The CeOX and MnOX Nanocrystals Supported on TiO2–Graphene Oxide Catalysts and Their Selective Catalytic Reduction Properties at Low Temperature
Abstract
:1. Introduction
2. Results and Discussion
2.1. SCR Activity of Different Molar Ratios of Ce/Mn
2.2. Characterization of the Catalysts
2.2.1. FESEM of the Supports
2.2.2. HRTEM of the Catalyst
2.2.3. BET Surface Areas and Pore Size Distributions
2.2.4. XPS Characterization
2.3. Resistance to H2O and SO2
2.4. NH3-TPD Analysis
2.5. H2-TPR Analysis
2.6. Stability Test of the Catalyst
3. Materials and Methods
3.1. Synthesis of the Catalyst
3.2. Catalyst Characterization
3.3. Catalyst Activity Test
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Kim, C.H.; Qi, G.S.; Dahlberg, K.; Li, W. Strontium-doped perovskites rival platinum catalysts for treating NOx in simulated diesel exhaust. Science 2010, 327, 1624–1627. [Google Scholar] [CrossRef] [PubMed]
- Parks, J.E. Less costly catalysts for controlling engine emissions. Science 2010, 327, 1584–1585. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Shi, J.W.; Gao, C.; Niu, C.M. Manganese oxide-based catalysts for low-temperature selective catalytic reduction of NOx with NH3: A review. Appl. Catal. A 2016, 522, 54–69. [Google Scholar] [CrossRef]
- Wang, J.H.; Zhao, H.W.; Haller, G.; Li, Y.D. Recent advances in the selective catalytic reduction of NOx with NH3 on Cu-Chabazite catalysts. Appl. Catal. B 2017, 202, 346–354. [Google Scholar] [CrossRef]
- Kwak, J.H.; Tonkyn, R.G.; Kim, D.H.; Szanyi, J.; Peden, C.H.F. Excellent activity and selectivity of Cu-SSZ-13 in the selective catalytic reduction of NOx with NH3. J. Catal. 2010, 275, 187–190. [Google Scholar] [CrossRef]
- Xu, W.Q.; Yu, Y.B.; Zhang, C.B.; He, H. Selective catalytic reduction of NO by NH3 over a Ce/TiO2 catalyst. Catal. Commun. 2008, 9, 1453–1457. [Google Scholar] [CrossRef]
- Kang, M.; Yeon, T.H.; Park, E.D.; Yie, J.E.; Kim, J.M. Novel MnOx catalysts for NO reduction at low temperature with ammonia. Catal. Lett. 2006, 106, 77–80. [Google Scholar] [CrossRef]
- Kang, M.; Park, E.D.; Kim, J.M.; Yie, J.E. Manganese oxide catalysts for NOx reduction with NH3 at low temperatures. Appl. Catal. A 2007, 327, 261–269. [Google Scholar] [CrossRef]
- Tian, W.; Yang, H.S.; Fan, X.Y.; Zhang, X.B. Catalytic reduction of NOx with NH3 over different-shaped MnO2 at low temperature. J. Hazard. Mater. 2011, 188, 105–109. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.F.; Li, J.H.; Sun, L.A.; Hao, J.M. Origination of N2O from NO reduction by NH3 over beta-MnO2 and alpha-Mn2O3. Appl. Catal. B 2010, 99, 156–162. [Google Scholar] [CrossRef]
- Wu, Z.B.; Jin, R.B.; Liu, Y.; Wang, H.Q. Ceria modified MnOx/TiO2 as a superior catalyst for NO reduction with NH3 at low-temperature. Catal. Commun. 2008, 9, 2217–2220. [Google Scholar] [CrossRef]
- Huang, H.Y.; Yang, R.T. Removal of NO by reversible adsorption on Fe-Mn based transition metal oxides. Langmuir 2001, 17, 4997–5003. [Google Scholar] [CrossRef]
- Lian, Z.H.; Liu, F.D.; He, H.; Shi, X.Y.; Mo, J.S.; Wu, Z.B. Manganese-niobium mixed oxide catalyst for the selective catalytic reduction of NOx with NH3 at low temperatures. Chem. Eng. J. 2014, 250, 390–398. [Google Scholar] [CrossRef]
- Chang, H.Z.; Chen, X.Y.; Li, J.H.; Ma, L.; Wang, C.Z.; Liu, C.X.; Schwank, J.W.; Hao, J.M. Improvement of activity and SO2 tolerance of Sn-modified MnOx-CeO2 catalysts for NH3-SCR at low temperatures. Environ. Sci. Technol. 2013, 47, 5294–5301. [Google Scholar] [CrossRef] [PubMed]
- Zuo, J.L.; Chen, Z.H.; Wang, F.R.; Yu, Y.H.; Wang, L.F.; Li, X.H. Low-temperature selective catalytic reduction of NOx with NH3 over novel Mn-Zr mixed oxide catalysts. Ind. Eng. Chem. Res. 2014, 53, 2647–2655. [Google Scholar] [CrossRef]
- Liu, Z.M.; Yi, Y.; Zhang, S.X.; Zhu, T.L.; Zhu, J.Z.; Wang, J.G. Selective catalytic reduction of NOx with NH3 over Mn-Ce mixed oxide catalyst at low temperatures. Catal. Today 2013, 216, 76–81. [Google Scholar] [CrossRef]
- Wei, Y.J.; Sun, Y.; Su, W.; Liu, J. MnO2 doped CeO2 with tailored 3-D channels exhibits excellent performance for NH3-SCR of NO. RSC Adv. 2015, 5, 26231–26235. [Google Scholar] [CrossRef]
- Jampaiah, D.; Tur, K.M.; Venkataswamy, P.; Ippolito, S.J.; Sabri, Y.M.; Tardio, J.; Bhargava, S.K.; Reddy, B.M. Catalytic oxidation and adsorption of elemental mercury over nanostructured CeO2-MnOx catalyst. RSC Adv. 2015, 5, 30331–30341. [Google Scholar] [CrossRef]
- Wang, Y.L.; Ge, C.Z.; Zhan, L.; Li, C.; Qiao, W.M.; Ling, L.C. MnOx-CeO2/activated carbon honeycomb catalyst for selective catalytic reduction of NO with NH3 at low temperatures. Ind. Eng. Chem. Res. 2012, 51, 11667–11673. [Google Scholar] [CrossRef]
- Qi, G.S.; Yang, R.T.; Chang, R. MnOx-CeO2 mixed oxides prepared by co-precipitation for selective catalytic reduction of NO with NH3 at low temperatures. Appl. Catal. B 2004, 51, 93–106. [Google Scholar] [CrossRef]
- Qi, G.S.; Yang, R.T. Performance and kinetics study for low-temperature SCR of NO with NH3 over MnOx-CeO2 catalyst. J. Catal. 2003, 217, 434–441. [Google Scholar] [CrossRef]
- Jin, R.B.; Liu, Y.; Wang, Y.; Cen, W.L.; Wu, Z.B.; Wang, H.Q.; Weng, X.L. The role of cerium in the improved SO2 tolerance for NO reduction with NH3 over Mn-Ce/TiO2 catalyst at low temperature. Appl. Catal. B 2014, 148, 582–588. [Google Scholar] [CrossRef]
- Wu, Z.B.; Jin, R.B.; Wang, H.Q.; Liu, Y. Effect of ceria doping on SO2 resistance of Mn/TiO2 for selective catalytic reduction of NO with NH3 at low temperature. Catal. Commun. 2009, 10, 935–939. [Google Scholar] [CrossRef]
- Yoshikawa, M.; Yasutake, A.; Mochida, I. Low-temperature selective catalytic reduction of NOx by metal oxides supported on active carbon fibers. Appl Catal. A 1998, 173, 239–245. [Google Scholar] [CrossRef]
- Tang, X.L.; Hao, J.M.; Yi, H.H.; Li, J.H. Low-temperature SCR of NO with NH3 over AC/C supported manganese-based monolithic catalysts. Catal. Today 2007, 126, 406–411. [Google Scholar] [CrossRef]
- Pradhan, B.K.; Sandle, N.K. Effect of different oxidizing agent treatments on the surface properties of activated carbons. Carbon 1999, 37, 1323–1332. [Google Scholar] [CrossRef]
- Solís, T.V.; Marbán, G.; Fuertes, A.B. Low-temperature SCR of NOx with NH3 over carbon-ceramic supported catalysts. Appl. Catal. B 2003, 46, 261–271. [Google Scholar] [CrossRef]
- Liang, Y.Y.; Li, Y.G.; Wang, H.L.; Zhou, J.G.; Wang, J.; Regier, T.; Dai, H.J. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 2011, 10, 780–786. [Google Scholar] [CrossRef] [PubMed]
- Pyun, J. Graphene Oxide as Catalyst: Application of carbon materials beyond nanotechnology. Angew. Chem., Int. Ed. 2011, 50, 46–48. [Google Scholar] [CrossRef] [PubMed]
- Cai, S.X.; Hu, H.; Li, H.R.; Shi, L.Y.; Zhang, D.S. Design of multi-shell Fe2O3@MnOx@CNTs for the selective catalytic reduction of NO with NH3: Improvement of catalytic activity and SO2 tolerance. Nanoscale 2016, 8, 3588–3598. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.H.; Cao, F.F.; Qu, R.Y.; Gao, X.; Cen, K.F. Bimetallic cerium-copper nanoparticles embedded in ordered mesoporous carbons as effective catalysts for the selective catalytic reduction of NO with NH3. J. Colloid. Interface Sci. 2015, 456, 66–75. [Google Scholar] [CrossRef] [PubMed]
- Cao, F.F.; Chen, J.H.; Lyu, C.L.; Ni, M.J.; Gao, X.; Cen, K.F. Synthesis, characterization and catalytic performances of Cu- and Mn-containing ordered mesoporous carbons for the selective catalytic reduction of NO with NH3. Catal. Sci. Technol. 2015, 5, 1267–1279. [Google Scholar] [CrossRef]
- Lerf, A.; Heyong, H.; Forster, M.; Klinowski, J. Structure of graphite oxide revisited. J. Phys. Chem. B 1998, 102, 4477–4482. [Google Scholar] [CrossRef]
- Nie, R.F.; Wang, J.H.; Wang, L.N.; Qin, Y.; Chen, P.; Hou, Z.Y. Platinum supported on reduced graphene oxide as a catalyst for hydrogenation of nitroarenes. Carbon 2012, 50, 586–596. [Google Scholar] [CrossRef]
- Li, D.; Kaner, R.B. Materials science-Graphene-based materials. Science 2008, 320, 1170–1171. [Google Scholar] [CrossRef] [PubMed]
- Scheuermann, G. M.; Rumi, L.; Steurer, P.; Bannwarth, W.; Mulhaupt, R. Palladium nanoparticles on graphite oxide and its functionalized graphene derivatives as highly active catalysts for the Suzuki-Miyaura coupling reaction. J. Am. Chem. Soc. 2009, 131, 8262–8270. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Ruoff, R.S. Chemical methods for the production of graphenes. Nat. Nanotechnol. 2009, 4, 217–224. [Google Scholar] [CrossRef]
- Gao, Y.J.; Ma, D.; Wang, C.L.; Guan, J.; Bao, X.H. Reduced graphene oxide as a catalyst for hydrogenation of nitrobenzene at room temperature. Catal. Commun. 2011, 47, 2432–2434. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.P.; Su, D.S.; Weinberg, G.; Schlogl, R. Supermolecular self-assembly of graphene sheets: Formation of tube-in-tube nanostructures. Nano Lett. 2004, 4, 2255–2259. [Google Scholar] [CrossRef]
- Erickson, K.; Erni, R.; Lee, Z.; Alem, N.; Gannett, W.; Zettl, A. Determination of the local chemical structure of graphene oxide and reduced graphene oxide. Adv. Mater. 2010, 22, 4467–4472. [Google Scholar] [CrossRef] [PubMed]
- Nie, R.F.; Shi, J.J.; Xia, S.X.; Shen, L.; Chen, P.; Hou, Z.Y.; Xiao, F.S. MnO2/graphene oxide: A highly active catalyst for amide synthesis from alcohols and ammonia in aqueous media. J. Mater. Chem. 2012, 22, 18115–18118. [Google Scholar] [CrossRef]
- Su, W.; Lu, X.N.; Jia, S.H.; Wang, J.; Ma, H.Z.; Xing, Y. Catalytic reduction of NOx over TiO2-graphene oxide supported with MnOx at low temperature. Catal. Lett. 2015, 145, 1446–1456. [Google Scholar] [CrossRef]
- Lu, X.N.; Song, C.Y.; Jia, S.H.; Tong, Z.S.; Tang, X.L.; Teng, Y.X. Low-temperature selective catalytic reduction of NOX with NH3 over cerium and manganese oxides supported on TiO2-graphene. Chem. Eng. J. 2015, 260, 776–784. [Google Scholar] [CrossRef]
- Qiu, Y.; Liu, B.; Du, J.; Tang, Q.; Liu, Z.H.; Liu, R.L.; Tao, C.Y. The monolithic cordierite supported V2O5-MoO3/TiO2 catalyst for NH3-SCR. Chem. Eng. J. 2016, 294, 264–272. [Google Scholar] [CrossRef]
- Lu, P.; Li, C.T.; Zeng, G.M.; He, L.J.; Peng, D.L.; Cui, H.F.; Li, S.H.; Zhai, Y.B. Low temperature selective catalytic reduction of NO by activated carbon fiber loading lanthanum oxide and ceria. Appl. Catal. B 2010, 96, 157–161. [Google Scholar] [CrossRef]
- Planeix, J.M.; Coustel, N.; Coq, B.; Brotons, V.; Kumbhar, P.S.; Dutartre, R.; Geneste, P.; Bernier, P.; Ajayan, P.M. Application of carbon nanotubes as supports in heterogeneous catalysis. J. Am. Chem. Soc. 1994, 116, 7935–7936. [Google Scholar] [CrossRef]
- Kapteijn, F.; Singoredjo, L.; Andreini, A.; Moulijin, J.A. Activity and selectivity of pure manganese oxides in the selective catalytic reduction of nitric oxide with ammonia. Appl. Catal. B 1994, 3, 173–189. [Google Scholar] [CrossRef]
- Lee, J.Y.; Hong, S.H.; Cho, S.P.; Hong, S.C. The study of deNOx catalyst in low temperature using nano-sized supports. Curr. Appl. Phys. 2006, 6, 996–1001. [Google Scholar] [CrossRef]
- Chen, Z.H.; Yang, Q.; Li, H.; Li, X.H.; Wang, L.F.; Tsang, S.C. Cr-MnOx mixed-oxide catalysts for selective catalytic reduction of NOx with NH3 at low temperature. J. Catal. 2010, 276, 56–65. [Google Scholar] [CrossRef]
- Fang, C.; Zhang, D.S.; Cai, S.X.; Zhang, L.; Huang, L.; Li, H.R.; Maitarad, P.; Shi, L.Y.; Gao, R.H.; Zhang, J.P. Low-temperature selective catalytic reduction of NO with NH3 over nanoflaky MnOx on carbon nanotubes in situ prepared via a chemical bath deposition route. Nanoscale 2013, 5, 9199–9207. [Google Scholar] [CrossRef] [PubMed]
- Thirupathi, B.; Smirniotis, P.G. Nickel-doped Mn/TiO2 as an efficient catalyst for the low-temperature SCR of NO with NH3: Catalytic evaluation and characterizations. J. Catal. 2012, 288, 74–83. [Google Scholar] [CrossRef]
- Yu, J.; Si, Z.C.; Chen, L.; Wu, X.D.; Weng, D. Selective catalytic reduction of NOx by ammonia over phosphate-containing Ce0.75Zr0.25O2 solids. Appl. Catal. B 2015, 163, 223–232. [Google Scholar] [CrossRef]
- Yang, S.X.; Zhu, W.P.; Jiang, Z.P.; Chen, Z.X.; Wang, J.B. The surface properties and the activities in catalytic wet air oxidation over CeO2-TiO2 catalysts. Appl. Surf. Sci. 2006, 252, 8499–8505. [Google Scholar] [CrossRef]
- Ponce, S.; Pena, M.A.; Fierro, J.L.G. Surface properties and catalytic performance in methane combustion of Sr-substituted lanthanum manganites. Appl. Catal. B 2000, 24, 193–205. [Google Scholar] [CrossRef]
- Xiao, X.; Sheng, Z.Y.; Yang, L.; Dong, F. Low-temperature selective catalytic reduction of NOx with NH3 over a manganese and cerium oxide/graphene composite prepared by a hydrothermal method. Catal. Sci. Technol. 2016, 6, 1507–1514. [Google Scholar] [CrossRef]
- Seifvand, N.; Kowsari, E. TiO2/in-situ reduced GO/functionalized with an IL-Cr complex as a ternary photocatalyst composite for efficient carbon monoxide deterioration from air. Appl. Catal. B 2017, 206, 184–193. [Google Scholar] [CrossRef]
- Omidvar, A.; Jaleh, B.; Nasrollahzadeh, M. Preparation of the GO/Pd nanocomposite and its application for the degradation of organic dyes in water. J. Colloid. Interface Sci. 2017, 496, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.H.; Liang, S.; Ma, L.; Ding, S.J.; Yu, X.F.; Zhou, L.; Wang, Q.Q. One-pot synthesis of CdS-reduced graphene oxide 3D composites with enhanced photocatalytic properties. CrystEngComm 2014, 16, 399–405. [Google Scholar] [CrossRef]
- Wang, C.; Sun, L.A.; Cao, Q.Q.; Hu, B.Q.; Huang, Z.W.; Tang, X.F. Surface structure sensitivity of manganese oxides for low-temperature selective catalytic reduction of NO with NH3. Appl. Catal. B 2011, 101, 598–605. [Google Scholar] [CrossRef]
- Wan, Y.P.; Zhao, W.R.; Tang, Y.; Li, L.; Wang, H.J.; Cui, Y.L.; Gu, J.L.; Li, Y.S.; Shi, J.L. Ni-Mn bi-metal oxide catalysts for the low temperature SCR removal of NO with NH3. Appl. Catal. B 2014, 148, 114–122. [Google Scholar] [CrossRef]
- Zhan, S.H.; Zhu, D.D.; Qiu, M.Y.; Yu, H.B.; Li, Y. Highly efficient removal of NO with ordered mesoporous manganese oxide at low temperature. RSC Adv. 2015, 5, 29353–29361. [Google Scholar] [CrossRef]
- Yao, X.J.; Kong, T.T.; Yu, S. H.; Li, L.L.; Yang, F.M.; Dong, L. Influence of different supports on the physicochemical properties and denitration performance of the supported Mn-based catalysts for NH3-SCR at low temperature. Appl. Surf. Sci. 2017, 402, 208–217. [Google Scholar] [CrossRef]
- Deng, J.G.; Zhang, L.; Dai, H.X.; Xia, Y.S.; Jiang, H.Y.; Zhang, H.; He, H. Ultrasound-assisted nanocasting fabrication of ordered mesoporous MnO2 and Co3O4 with high surface areas and polycrystalline walls. J. Phys. Chem. C 2010, 114, 2694–2700. [Google Scholar] [CrossRef]
- Hummers, W.S.; Offerman, R.E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339. [Google Scholar] [CrossRef]
Catalyst | SBET | Pore Volume (cm3/g) | Average Pore Size (nm) |
---|---|---|---|
9%Mn/TiO2–0.8%GO | 149 | 30.48 | 9.0 |
9%Ce(0.1)–Mn/TiO2–0.8%GO | 144 | 29.98 | 9.1 |
9%Ce(0.2)–Mn/TiO2–0.8%GO | 138 | 29.12 | 9.2 |
9%Ce(0.3)–Mn/TiO2–0.8%GO | 136 | 29.13 | 9.1 |
9%Ce(0.4)–Mn/TiO2–0.8%GO | 127 | 25.56 | 11.5 |
Catalyst | Atomic Composition (%) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
C | Ce | Mn | Ti | O | O | Mn | |||||
Oα | Oβ | MnO | MnO2 | Mn2O3 | MnOx/Mn | ||||||
9%Mn/TiO2–0.8%GO | 19.45 | - | 5.21 | 21.36 | 53.98 | 17.93 | 36.05 | 1.58 | 1.29 | 1.24 | 1.10 |
9%Ce(0.3)–Mn/TiO2–0.8%GO | 16.91 | 3.85 | 4.61 | 17.59 | 57.04 | 15.99 | 41.05 | 1.03 | 1.62 | 0.65 | 1.31 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tong, Z.; Lu, X.; Song, C. The CeOX and MnOX Nanocrystals Supported on TiO2–Graphene Oxide Catalysts and Their Selective Catalytic Reduction Properties at Low Temperature. Crystals 2017, 7, 159. https://doi.org/10.3390/cryst7060159
Tong Z, Lu X, Song C. The CeOX and MnOX Nanocrystals Supported on TiO2–Graphene Oxide Catalysts and Their Selective Catalytic Reduction Properties at Low Temperature. Crystals. 2017; 7(6):159. https://doi.org/10.3390/cryst7060159
Chicago/Turabian StyleTong, Zhensong, Xining Lu, and Cunyi Song. 2017. "The CeOX and MnOX Nanocrystals Supported on TiO2–Graphene Oxide Catalysts and Their Selective Catalytic Reduction Properties at Low Temperature" Crystals 7, no. 6: 159. https://doi.org/10.3390/cryst7060159
APA StyleTong, Z., Lu, X., & Song, C. (2017). The CeOX and MnOX Nanocrystals Supported on TiO2–Graphene Oxide Catalysts and Their Selective Catalytic Reduction Properties at Low Temperature. Crystals, 7(6), 159. https://doi.org/10.3390/cryst7060159