Synthesis, Crystal Structure and Hirshfeld Topology Analysis of Polymeric Silver(I) Complex with s-Triazine-Type Ligand
Abstract
:1. Introduction
2. Results
3. Discussion
3.1. Crystal Structure Description
3.2. Continuous Shape Measure (CShM)
3.3. Analysis of Molecular Packing
3.4. AIM and NBO Analyses
4. Materials and Methods
4.1. General
4.2. X-ray Measurements
4.3. Hirshfeld Surface Analysis
4.4. Synthesis of the Silver(I) Complex
4.5. Computational Details
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Jaros, S.W.; da Silva, M.F.C.G.; Król, J.; Oliveira, M.C.; Smoleński, P.; Pombeiro, A.J.L.; Kirillov, A.M. Bioactive Silver–Organic Networks Assembled from 1,3,5-Triaza-7-phosphaadamantane and Flexible Cyclohexanecarboxylate Blocks. Inorg. Chem. 2016, 55, 1486–1496. [Google Scholar] [CrossRef] [PubMed]
- Jaros, S.W.; da Silva, M.F.C.G.; Florek, M.; Smoleński, P.; Pombeiro, A.J.L.; Kirillov, A.M. Silver(I) 1,3,5-Triaza-7-phosphaadamantane Coordination Polymers Driven by Substituted Glutarate and Malonate Building Blocks: Self-Assembly Synthesis, Structural Features, and Antimicrobial Properties. Inorg. Chem. 2016, 55, 5886–5894. [Google Scholar] [CrossRef] [PubMed]
- Smoleński, P.; Jaros, S.W.; Pettinari, C.; Lupidi, G.; Quassinti, L.; Bramucci, M.; Vitali, L.A.; Petrelli, D.; Kochel, A.; Kirillov, A.M. New water-soluble polypyridine silver(I) derivatives of 1,3,5-triaza-7-phosphaadamantane (PTA) with significant antimicrobial and antiproliferative activities. Dalton Trans. 2013, 42, 6572–6581. [Google Scholar] [CrossRef] [PubMed]
- Kirillov, A.M.; Wieczorek, S.W.; Lis, A.; da Silva, M.F.C.G.; Florek, M.; Król, J.; Staroniewicz, Z.; Smoleński, P.; Pombeiro, A.J.L. 1,3,5-Triaza-7-phosphaadamantane-7-oxide (PTA═O): New Diamondoid Building Block for Design of Three-Dimensional Metal–Organic Frameworks. Cryst. Growth Des. 2011, 11, 2711–2716. [Google Scholar] [CrossRef]
- Jaros, S.W.; da Silva, M.F.C.G.; Florek, M.; Oliveira, M.C.; Smoleński, P.; Pombeiro, A.J.L.; Kirillov, A.M. Aliphatic Dicarboxylate Directed Assembly of Silver(I) 1,3,5-Triaza-7-phosphaadamantane Coordination Networks: Topological Versatility and Antimicrobial Activity. Cryst. Growth Des. 2014, 14, 5408–5417. [Google Scholar] [CrossRef]
- Jaros, S.W.; Smoleński, P.; da Silva, M.F.C.G.; Florek, M.; Król, J.; Staroniewicz, Z.; Pombeiro, A.J.L.; Kirillov, A.M. New silver BioMOFs driven by 1,3,5-triaza-7-phosphaadamantane-7-sulfide (PTA=S): Synthesis, topological analysis and antimicrobial activity. CrystEngComm 2013, 15, 8060–8064. [Google Scholar] [CrossRef]
- Rowan, R.; Tallon, T.; Sheahan, A.M.; Curran, R.; McCann, M.; Kavanagh, K.; Devereux, M.; McKee, V. ‘Silver bullets’ in antimicrobial chemotherapy: Synthesis, characterisation and biological screening of some new Ag(I)-containing imidazole complexes. Polyhedron 2006, 25, 1771–1778. [Google Scholar] [CrossRef]
- Klasen, H.J. Historical review of the use of silver in the treatment of burns. I. Early uses. Burns 2000, 26, 117–130. [Google Scholar] [CrossRef]
- Abu-Youssef, M.A.M.; Langer, V.; Öhrström, L. Synthesis, a case of isostructural packing, and antimicrobial activity of silver(I)quinoxaline nitrate, silver(I)(2,5-dimethylpyrazine) nitrate and two related silver aminopyridine compounds. Dalton Trans. 2006, 21, 2542–2550. [Google Scholar] [CrossRef] [PubMed]
- Abu-Youssef, M.A.M.; Langer, V.; Öhrström, L. A unique example of a high symmetry three- and four-connected hydrogen bonded 3D-network. Chem. Commun. 2006, 1082–1084. [Google Scholar] [CrossRef] [PubMed]
- Abu-Youssef, M.A.M.; Dey, R.; Gohar, Y.; Massoud, A.A.; Öhrström, L.; Langer, V. Synthesis and Structure of Silver Complexes with Nicotinate-Type Ligands Having Antibacterial Activities against Clinically Isolated Antibiotic Resistant Pathogens. Inorg. Chem. 2007, 46, 5893–5903. [Google Scholar] [CrossRef] [PubMed]
- Massoud, A.A.; Langer, V. Bis(1,3,5-triazine-2,4,6-triamine-κN1)silver(I) nitrate. Acta Cryst. 2009, C65, m198–m200. [Google Scholar] [CrossRef] [PubMed]
- Najafpour, M.M.; Hołyńska, M.; Amini, M.; Kazemi, S.H.; Lis, T.; Bagherzadeh, M. Two new silver(I) complexes with 2,4,6-tris(2-pyridyl)-1,3,5-triazine (tptz): Preparation, characterization, crystal structure and alcohol oxidation activity in the presence of oxone. Polyhedron 2010, 29, 2837–2843. [Google Scholar] [CrossRef]
- Bosch, E. One- and Two-Dimensional Silver-Coordination Networks Containing π-Sandwiched Silver−Silver Interactions. Inorg. Chem. 2002, 41, 2543–2547. [Google Scholar] [CrossRef] [PubMed]
- Munakata, M.; Wen, M.; Suenaga, Y.; Sowa, T.K.; Maekawa, M.; Anahata, M. Silver(I) complexes of triazine derivatives having stepped π–π interactions and 2D sheets. Polyhedron 2001, 20, 2037–2043. [Google Scholar] [CrossRef]
- Abu-Youssef, M.A.M.; Soliman, S.M.; Langer, V.; Gohar, Y.M.; Hasanen, A.A.; Makhyoun, M.A.; Zaky, A.H.; Öhrström, L.R. Synthesis, Crystal Structure, Quantum Chemical Calculations, DNA Interactions, and Antimicrobial Activity of [Ag(2-amino-3-methylpyridine)2]NO3 and [Ag(pyridine-2-carboxaldoxime)NO3]. Inorg. Chem. 2010, 49, 9788–9797. [Google Scholar] [CrossRef] [PubMed]
- Massoud, A.A.; Gohar, Y.M.; Langer, V.; Lincoln, P.; Svensson, F.R.; Janis, J.; Gårdebjer, S.T.; Haukka, M.; Jonsson, F.; Aneheim, E.; et al. Bis 4,5-diazafluoren-9-one silver(I) nitrate: Synthesis, X-ray structures, solution chemistry, hydrogel loading, DNA coupling and anti-bacterial screening. New J. Chem. 2011, 35, 640–648. [Google Scholar] [CrossRef]
- Massoud, A.A.; Langer, V.; Abu-Youssef, M.A.M.; Öhrström, L. The coordination polymer poly[(μ3–3-aminocarbonylpyrazine-2-carboxylato-κ3N1:O2:O2′)silver(I)]. Acta Cryst. 2011, C67, m1–m4. [Google Scholar] [CrossRef] [PubMed]
- Massoud, A.A.; Langer, V.; Gohar, Y.M.; Abu-Youssef, M.A.M.; Jänis, J.; Öhrström, L. 2D Bipyrimidine silver(I) nitrate: Synthesis, X-ray structure, solution chemistry and anti-microbial activity. Inorg. Chem. Commun. 2011, 14, 550–553. [Google Scholar] [CrossRef]
- Guney, E.; Yilmaz, V.T.; Buyukgungor, O. A three-dimensional silver(I) coordination polymer involving a new bridging mode of saccharinate. Inorg. Chem. Commun. 2010, 13, 563–567. [Google Scholar] [CrossRef]
- Klasen, H.J. A historical review of the use of silver in the treatment of burns. II. Renewed interest for silver. Burns 2000, 26, 131–138. [Google Scholar] [CrossRef]
- Soliman, S.M.; Mabkhot, Y.N.; Barakat, A.; Ghabbour, H.A. A highly distorted hexacoordinated silver(I) complex: Synthesis, crystal structure, and DFT studies. J. Coord. Chem. 2017, 70, 1339–1356. [Google Scholar] [CrossRef]
- Bu, W.-M.; Ye, L.; Fan, Y.-G. Exposure-related health effects of silver and silver compounds: A review. Inorg. Chem. Commun. 2000, 3, 194–197. [Google Scholar]
- Abu-Youssef, M.A.M.; Soliman, S.M.; Sharaf, M.M.; Albering, J.H.; Öhrström, L. Topology analysis reveals supramolecular organisation of 96 large complex ions into one geometrical object. CrystEngComm 2016, 18, 1883–1886. [Google Scholar] [CrossRef]
- Azarifar, D.; Zolfigol, M.A.; Forghaniha, A.A. A convenient method for the preparation of some new derivatives of 1,3,5-s-triazine under solvent free condition. Heterocycles 2004, 63, 1897–1901. [Google Scholar] [CrossRef]
- Ok, K.M.; Halasyamani, P.S.; Casanova, D.; Llunell, M.; Alvarez, S. Distortions in Octahedrally Coordinated d° Transition Metal Oxides: A Continuous Symmetry Measures Approach. Chem. Mater. 2006, 18, 3176–3183. [Google Scholar] [CrossRef]
- Santiaqo, A.; David, A.; Llunell, M.; Pinsky, M. Continuous symmetry maps and shape classification. The case of six-coordinated metal compounds. New J. Chem. 2002, 26, 996–1009. [Google Scholar]
- Spackman, M.A.; McKinnon, J.J. Fingerprinting intermolecular interactions in molecular crystals. CrystEngComm 2002, 4, 378–392. [Google Scholar] [CrossRef]
- McKinnon, J.J.; Jayatilaka, D.; Spackman, M.A. Towards quantitative analysis of intermolecular interactions with Hirshfeld surfaces. Chem. Commun. 2007, 3814–3816. [Google Scholar] [CrossRef]
- Spackman, M.A.; Jayatilaka, D. Hirshfeld surface analysis. CrystEngComm 2009, 11, 19–32. [Google Scholar] [CrossRef]
- Hirshfeld, F.L. Bonded-atom fragments for describing molecular charge densities. Theor. Chim. Acta 1977, 44, 129–133. [Google Scholar] [CrossRef]
- Foster, J.P.; Weinhold, F. Natural hybrid orbitals. J. Am. Chem. Soc. 1980, 102, 7211–7218. [Google Scholar] [CrossRef]
- Reed, A.E.; Weinstock, R.B.; Weinhold, F. Natural population analysis. J. Chem. Phys. 1985, 83, 735–746. [Google Scholar] [CrossRef]
- Reed, A.E.; Curtiss, L.A.; Weinhold, F. Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem. Rev. 1988, 88, 899–926. [Google Scholar] [CrossRef]
- Bader, R.F.W.; Essen, H. The characterization of atomic interactions. J. Chem. Phys. 1984, 80, 1943–1960. [Google Scholar] [CrossRef]
- Espinosa, E.; Molins, E.; Lecomte, C. Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities. Chem. Phys. Lett. 1998, 285, 170–173. [Google Scholar] [CrossRef]
- Espinosa, E.; Alkorta, I.; Elguero, J.; Molins, E. From weak to strong interactions: A comprehensive analysis of the topological and energetic properties of the electron density distribution involving X-H...F-Y systems. J. Chem. Phys. 2002, 117, 5529–5542. [Google Scholar] [CrossRef]
- Cremer, D.; Kraka, E. A description of the chemical-bond in terms of local properties of electrondensity and energy. Croat. Chem. Acta 1984, 57, 1259–1281. [Google Scholar]
- SAINT, Version 4, Version 4 ed.; Siemens Analytical X-ray Instruments Inc.: Madison, WI, USA, 1995.
- Sheldrick, G.M. SADABS; University of Goettingen: Goettingen, Germany, 1996. [Google Scholar]
- Sheldrick, G.M. SHELXT—Integrated space-group and crystal-structure determination. Acta Cryst. 2015, A71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Wolff, S.K.; Grimwood, D.J.; McKinnon, J.J.; Turner, M.J.; Jayatilaka, D.; Spackman, M.A. Crystal Explorer, Version 3.1; University of Western Australia: Perth, Australia, 2012. [Google Scholar]
- Mudsainiyan, R.K.; Jassal, A.K.; Arora, M.; Chawla, S.K. Synthesis, crystal structure determination of two-dimensional supramolecular coordination polymer of silver(I) with 1,2-Bis(phenylthio)ethane and its Hirshfeld surface analysis. J. Chem. Sci. 2015, 127, 849–856. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09, Revision D.01; Gaussian, Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Schuchardt, K.L.; Didier, B.T.; Elsethagen, T.; Sun, L.; Gurumoorthi, V.; Chase, J.; Li, J.; Windus, T.L. Basis Set Exchange: A Community Database for Computational Sciences. J. Chem. Inf. Model. 2007, 47, 1045–1052. [Google Scholar] [CrossRef] [PubMed]
- Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef] [PubMed]
- Bader, R.F.W. Atoms in Molecules: A Quantum Theory; Oxford University Press: Oxford, UK, 1990. [Google Scholar]
- Glendening, E.D.; Reed, A.E.; Carpenter, J.E.; Weinhold, F. NBO Version 3.1, CI; University of Wisconsin: Madison, WI, USA, 1998. [Google Scholar]
D-H...A | d(D-H) | d(H...A) | d(D...A) | <(DHA) |
---|---|---|---|---|
O1-H1A...O10 | 0.80 | 2.17 | 2.870 | 145.4 |
O1-H1B...O13#1 | 0.78 | 2.04 | 2.801 | 165.7 |
O2#2-H2B#2...O4#3 | 0.78 | 2.25 | 2.965 | 152.7 |
O2#4-H2A#4...O12 | 0.85 | 2.08 | 2.893 | 159.9 |
NBOi | NBOj | B97D | WB97XD | B3LYP | NBOi | NBOj | B97D | WB97XD | B3LYP |
---|---|---|---|---|---|---|---|---|---|
LP(N1) | LP*(Ag1) | 13.29 | 18.57 | 14.63 | LP(1)N2 | LP*(Ag2) | 31.48 | 40.30 | 33.75 |
LP(O1) | LP*(Ag1) | 12.04 | 15.56 | 12.85 | LP(O2) | LP*(Ag2) | 32.22 | 40.18 | 34.08 |
LP(O1) | LP*(Ag1ii) | 15.78 | 20.36 | 17.43 | LP(O6) | LP*(Ag2) | 24.47 | 30.28 | 26.15 |
LP(O8) | LP*(Ag1) | 23.03 | 29.34 | 25.17 | |||||
LP(O9) | LP*(Ag1) | 22.87 | 29.59 | 24.88 | |||||
LP(O11) | LP*(Ag1) | 16.61 | 22.11 | 18.16 | |||||
LP(Ag1) | LP*(Ag1) | 0.82 | 0.97 | 1.08 |
Empirical formula | C15H28Ag2Cl2N6O13 | |
Formula weight | 787.07 g/mol | |
Temperature | 115(2) | |
Wavelength | 0.71073 Å | |
Crystal system | Triclinic | |
Space group | P-1 | |
Unit cell dimensions | a = 10.0030(15) Å | α = 100.928(5)° |
b = 10.1143(18) Å | β = 92.299(5)° | |
c = 13.191(2) Å | γ = 108.348(5)° | |
Cell volume | 1236.6(4) Å3 | |
Z | 2 | |
Density (calculated) | 2.114 g/cm3 | |
Absorption coefficient | 1.877 mm−1 | |
F(000) | 784 | |
Crystal size (mm) | 0.412 × 0.211 × 0.200 | |
θ range for data collection | 2.17° to 25.31° | |
Index ranges | −11 ≤ h ≤ 12, −12 ≤ k ≤ 12, −15 ≤ l ≤ 15 | |
Reflections collected | 19888 | |
Independent reflections | 4486 [R(int) = 0.0260] | |
Completeness to theta = 25° | 99.7% | |
Refinement method | Full-matrix least-squares on F2 | |
Data/restraints/parameters | 4486/0/356 | |
Goodness-of-fit on F2 | 1.069 | |
Final R indices [I > 2sigma(I)] | R1 = 0.0189, wR2 = 0.0408 | |
R indices (all data) | R1 = 0.0220, wR2 = 0.0420 | |
Extinction coefficient | 0.0062(2) | |
Largest diff. peak and hole | 0.675 and −0.710 eÅ−3 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soliman, S.M.; El-Faham, A. Synthesis, Crystal Structure and Hirshfeld Topology Analysis of Polymeric Silver(I) Complex with s-Triazine-Type Ligand. Crystals 2017, 7, 160. https://doi.org/10.3390/cryst7060160
Soliman SM, El-Faham A. Synthesis, Crystal Structure and Hirshfeld Topology Analysis of Polymeric Silver(I) Complex with s-Triazine-Type Ligand. Crystals. 2017; 7(6):160. https://doi.org/10.3390/cryst7060160
Chicago/Turabian StyleSoliman, Saied M., and Ayman El-Faham. 2017. "Synthesis, Crystal Structure and Hirshfeld Topology Analysis of Polymeric Silver(I) Complex with s-Triazine-Type Ligand" Crystals 7, no. 6: 160. https://doi.org/10.3390/cryst7060160
APA StyleSoliman, S. M., & El-Faham, A. (2017). Synthesis, Crystal Structure and Hirshfeld Topology Analysis of Polymeric Silver(I) Complex with s-Triazine-Type Ligand. Crystals, 7(6), 160. https://doi.org/10.3390/cryst7060160