Structural Characterization of Perpendicularly Aligned Submicrometer-Thick Synthetic Glycolipid Polycrystalline Films Using Conventional X-ray Diffraction
Abstract
:1. Introduction
2. Results and Discussion
2.1. MOβGal Polycrystalline Films with Different Thicknesses
2.2. GIXD Analysis with Different Incident Angles and Radiation Time
2.3. Out-of-Plane and In-Plane Measurement
2.4. Global Reciprocal Image of MOβGal Hemihydrate Prepared by Combining Data of Two-Dimensional GIXD Analysis with In-Plane Measurements
3. Materials and Methods
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Fischer, E. Ueber die glucoside der alkohole. Ber. Dtsch. Chem. Ges. 1893, 26, 2400–2412. [Google Scholar] [CrossRef]
- Pascher, I.; Sundell, S. Molecular arrangements in sphingolipids. The crystal structure of cerebroside. Chem. Phys. Lipids 1977, 20, 175–191. [Google Scholar] [CrossRef]
- Abrahamsson, S.; Dahlén, B.; Pascher, I. Molecular arrangements in glycosphingolipids: The crystal structure of glucosylphytosphingosine hydrochloride. Acta Cryst. B 1977, B33, 2008–2013. [Google Scholar] [CrossRef]
- Jeffrey, G.A. Carbohydrate liquid crystals. Acc. Chem. Res. 1986, 19, 168–173. [Google Scholar] [CrossRef]
- Abe, Y.; Harata, K. Crystal structures of glycolipids. In Polysaccharides Structural Diversity and Functional Versatility, 2nd ed.; Dumitriu, S., Ed.; CRC Press: Boca Raton, FL, USA, 2004; pp. 743–771. [Google Scholar]
- Jeffrey, G.A. Carbohydrate liquid crystals. Mol. Cryst. Liq. Cryst. 1984, 110, 221–237. [Google Scholar] [CrossRef]
- Jeffrey, G.A.; Wingert, L.M. Carbohydrate liquid crystals. Liq. Cryst. 1992, 12, 179–202. [Google Scholar] [CrossRef]
- Moews, P.C.; Knox, J.R. The crystal structure of 1-decyl α-D-glucopyranoside: A polar bilayer with a hydrocarbon subcell. J. Am. Chem. Soc. 1976, 13, 6628–6633. [Google Scholar] [CrossRef]
- Jeffrey, G.A.; Yeon, Y. The crystal structure of a 1:1 complex of n-octyl α- and β-d-glucopyranoside at 123K. Carbohydr. Res. 1992, 237, 45–55. [Google Scholar] [CrossRef]
- Adasch, V.; Hoffmann, B.; Milius, W.; Platz, G.; Voss, G. Preparation of alkyl α- and β-d-glucopyranosides, thermotropic properties and X-ray analysis. Carbohydr. Res. 1998, 314, 177–187. [Google Scholar] [CrossRef]
- Zhang, W.; Oliver, A.G.; Vu, H.M.; Duman, J.G.; Serianni, A.S. Methyl 4-O-β-d-xylopyranosyl β-d-mannopyranoside, a core disaccharide of an antifreeze glycolipid. Acta Cryst. C 2013, C69, 1047–1050. [Google Scholar] [CrossRef] [PubMed]
- Dorset, D.L.; Rosenbusch, J.P. Solid state properties of anomeric 1-O-n-octyl-d-glucopyranosides. Chem. Phys. Lipids 1981, 29, 299–307. [Google Scholar] [CrossRef]
- Jeffrey, G.A.; Bhattacharjee, S. Carbohydrate liquid-crystals. Carbohydr. Res. 1983, 115, 53–58. [Google Scholar] [CrossRef]
- Pfannemuller, B.; Welte, W.; Chin, E.; Goodby, J.W. Liquid-crystalline behaviour in the n-alkyl gluconamides and other related carbohydrates. Liq. Cryst. 1986, 1, 357–370. [Google Scholar] [CrossRef]
- Häntzschel, D.; Schulte, J.; Enders, S.; Quitzsch, K. Thermotropic and lyotropic properties of n-alkyl-β-d-glucopyranoside surfactants. Phys. Chem. Chem. Phys. 1999, 1, 895–904. [Google Scholar] [CrossRef]
- Ma, Y.-D.; Takada, A.; Sugiura, M.; Fukuda, T.; Miyamoto, T.; Watanabe, J. Thermotropic liquid crystals based on oligosaccharides. n-Alkyl 1-O-β-d-cellobioside. Bull. Chem. Soc. Jpn. 1994, 67, 346–351. [Google Scholar] [CrossRef]
- Dumoulin, F.; Lafont, D.; Boullanger, P.; Mackenzie, G.; Mehl, G.H.; Goodby, J.W. Self-organizing properties of natural and related synthetic glycolipids. J. Am. Chem. Soc. 2002, 124, 13737–13748. [Google Scholar] [CrossRef] [PubMed]
- Ericsson, C.A.; Ericsson, L.C.; Kocherbitov, V.; Söderman, O.; Ulvenlund, S. Thermotropic phase behaviour of long-chain alkylmaltosides. Phys. Chem. Chem. Phys. 2005, 7, 2970–2977. [Google Scholar] [CrossRef] [PubMed]
- Jeffrey, G.A.; Maluszynska, H. The crystal structure and thermotropic liquid-crystal properties of N-n-undecyl-d-glucoamide. Carbohydr. Res. 1990, 207, 211–219. [Google Scholar] [CrossRef]
- Kocherbitov, V.; Söderman, O. Phase diagram and physicochemical properties of the n-octyl α-d-glucoside/water system. Phys. Chem. Chem. Phys. 2003, 5, 5262–5270. [Google Scholar] [CrossRef]
- Ericsson, C.A.; Ericsson, L.C.; Ulvenlund, S. Solid-state phase behavior of dodecylglycosides. Carbohydr. Res. 2005, 340, 1529–1537. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, S.; Asakura, K.; Osanai, S. Thermotropic and glass transition behaviors of n-alkyl β-d-glucosides. RSC Adv. 2013, 3, 21439–21446. [Google Scholar] [CrossRef]
- Rivnay, J.; Mannsfeld, S.C.B.; Miller, C.E.; Salleo, A.; Toney, M.F. Quantitative determination of organic semiconductor microstructure from the molecular to device scale. Chem. Rev. 2012, 112, 5488–5519. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, S.; Ozaki, Y.; Takahashi, I. Structural insights into solid-to-solid phase transition and modulated crystal formation in octyl-β-d-galactoside crystals. ChemPhysChem 2016, 17, 2808–2812. [Google Scholar] [CrossRef] [PubMed]
- Goodby, J.W. Liquid crystal phases exhibited by some monosaccharides. Mol. Cryst. Liq. Cryst. 1984, 110, 205–219. [Google Scholar] [CrossRef]
- Yamamoto, A.; Abuillan, W.; Burk, A.S.; Körner, A.; Ries, A.; Werz, D.B.; Demé, B.; Tanaka, M. Influence of length and conformation of saccharide head groups on the mechanics of glycolipid membranes: Unraveled by off-specular neutron scattering. J. Chem. Phys. 2015, 142, 154907. [Google Scholar] [CrossRef] [PubMed]
- Masunaga, H.; Ogawa, H.; Takano, T.; Sasaki, S.; Goto, S.; Tanaka, T.; Seike, T.; Takahashi, S.; Takeshita, K.; Nariyama, N.; et al. Multipurpose soft-material SAXS/WAXS/GISAXS beamline at SPring-8. Polym. J. 2011, 43, 471–477. [Google Scholar] [CrossRef]
- Ogawa, H.; Masunaga, H.; Sasaki, S.; Goto, S.; Tanaka, T.; Seike, T.; Takahashi, S.; Takeshita, K.; Nariyama, N.; Ohashi, H.; et al. Experimental station for multiscale surface structural analyses of soft-material films at SPring-8 via a GISAXS/GIXD/XR-integrated system. Polym. J. 2013, 45, 109–116. [Google Scholar] [CrossRef]
- Ogawa, S.; Koga, M.; Asakura, K.; Takahashi, I.; Osanai, S. Coagel Prepared from Aqueous Octyl β-d-Galactoside Solution. J. Surfact. Deterg. 2017, 20, 255–261. [Google Scholar] [CrossRef]
- Tolan, M. Springer Tracts in Modern Physics. In X-ray Scattering from Soft-Matter Thin Films. Materials Science and Basic Research; Spriner: Berlin, Germany, 1999; ISBN 978-3-662-14218-9. [Google Scholar]
- Reddy, K.R.; Ogawa, S.; Sato, H.; Takahashi, I.; Ozaki, Y. Evolution of intermediate and highly ordered crystalline states under spatial confinement in poly(3-hydroxybutyrate) ultrathin films. Macromolecules 2016, 49, 4202–4210. [Google Scholar] [CrossRef]
- Yoshida, H.; Inaba, K.; Sato, N. X-ray diffraction reciprocal space mapping study of the thin film phase of pentacene. Appl. Phys. Lett. 2007, 90, 181930. [Google Scholar] [CrossRef] [Green Version]
- Breiby, D.W.; Bunk, O.; Andreasen, J.W.; Lemke, H.T.; Nielsen, M.M. Simulating X-ray diffraction of textured films. J. Appl. Cryst. 2008, 41, 262–271. [Google Scholar] [CrossRef]
- Ahmadi, S.; ManickamAchari, V.; Hussain, Z.; Hashim, R. Epimeric and anomeric relationship of octyl-α-d-gluco/galactosides: Insight from density functional theory and atom in molecules studies. Comput. Theor. Chem. 2017, 1108, 93–102. [Google Scholar] [CrossRef]
h | k | l | h | k | l | h | k | l |
---|---|---|---|---|---|---|---|---|
0 | 1 | 1 | 2 | 1 | 0 | 4 | 0 | 0 |
0 | 2 | 1 | 2 | 3 | 0 | 4 | 1 | 1 |
0 | 2 | 0 | 2 | 4 | 0 | 4 | 2 | 1 |
0 | 3 | 1 | 2 | 5 | 0 | 4 | 3 | 1 |
0 | 4 | 0 | 2 | 1 | 1 | 4 | 4 | 1 |
0 | 4 | 1 | 2 | 2 | 1 | 4 | 5 | 0 |
1 | 1 | 0 | 2 | 3 | 1 | 5 | 1 | 1 |
1 | 0 | 1 | 2 | 4 | 1 | 5 | 2 | 0 |
1 | 1 | 1 | 2 | 7 | 0 | 5 | 2 | 1 |
1 | 3 | 0 | 3 | 0 | 1 | 5 | 3 | 0 |
1 | 3 | 1 | 3 | 2 | 0 | 5 | 3 | 1 |
1 | 7 | 0 | 3 | 2 | 1 | 5 | 4 | 1 |
2 | 0 | 0 | 3 | 7 | 1 | 5 | 5 | 0 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ogawa, S.; Takahashi, I. Structural Characterization of Perpendicularly Aligned Submicrometer-Thick Synthetic Glycolipid Polycrystalline Films Using Conventional X-ray Diffraction. Crystals 2017, 7, 356. https://doi.org/10.3390/cryst7120356
Ogawa S, Takahashi I. Structural Characterization of Perpendicularly Aligned Submicrometer-Thick Synthetic Glycolipid Polycrystalline Films Using Conventional X-ray Diffraction. Crystals. 2017; 7(12):356. https://doi.org/10.3390/cryst7120356
Chicago/Turabian StyleOgawa, Shigesaburo, and Isao Takahashi. 2017. "Structural Characterization of Perpendicularly Aligned Submicrometer-Thick Synthetic Glycolipid Polycrystalline Films Using Conventional X-ray Diffraction" Crystals 7, no. 12: 356. https://doi.org/10.3390/cryst7120356
APA StyleOgawa, S., & Takahashi, I. (2017). Structural Characterization of Perpendicularly Aligned Submicrometer-Thick Synthetic Glycolipid Polycrystalline Films Using Conventional X-ray Diffraction. Crystals, 7(12), 356. https://doi.org/10.3390/cryst7120356