Specifically, an oxide layer forms during
the oxidation process and an undesirable conduction path arises at the oxide/GaSb-based material
interface because of the elemental Sb content [51]. Surface states are induced by these native oxides
and can cause high surface recombination velocities and large leakage currents [52–55]. With the intent
to improve these surface properties, various chemical treatments have been used to reduce the surface
states in GaSb materials and thus improve the properties of the materials. In particular, the sulfuration
technique (a surface treatment using a sulfur-containing solution) is showing potential to improve the
density of surface states for surface passivation of III–V compounds. A number of works have focused
on the use of models to describe the sulfur passivation process. One of the most widely accepted
models can be expressed using the following form [54]:

AI I I BV + HS− + H2O→
(

AI I I
)

X
, Sy +

(
BV

)
X

, Sy + OH− + H2 ↑ (3)



Crystals 2017, 7, 337 11 of 21

The sulfur passivation process can be described using the schematic diagram shown in Figure 10.
The first stage involves breaking the bonds between the AIII and BV− atoms (as shown in Figure 10a).
Next, the chemical bonds are released to enable the formation of S-AIII and/or S-BV (as shown
in Figure 10b). Then, chemical bonds are formed between sulfur and the other atoms on the
semiconductor surface (as shown in Figure 10c,d). We therefore present some examples to introduce
the wet method used for the sulfur passivation process.
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Figure 10. Schematic showing the chemical bonds between sulfur and other atoms formed at the
semiconductor surface. Reproduced with permission from [8], copyright NORTH-HOLLAND (2013).

Wet methods of sulfur passivation based on the use of sulfur solutions have been proved to
effectively reduce the surface states. For example, (NH4)2S and Na2S solutions are usually used to
passivate GaSb surfaces [8]. Figure 11 presents the passivation time-dependent emission intensities
of GaSb samples. The PL results indicate that the emission intensity of the passivated GaSb sample
could be raised to be 15 times higher than that of the as-grown samples. From low temperature PL
measurements, the reason for the enhanced emission intensity was determined to originate from
the enhancement of free exciton emission. This wet method of sulfur passivation of GaSb-based
materials is thus demonstrated to be promising for the development of efficient light-emitting materials,
which means the application of GaSb materials in potential optoelectronic device is feasible [55].
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applications [60]. Recently, lasing has been realized at room temperature in core-shell 
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Figure 11. Passivation time dependence of the emission intensity of the GaSb samples, (a,b) shows the PL
spectra of the untreated GaSb and the passivated GaSb in (NH4)2S solution for different passivation times,
(c) shows the low temperature PL spectra of GaSb and passivated GaSb, (d) logarithmic PL spectrum of
GaSb sample at 10 K. Reproduced with permission from [8], copyright NORTH-HOLLAND (2013).

4. Low-Dimensional Nanostructures of GaSb Materials

The nanowire (NW) with its one-dimensional (1D) structure is the smallest structure that can be
used for the efficient transport of electrons and optical excitation; NWs are thus expected to be critical
to the functionality and integration of nanoscale devices [56–59]. Among these structures, because of
their outstanding potential for use in the fabrication of high-performance nano-optoelectronic devices,
III–V semiconductor NWs have attracted considerable research attention. For laser applications,
the NW provides two of the required components for lasing, that is, the gain medium and the cavity,
and thus is a suitable material for use in photonic laser applications [60]. Recently, lasing has been
realized at room temperature in core-shell GaAs/AlGaAs NWs [61]. Simultaneously, because the NW
has the obvious virtues of light absorption and carrier collection, it has also been the focus of research
for the development of the next generation of photovoltaic materials. Krogstrup et al. reported that a
solar cell made from NWs can even break the Shockley-Queisser limit [62]. In addition, III–V NWs
have been widely studied for use in detectors, single-photon sources and transistors [63–65].

As a result of the narrow bang gap and high electron mobilities, GaSb NWs can offer significant
advantages in the mid-infrared range, especially for ~2 µm. Consequently, there has been considerable
interest in research into GaSb NWs for nanodevice applications [66–69]. Yang et al. reported the growth
of GaSb nanowires on Si substrates using CVD. However, these GaSb NWs were coil-like and became
intertwined, which made device fabrication difficult [70]. A. H. Chin used GaSb subwavelength wires
with a cross-sectional dimension of 700–1500 nm and lengths of 10–70 µm to lase at approximately
1550 nm, as shown in Figure 12 [71]. Additionally, the higher carrier concentrations mean that these
NWs also contain large numbers of native crystal defects. Clearly, there is a need for a more robust
method for the preparation of GaSb NWs.
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MBE is a feasible method to grow GaSb NWs which has been used to produce a number of different
III–V NWs, including GaN, GaAs, InAs and InSb structures [72–74]. In MBE, the vapor–liquid–solid
(VLS) mechanism is the most extensively used growth mechanism. This mechanism is dependent on the
liquid metal catalyst. During the growth process, the group III and group V elements are dissolved in
the catalyst and the catalyst-substrate interface reaches supersaturation. More supersaturated elements
are precipitated out and this leads to the NW growth. This process is influenced by the substrate,
the growth temperature, the catalyst, the V/III flux ratio and the flux types used [75–78]. These factors
thus jointly affect the physical dimensions and the crystal quality of the resulting NWs. It should be
noted that the NWs show two typical crystal structures: the zinc blend (ZB) and wurtzite (WZ) crystal
structures (as shown Figure 13), which are difficult to achieve in thin film growth [79]. Therefore,
crystal structure control technology for NW fabrication has become a focus of the current research.
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While MBE is widely used to grow III–V NWs, many problems remain to be solved for the
growth of GaSb-based NWs. However, the fabrication of GaSb-based NWs is thus a core challenge.
When compared with other group V elements, the saturated vapor pressure of Sb is higher and this
makes the growth of these NWs much more difficult. In the III–Sb NW formation process, the Sb
suppresses Ga diffusion and reduces the contact angle of the catalyst [80]. All these factors mean that
GaSb can easily form thin films but NW formation is much more difficult. Recently, MBE growth of
Ga-catalyzed GaSb NWs was realized on a GaAs stem (as shown Figure 14). Research into this growth
method has just started and further investigation is required [81].
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Figure 14. (a) A typical SEM image of the GaSb section (b) High resolution TEM of a GaSb nanowire
(NW). The inset is the SAED image from the same GaSb NW. (c) TEM image of a GaSb section showing
the directions of EDX line scans. (d,e) are the corresponding EDX line scans along the axial and
cross-axial directions, respectively. Reproduced with permission from [81], copyright RSC Pub (2016).

To control the photoelectric characteristics of NWs, other III–V elements have been introduced
into GaSb NWs to form ternary nanowires, such as GaAsSb, InAsSb, GaAsP, and GaInSb NWs [82–84].
Among these structures, the GaAsSb NWs are one of the most frequently researched structures. GaAsSb
NWs fabricated by MBE can be divided into two types: those grown on Si(111) substrates and those
grown on GaAs nanowire stems. The GaAsSb NWs have been realized with Sb components in the 0–0.44
range [85–87]. This makes the band gap of GaAsSb NWs easier to be tuned. By growth of the AlGaAs
passive layer, Dingding Ren et al. realized for the first time the wavelength tunability of the optical
emission from self-catalyzed GaAsSb nanowire arrays, and a tuning range from 1.219 to 1.422 eV [80].
Recently, by tuning of the background As, Li et al. realized near-full composition range GaAsSb
NWs (GaAs1−xSbx nanowires with x ranging from 0.60 to 0.93), and the emission wavelength of these
GaAsSb NWs was tunable from 844 nm to 1760 nm [5]. Moreover, Dheeraj et al. demonstrated for GaAs
NWs with GaAsSb inserted, the band alignment was a staggered type II (as shown Figure 15) [88].
The electrons and holes were confined in the GaAs layers and GaAsSb layers separately. The emission
wavelength changed when the band offset of GaAs/GaAsSb was changed. This provides a new way
to control the emission wavelength of NWs.
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The crystal structure is another focus of research in this field. Ren et al. demonstrated Sb-induced
effects on the crystal structures of self-catalyzed GaAsSb NWs [80]. By increasing the Sb content,
a WZ phase GaAsSb NW can be changed into a ZB GaAsSb NW (as shown Figure 16). Conesa-Boj
et al. demonstrated large area vertical GaAsSb nanowire arrays [89]. The nanowires exhibited a pure
zinc blende crystal structure and were entirely twin-free down to the first bilayer, which provides a
foundation for the production of a high-quality NWs device.
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different crystal phase control strategies. Reproduced with permission from [80], copyright American
Chemical Society (2016).

When compared with GaAs and InAs NWs, the research into GaSb and related alloy nanowires
is still insufficient. Current studies are focused on the preparation of the NWs, and there are many
challenges to be overcome. Therefore, more research is needed on antimony-based NW growth
and characteristics.
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5. Conclusions

Over the past few decades, many III–V semiconductor materials and devices have been grown
using molecular beam epitaxy (MBE) methods [90–93]. The properties of antimonide materials have
been studied intensively. Infrared lasers and detectors based on MBE-grown materials have been
widely investigated, and their performances have been adequate for their intended applications [94,95].
The variable temperature PL properties of antimonide films and nanostructures have also been
reported, and the origins of the PL peaks have been determined. The PL of antimonide alloys is usually
dominated by surface states, bound carrier recombination and vacancy defect-related emissions [96,97].
Surface passivation can improve the optical properties of these materials because it eliminates surface
dangling bonds and oxides [8]. Low-dimensional antimonide alloy structures were then grown
as the MBE technology matured. The controllable growth of GaSb-based NWs has already been
realized by some research groups [98]. The optical properties of NWs are similar to those of thin
films, but the surface states in NWs are comparatively enormous; this can be attributed to their high
surface-to-volume ratios. Establishing the relationship between the growth conditions and the optical
properties of these structures is highly significant for the investigations of low-dimensional structures.
On this basis, the research efforts into one-dimensional semiconductor devices remain ongoing and
are still in their initial stages.

While GaSb-based ternary and quaternary alloys have also been grown by MBE,
other multicomponent alloys, such as quinary alloys, must be studied for practical applications.
Component segregation, aggregation and diffusion processes are more likely to occur in quinary
alloys; this has great value for component control research. For one-dimensional GaSb materials,
it is also necessary to control the component ratio. While the optical properties of alloy NWs have
been reported by several groups, a further comprehensive study of the relationships among the
surface states, the defects and the emission spectra is required. Additionally, improvement of the
optical properties of these materials is also an important research direction. New methods should
be developed in addition to surface passivation. Meanwhile, besides the above-mentioned research
direction, with the lattice and coefficient of thermal expansion ability, GaSb is a desirable substrate
candidate for epitaxial growth of mid-wave infrared (MWIR) materials and devices, such as HgCdTe
on GaSb. The results indicate that the lattice misorientation/misfit dislocations in HgCdTe could
be greatly suppressed by using a GaSb substrate [99–101]. Therefore, it is widely considered that
MBE growth of HgCdTe on GaSb substrates should be important for application in next generation
infrared detectors.

As we know, two-dimensional or layered materials may also offer remarkable optical
performances, showing potential applications in a range of fields including hydrogen evolution,
transistors and optoelectronic devices [102,103]. To date, two-dimensional GaN has been grown by a
migration-enhanced encapsulated growth technique that uses epitaxial graphene [104]. Additionally,
As- and Sb-based two-dimensional materials, called arsenene and antimonene, respectively, have been
synthesized [105]. Although 2D materials based on GaSb have not been realized, many experts have
already carried out the theoretical research of GaSb two-dimensional structures [106–108]. Therefore,
GaSb 2D materials should also be realized in the future and represent another important research
direction. While there have been no reports of two-dimensional GaSb structures to date, major research
efforts should be made in this area.

Acknowledgments: We would like to thank the National Natural Science Foundation of China (61404009,
61474010, 61574022, 61504012, 61674021, 11404219, 11404161, 11574130, 11674038), the Foundation of State
Key Laboratory of High Power Semiconductor Lasers, the Developing Project of Science and Technology of Jilin
Province (20160519007JH, 20160520117JH, 20160101255JC, 20160204074GX, 20170520117JH). R. C. acknowledges
the national 1000 plan for young talents and Shenzhen Science and Technology Innovation Committee (Projects
Nos. JCYJ20150630162649956, JCYJ20150930160634263, and KQTD2015071710313656). We thank Liwen Bianji,
Edanz Group China (www.liwenbianji.cn/ac), for editing the English text of a draft of this manuscript.

www.liwenbianji.cn/ac


Crystals 2017, 7, 337 17 of 21

Author Contributions: Shouzhu Niu wrote the paper; Zhipeng Wei and Rui Chen led the discussion and
summarized the literature; Xuan Fang and Dengkui Wang contributed the epitaxy section of the paper; Xinwei
Wang and Xian Gao contributed the PL section of the paper and helped to summarize the literature.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Borg, B.M.; Wernersson, L.E. Synthesis and properties of antimonide nanowires. Nanotechnology 2013,
24, 202001. [CrossRef] [PubMed]

2. Cui, Q.; Yang, Y.; Li, J.; Teng, F.; Wang, X. Material and device architecture engineering toward high
performance two-dimensional (2D) photodetectors. Crystals 2017, 7, 149. [CrossRef]

3. Chen, H.; Liu, H.; Zhang, Z.; Hu, K.; Fang, X. Nanostructured photodetectors: From ultraviolet to terahertz.
Adv. Mater. 2016, 28, 403–433. [CrossRef] [PubMed]

4. Zhang, Y.; Wu, J.; Aagesen, M.; Liu, H. III–V nanowires and nanowire optoelectronic devices. J. Phys. D
Appl. Phys. 2015, 48, 463001. [CrossRef]

5. Li, L.; Pan, D.; Xue, Y.; Wang, X.; Lin, M.; Su, D.; Zhang, Q.; Yu, X.; So, H.; Wei, D. Near full-composition-range
high-quality GaAs1−xSbx nanowires grown by molecular-beam epitaxy. Nano Lett. 2017, 17, 622–630.
[CrossRef] [PubMed]

6. Noh, Y.; Hwang, Y.; Kim, M.; Kwon, Y.; Oh, J.; Kim, Y.; Lee, J. Structural properties of GaSb layers grown on
InAs, AlSb, and GaSb buffer layers on GaAs (001) substrates. J. Korean Phys. Soc. 2007, 50, 1929. [CrossRef]

7. LaPierre, R.; Robson, M.; Azizur-Rahman, K.; Kuyanov, P. A review of III–V nanowire infrared photodetectors
and sensors. J. Phys. D Appl. Phys. 2017, 50, 123001. [CrossRef]

8. Wang, B.; Wei, Z.; Li, M.; Liu, G.; Zou, Y.; Xing, G.; Tan, T.T.; Li, S.; Chu, X.; Fang, F. Tailoring the
photoluminescence characteristics of p-type GaSb: The role of surface chemical passivation. Chem. Phys. Lett.
2013, 556, 182–187. [CrossRef]

9. Solís-Fernández, P.; Bissett, M.; Ago, H. Synthesis, structure and applications of graphene-based 2D
heterostructures. Chem. Soc. Rev. 2017, 46, 4572–4613. [CrossRef] [PubMed]

10. Ji, J.; Song, X.; Liu, J.; Yan, Z.; Huo, C.; Zhang, S.; Su, M.; Liao, L.; Wang, W.; Ni, Z. Two-dimensional
antimonene single crystals grown by van der Waals epitaxy. Nat. Commun. 2016, 7, 13352. [CrossRef]
[PubMed]

11. Rogalski, A.; Antoszewski, J.; Faraone, L. Third-generation infrared photodetector arrays. J. Appl. Phys.
2009, 091101. [CrossRef]

12. Johnson, G.; Cavenett, B.; Kerr, T.; Kirby, P.; Wood, C. Optical, Hall and cyclotron resonance measurements
of GaSb grown by molecular beam epitaxy. Sermicond. Sci. Technol. 1988, 3, 1157. [CrossRef]

13. Vurgaftman, I.; Meyer, J.R.; Ram-Mohan, L.R. Band parameters for III–V compound semiconductors and
their alloys. J. Appl. Phys. 2001, 89, 5815–5875. [CrossRef]

14. Dutta, P.; Rao, K.K.; Bhat, H.; Naik, K.G.; Kumar, V. Surface morphology, electrical and optical properties of
gallium antimonide layers grown by liquid phase epitaxy. J. Cryst. Growth 1995, 152, 14–20. [CrossRef]

15. Dutta, P.S.; Bhat, H.L.; Kumar, V. Liquid phase epitaxial growth of pure and doped GaSb layers:
Morphological evolution and native defects. Bull. Mater. Sci. 1995, 18, 865–874. [CrossRef]

16. Jakowetz, W.; Rühle, W.; Breuninger, K.; Pilkuhn, M. Luminescence and photoconductivity of undoped
p-GaSb. Phys. Stat. Sol. 1972, 12, 169–174. [CrossRef]

17. Shin, J.; Verma, A.; Stringfellow, G.; Gedridge, R. Growth of GaSb using trisdimethylaminoantimony.
J. Cryst. Growth 1995, 151, 1–8. [CrossRef]

18. Parker, E.H.C. Silicon Molecular beam epitaxy. In Molecular Beam Epitaxy and Heterostructures; Leroy, L.C.,
Klaus, P., Eds.; Springer: New York, NY, USA, 1985; pp. 267–268.

19. Wieder, H.H.; Clawson, A.R. Photo-electronic properties of InAs0.07Sb0.93 films. Thin Solid Films 1973, 15,
217–221. [CrossRef]

20. Miyoshi, H.; Horikoshi, Y. Substrate lattice constant effect on the miscibility gap of MBE grown InAsSb.
J. Cryst. Growth 2001, 227, 571–576. [CrossRef]

21. Chou, C.Y.; Torfi, A.; Wang, W.I. Improvement of GaAsSb alloys on InP grown by molecular beam epitaxy
with substrate tilting. J. Appl. Phys. 2013, 114, 153111. [CrossRef]

http://dx.doi.org/10.1088/0957-4484/24/20/202001
http://www.ncbi.nlm.nih.gov/pubmed/23598286
http://dx.doi.org/10.3390/cryst7050149
http://dx.doi.org/10.1002/adma.201503534
http://www.ncbi.nlm.nih.gov/pubmed/26601617
http://dx.doi.org/10.1088/0022-3727/48/46/463001
http://dx.doi.org/10.1021/acs.nanolett.6b03326
http://www.ncbi.nlm.nih.gov/pubmed/28103038
http://dx.doi.org/10.3938/jkps.50.1929
http://dx.doi.org/10.1088/1361-6463/aa5ab3
http://dx.doi.org/10.1016/j.cplett.2012.11.041
http://dx.doi.org/10.1039/C7CS00160F
http://www.ncbi.nlm.nih.gov/pubmed/28691726
http://dx.doi.org/10.1038/ncomms13352
http://www.ncbi.nlm.nih.gov/pubmed/27845327
http://dx.doi.org/10.1063/1.3099572
http://dx.doi.org/10.1088/0268-1242/3/12/002
http://dx.doi.org/10.1063/1.1368156
http://dx.doi.org/10.1016/0022-0248(95)00071-2
http://dx.doi.org/10.1007/BF02745278
http://dx.doi.org/10.1002/pssa.2210120117
http://dx.doi.org/10.1016/0022-0248(94)01024-2
http://dx.doi.org/10.1016/0040-6090(73)90045-X
http://dx.doi.org/10.1016/S0022-0248(01)00774-6
http://dx.doi.org/10.1063/1.4825220


Crystals 2017, 7, 337 18 of 21

22. Gao, X.; Wei, Z.; Zhao, F.; Yang, Y.; Chen, R.; Fang, X.; Tang, J.; Fang, D.; Wang, D.; Li, R. Investigation of
localized states in GaAsSb epilayers grown by molecular beam epitaxy. Sci. Rep. 2016, 6, 29112. [CrossRef]
[PubMed]

23. Garbuzov, D.; Martinelli, R.; Lee, H.; Menna, R.; York, P.; DiMarco, L.; Harvey, M.; Matarese, R.; Narayan, S.;
Connolly, J. 4 W quasi-continuous-wave output power from 2µm AlGaAsSb/InGaAsSb single-quantum-well
broadened waveguide laser diodes. Appl. Phys. Lett. 1997, 70, 2931–2933. [CrossRef]

24. Karouta, F.; Mani, H.; Bhan, J.; Hua, F.J.; Joullie, A. Croissance par épitaxie en phase liquide et caractérisation
d’alliages Ga1−xInxAsySb1−y à paramètre de maille accordé sur celui de GaSb. Revue Phys. Appl. 1987, 22,
1459–1467. [CrossRef]

25. Craig, A.; Jain, M.; Wicks, G.; Golding, T.; Hossain, K.; McEwan, K.; Howle, C.; Percy, B.; Marshall, A.
Short-wave infrared barriode detectors using InGaAsSb absorption material lattice matched to GaSb.
Appl. Phys. Lett. 2015, 106, 201103. [CrossRef]

26. Adachi, S. Band gaps and refractive indices of AlGaAsSb, GaInAsSb, and InPAsSb: Key properties for a
variety of the 2~4µm optoelectronic device applications. J. Appl. Phys. 1987, 61, 4869–4876. [CrossRef]

27. Ait Kaci, H.; Boukredimi, D.; Mebarki, M. Band discontinuities of perfectly lattice-matched
GaSb(n)/GaAlAsSb(p)/GaSb(p) double heterojunction. Phys. Stat. Sol. 1997, 163, 101–106. [CrossRef]
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