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Abstract:



A continuum theory for high temperature creep of polycrystalline solids is developed. It includes the relevant deformation mechanisms for diffusional and dislocation creep: elasticity with eigenstrains resulting from vacancy diffusion, dislocation climb and glide, and the lattice growth/loss at the boundaries enabled by diffusion. All the deformation mechanisms are described with respect to the crystalline lattice, so that the continuum formulation with lattice motion as the basis is necessary. However, dislocation climb serves as the source sink of lattice sites, so that the resulting continuum has a sink/source of its fundamental component, which is reflected in the continuity equation. Climb as a sink/source also affects the diffusion part of the problem, but the most interesting discovery is the climb-glide interaction. The loss/creation of lattice planes through climb affects the geometric definition of crystallographic slip and necessitates the definition of two slip fields: the true slip and the effective slip. The former is the variable on which the dissipative power is expanded during dislocation glide and is thus, the one that must enter the glide constitutive equations. The latter describes the geometry of the slip affected by climb, and is necessary for kinematic analysis.
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1. Introduction


At high temperatures, polycrystalline solids exhibit creep—a slow, phenomenologically viscous flow. The basic deformation mechanisms are either directly or indirectly associated with vacancy diffusion [1,2]. In purely diffusional creep, the prominent feature is the lattice growth/loss at the boundaries [3,4,5]. A common view of dislocation creep is that deformation is accomplished by climb-assisted glide [6], whereby climb only assists in bypassing the obstacles and contributes little to the overall deformation. The climb-only deformation mechanism has been proposed early [7], but the experimental evidence has been accumulating slowly. The climb appears to be a standalone deformation mechanism producing (under some conditions) significant creep strains in: hcp metals [8], intermetallics and superalloys [9], quasicrystals [10], and the Earth’s lower mantle rocks under high pressure and high temperature conditions [11]. Moreover, the interactions of dislocations and vacancies are of particular importance in irradiated metals [12]. In view of the uncertainties in the proposed mechanisms for high temperature creep, it seems reasonable to aim at a mathematical model that can describe the concurrent operation of glide, climb, and diffusion, with each mechanism contributing significant strains. This is the purpose of the present communication.



1.1. Mass Continuum


The standard mathematical definition of the continuum begins with the statement: At instant [image: there is no content]material point (element) currently at the position [image: there is no content] is moving with the velocity [image: there is no content]. This brings up the question—what is the physical meaning of the material? In fluid mechanics treatises, the answer is typically mathematical rather than physical; material is identified with mass. Such continuum will be called mass continuum (Quantities and operators specific to the mass continuum are marked with an overbar to distinguish them from their analogues in the lattice continuum.).



Specifically, the mass density field [image: there is no content] is convected with the velocity [image: there is no content]. Owing to the continuous mixing of fluid atoms, the material (point) is not associated with a specific (group of) atom(s). In single- or multi-component fluids, the barycentric velocity preserves the linear momentum of the assembly of atoms (e.g., [13]), thus yielding (with application of the transport theorem) the simple and elegant continuum version of Newton’s 2nd law—the Cauchy equations of motion:


[image: there is no content]



(1)







The operator ∇ is the gradient operator, [image: there is no content] is the Cauchy stress (in the mass continuum), [image: there is no content] is the gravitational acceleration and [image: there is no content] is the material derivative (in the mass continuum). The equations of motion (1) also indicate why the mass density (among all other continuum fields) plays a special role. Further, in the absence of nuclear reaction, the mass is conserved, so that the continuity equation is identified with the local mass conservation condition:


[image: there is no content]



(2)







Finally, we note that all of the above refers to the Eulerian (spatial) description of the continuum. The failure to identify the material with a physical entity renders any Lagrangean (material) description meaningless.




1.2. Lattice Continuum


In solid mechanics problems, where Lagrangean kinematics is essential, such formulation does not stand up to scrutiny, unless one assumes the complete absence of mixing/diffusion, in which case the material point is identified with a particular set of atoms. In crystalline solids, the relevant deformation mechanisms are referred to the crystalline lattice. For example, the plastic slip is produced by the motion of dislocations with respect to the lattice, while the elastic deformation is associated with lattice stretching. Thus, the fundamental developments in crystal elasto-plasticity [14,15,16,17] are, in fact, based on the lattice continuum without diffusion, which is equivalent to the mass continuum, so that the nature of the continuum is not emphasized.



In the solid mechanics problems with diffusion, the importance of crystalline lattice was noted early by Larché and Cahn [18,19,20] but in the form of lattice constraint imposed on the otherwise mass-based continuum. Berdichevsky et al. [21] noted the absence of Lagrangean description in the mass continuum, specifically for the newly grown lattice at the grain boundary.



When diffusion and diffusion-mediated processes control the deformation of solids, the overall deformation process is expected to be quasi-static. The rate of change of linear momentum in (1) is considered negligible, so that the governing mechanical equations are the equilibrium conditions. The need for equivalence of atomic and continuum linear momenta being thus eliminated, the lattice continuum formulation becomes natural. Elements of the lattice continuum were introduced by Garikipati et al. [22], but the full formulation of the lattice continuum for Nabarro–Herring creep was developed only recently [23]. It includes the lattice versions of the material derivative and the transport theorem, as well as the definition of Lagrangean coordinates for the newly created lattice. The limitation of this formulation is that lattice growth/loss is confined to the grain boundary; in the bulk of the crystal, the lattice version of the continuity equation is equivalent to the local conservation of lattice density. In this paper, we extend the formulation to the problem of dislocation climb, whereby climbing edge dislocations serve as the sink/source of the lattice throughout the bulk of the crystal. Thus, the resulting continuum embodies a sink/source of the material. This appears to be an entirely new concept (The analogous mass continuum would be the one where deformation is accompanied by nuclear reaction (mass sink). One can envision such problems arising in case of load bearing nuclear fuel, but this author is not aware of any such developments.).



The problem considered here is the concurrent operation of dislocation glide, climb and vacancy diffusion, the latter two being intrinsically linked. The vacancy diffusion is also inseparable from the lattice growth at grain boundaries (barring awkward assumptions), so that the problem considered is the concurrent operation of dislocation creep and Nabarro–Herring creep. The paper is organized as follows.



In Section 2, the kinematics of lattice continuum with lattice sink/source, diffusion, dislocation glide and climb is developed. In addition to the lattice sink, the kinematic interaction between glide and climb is a novel element. Power balance (for an isothermal process) is formulated in Section 3. In Section 4, the weak form of the problem is formulated directly from the power balance using the principle of virtual power, followed by the strong form. While many components of the strong form turn out to be familiar from the literature, the glide-climb interaction is a novel concepts and is discussed in some detail. The conclusions are given in Section 5.





2. Kinematics


At high temperatures, vacancy diffusion takes place by the vacancy-atom exchange mechanism, thus producing the complementary fluxes of atoms and vacancies. Crystal boundaries serve as sources and sinks of vacancies resulting in lattice growth/loss on the boundary faces under tension/compression. The diffusion and lattice growth in the Nabarro–Herring creep is illustrated in Figure 1. The lattice continuum corresponding to the Nabarro–Herring creep has been formulated [23] and includes the Eulerian and Lagrangean descriptions of the newly formed lattice.


Figure 1. (a) Schematic representation of vacancy diffusion (dashed lines) and atom diffusion (solid lines) within a crystalline grain leading to the creation of new lattice planes at the boundary under tension and disappearance of lattice planes at other boundaries. (b) Schematic illustration of the creation of a new lattice plane. Thick solid line represents crystal boundary, solid and hollow circles are atoms and vacancies. Initial vacancy-free crystal (left) absorbs vacancies from the boundary (in exchange for atoms). The new configuration (right) has an extra lattice plane and extra vacancies which then diffuse through the bulk towards the disappearing boundaries. Diffusion of atoms and vacancies takes place by the vacancy-atom exchange mechanism.



[image: Crystals 07 00243 g001]






We consider two species occupying lattice sites: atoms and vacancies; without interstitials. At any instant t, the lattice velocity field [image: there is no content] is defined on an open domain [image: there is no content], its closure [image: there is no content] having the outer normal [image: there is no content]. The lattice velocity gradient [image: there is no content] is defined as:


[image: there is no content]



(3)







2.1. Dislocation Climb and the Continuity Equation


The mechanism of dislocation climb consists of vacancy absorption by the dislocation core. As the vacancy is absorbed, the core of edge dislocation moves one atomic space and one lattice position is lost. Thus, the dislocation climb mechanism, illustrated in Figure 2a, represents the lattice sink, as well as the vacancy sink. Therefore, the continuity equation, i.e., the lattice balance law, must now include—not only the convection of lattice sites, but also the local sink strength. Let the lattice site density be [image: there is no content] and let [image: there is no content] be the fraction of lattice sites lost per unit time. Then:


[image: there is no content]



(4)




with reference to Figure 2a, it is clear that there is no kinematic constraint restricting the climb motion to one direction: dislocation can climb or descend, operating as sink or source of lattice sites and vacancies. The convention adopted here with positive [image: there is no content] representing climb/sink conforms to the usual representation of climb in the literature.


Figure 2. (a) Edge dislocation and vacancy (hollow circle). The vacancy-atom exchange takes place. Dislocation climbs and a lattice point disappears. (b) Illustration of climb starting from a planar dislocation loop with the Burgers vector [image: there is no content] (thick lines). The screw components ([image: there is no content]) don’t climb. The climb of initial edges ([image: there is no content]) produces parallel edges as well as out-of-plane edge segments ([image: there is no content]) which cannot glide. As both parallel and out-of-plane edges continue to climb, the loop expands and operates as climb analogue of the Frank–Read source.



[image: Crystals 07 00243 g002]






The material (lattice) derivative of any material field [image: there is no content] is


[image: there is no content]



(5)




so that:


[image: there is no content]



(6)







The glide of dislocations has been studied in detail, including the interactions between dislocations on different slip systems, as well as dislocation multiplication and strain hardening mechanisms [24,25,26]. Here we focus on dislocation climb and its interactions with dislocation glide.



The slip system [image: there is no content] is described by a triad of unit orthogonal vectors: the slip direction [image: there is no content], the slip plane normal [image: there is no content], and [image: there is no content]. The evolution of climbing edge dislocations, starting from a rectangular dislocation loop on the slip system [image: there is no content] is illustrated in Figure 2b. Evidently, the climb of original edges produces, not only the parallel edge segments ([image: there is no content]), but also the out-of-plane edge segments ([image: there is no content]) which cannot glide. Further climb by all edges results in a multiplication mechanism analogous to the Frank–Read source for glide. Let [image: there is no content] be the density (length per volume) of all edge dislocations ([image: there is no content] and [image: there is no content]) associated with the slip system [image: there is no content], and let [image: there is no content] be the average climb velocity for edges belonging to the slip system. Then, in analogy with the Orowan equation for the slip rate, the strength of the lattice sink associated with the slip system [image: there is no content] is


[image: there is no content]



(7)




and the total lattice sink strength is obtained by summation over all slip systems:


[image: there is no content]



(8)








2.2. Elastic–Plastic Decomposition


In addition the lattice density [image: there is no content], the material (lattice) point currently located at [image: there is no content], carries the vacancy concentration [image: there is no content], i.e., the fraction of lattice sites occupied by vacancies, and the deformation gradient [image: there is no content]:


[image: there is no content]



(9)







To extend the definition of lattice-advected variables to the lattice being currently created, it is sufficient to assert the continuity of deformation gradient, vacancy concentration and lattice density, within the crystal [23]. The key elements of the Lagrangean (spatial) description are thus defined. The reference configuration [image: there is no content] can, in principle, be obtained from the current configuration, but it will be fictitious for the lattice grown during the process. The mapping [image: there is no content] is multiple-valued, with gaps and overlaps at grain boundaries and inside the grain.



The deformation gradient tensor can be decomposed into the elastic-compositional deformation gradient [image: there is no content], and the plastic deformation gradient [image: there is no content]. The former represents the motion which produces a deformed lattice topologically equivalent to the reference lattice, the latter changes the topology, i.e., it accounts for both–glide and climb of dislocations. The decomposition is multiplicative and formally identical to the standard (glide-only) elastic–plastic decomposition [14]:


[image: there is no content]



(10)







However, the plastic gradient now includes the climb deformation, so that


[image: there is no content]



(11)







Following the decomposition (10), the velocity gradient (3) is decomposed in elastic-compositional and plastic portions:


[image: there is no content]



(12)







The decompositions (10) and (12) reflect the imaginary sequential deformation. First, the reference lattice is deformed to intermediate (isoclinic) configuration without changing the symmetry of the lattice, [image: there is no content]. In contrast to standard crystal plasticity based on dislocation glide, here the lattice planes are lost/created, resulting in the translational motion of the parts of the lattice, but preserving the lattice symmetries and orientation (hence the attribute isoclinic still applies). Then, the intermediate configuration is transformed into the current configuration, [image: there is no content]. In the glide-only elasto-plasticity, while the two steps are not represented by 1–1 mappings (i.e., the tensors [image: there is no content] and [image: there is no content] are not compatible), the total deformation gradient [image: there is no content] represents 1–1 mapping [image: there is no content] This is clearly not the case here: the mapping [image: there is no content] is multiple-valued and discontinuous. (Note that in the glide-only plasticity, the incompatibility of [image: there is no content] can be considered as the consequence of incompatibility of [image: there is no content], arising from the requirement that the total deformation gradient be compatible. In the absence of dislocation glide [image: there is no content], [image: there is no content] is compatible.)



Let the lattice density and elementary volume in intermediate configuration be [image: there is no content] and [image: there is no content]. Then, elastic-compositional changes between intermediate and current configurations can be expressed as


[image: there is no content]



(13)







Note that we first define all fields (including deformation gradient) in the current configuration, e.g., [image: there is no content], which is the only configuration where the position vector [image: there is no content] represents one and only one material (lattice) point. To minimize the notational clutter, we write [image: there is no content] and freely switch the domains of integration between the current and intermediate configurations:


[image: there is no content]



(14)







(Although the equality (14) is widely used in the literature on elasto-plasticity, in view of the multiple-valuedness of the mapping [image: there is no content], the meaning of the integral on the right is not obvious. The clarifying point is that [image: there is no content] includes only lattice stretching and rotation so that the mapping of lattice points is 1–1; only the mapping of coordinates is multiple-valued. The function [image: there is no content] is understood to be defined on lattice points (as opposed to coordinates), with the corresponding interpretation of the integral. In contrast to glide-only plasticity, the analogous transformation to the reference configuration is meaningless here.)



The plastic velocity gradient on intermediate configuration [image: there is no content] in (12) accounts for changes in lattice topology and is defined from the elementary slip system state variables: slip rate [image: there is no content] and climb rate (lattice sink strength) [image: there is no content]:


[image: there is no content]



(15)




where the vectors [image: there is no content] are unit and orthogonal in the intermediate configuration. The choice between intermediate and current configurations as the basis for definition of slip has been extensively discussed in literature [15,16,17].




2.3. Climb–Glide Interaction


When dislocation climb is present, the scalar fields [image: there is no content] have a different physical (geometric) meaning then in the glide-only case, which has implications on the constitutive relations. Define the true slip field [image: there is no content] as the slip occurring without any climb. This is the variable that corresponds to the standard crystal plasticity slip field. As illustrated in Figure 3, the loss of lattice planes parallel to the slip plane affects the effective slip [image: there is no content] directly. (An analogous continuum illustration of the same phenomenon is shown in Figure 4 in Section 4.) The loss of lattice planes orthogonal to the slip plane only affects the gradient of slip [image: there is no content], which is accounted for implicitly through the loss of lattice (6).


Figure 3. (Left) Initial lattice volume [image: there is no content] is traversed by an edge dislocation resulting in the true slip [image: there is no content]. Two edge dislocations on an orthogonal plane are poised to climb (arrows) and destroy the lattice planes indicated by hollow circles. (Right) After the climb, the effective slip is [image: there is no content].



[image: Crystals 07 00243 g003]





Figure 4. A layer of hypothetical crystal with one active glide system (horizontal slip planes) and one active climb system (vertical slip planes, climb direction to the left), loaded with corresponding constant tractions. Thin solid lines represent the initial shape, thick solid lines represent the current shape. Elastic-compositional deformation is neglected. True and effective slip are shown. To sustain the climb, a continuous stream of vacancies must be injected into the crystal.



[image: Crystals 07 00243 g004]






The relation between true slip rate [image: there is no content] and effective slip rate [image: there is no content] is derived in Appendix A:


[image: there is no content]



(16)







It is the true slip rate [image: there is no content] that is related to dislocation glide through the Orowan equation:


[image: there is no content]



(17)




and it is on [image: there is no content] that power associated with dislocation glide:


[image: there is no content]



(18)




is expanded on, by the Peierls–Nabarro stress [image: there is no content] [27,28]. On the other hand, the effective slip [image: there is no content] describes the current kinematic state of the material, taking into account the true slip and the changes in the slip geometry caused by climb.



The plastic velocity gradient in intermediate configuration (15) can now be written as


[image: there is no content]



(19)








2.4. Diffusion and Diffusional Creep Rate


The boundaries of the crystal serve as lattice/vacancy sources and sinks. As discussed in [23], the normal boundary velocity [image: there is no content] is a scalar field defined on the closure set [image: there is no content], and independent of the lattice velocity field. The difference in normal components is the lattice growth rate:


[image: there is no content]



(20)







The diffusional creep deformation rate tensor is the symmetric rank-2 tensor, constant within each domain [image: there is no content], and defined on the basis of the difference between the normal boundary velocity and the normal lattice velocity at the boundary:


[image: there is no content]



(21)







In contrast to the locally-defined (fields defined at each point) deformation rates (elastic-compositional and plastic), the diffusional creep deformation rate is defined for each grain. In a polycrystal it is a piecewise constant field with discontinuities across the grain boundaries. On the level of a single grain (mesoscale lattice continuum), the tensor C describes the lattice growth at the boundary, not the deformation of the lattice. Only on the polycrystal level (macroscale continuum) the name creep deformation rate becomes semantically correct. This can be contrasted with the definition of plastic deformation in [21].



The locally-defined (intrinsic) deformation rates are simply the symmetric parts of local lattice velocity gradients. The grain average of the local lattice velocity gradient can be expressed as


[image: there is no content]



(22)







The total deformation rate for the grain is then


[image: there is no content]



(23)







In the lattice continuum, the local mass balance results in the vacancy diffusion equation [23]. The derivation for the case with lattice sink is given in Appendix B. The diffusion equation reads:


[image: there is no content]



(24)




where [image: there is no content] is the vacancy flux.



The transport theorem with lattice sink is also derived in Appendix B. Let the quantity [image: there is no content] be given per lattice site. Consider the lattice volume [image: there is no content], i.e., the volume that follows the prescribed set of lattice sites. The transport theorem has the following form:


[image: there is no content]



(25)







For a variable crystal domain [image: there is no content], with lattice growing/vanishing at the boundary [image: there is no content] with the rate [image: there is no content] (20), the transport theorem will have the form:


[image: there is no content]



(26)







Applying (26) to the mass density (Appendix B), the mass of a crystal grain will change as


[image: there is no content]



(27)




where [image: there is no content] is the atomic mass and [image: there is no content] is the normal vacancy flux at the boundary. Thus, if a single grain is to satisfy mass conservation, then:


[image: there is no content]



(28)







The weak constraint (28) requires a model for boundary diffusion [23], which is beyond the scope of this paper. The local condition:


[image: there is no content]



(29)




implies absence of boundary diffusion by requiring that lattice growth/disappearance at the boundary be directly related to the normal atomic flux (negative of the vacancy flux). The creep deformation rate can then be written as


[image: there is no content]



(30)









3. Power Balance


3.1. Free Energy


At a constant temperature, the free energy, given per unit volume in intermediate configuration [image: there is no content], depends on concentration and elastic strains: [image: there is no content]. With (13) and (14), the total free energy of a grain with current volume [image: there is no content] can be written as


[image: there is no content]



(31)







(Note that interface energy of grain boundaries is not considered here. A discussion of the role of interface energies, including the question of when they can be neglected, can be found in [23].)



The rate of change of the free energy of a grain is derived in the Appendix C:


[image: there is no content]



(32)







In (32), [image: there is no content] is the symmetric lattice Cauchy stress:


[image: there is no content]



(33)




and the following shorthand notation is introduced:


[image: there is no content]



(34)







The non-symmetric stress tensor [image: there is no content] [17] resolved to appropriate planes and directions gives the resolved shear stress [image: there is no content] and the normal stress [image: there is no content].




3.2. Dissipation and the 2nd Law


Local diffusional dissipation rate in the lattice is modeled simply as proportional to the divergence of flux, while the dissipation rates associated with glide and climb of dislocations are proportional to [image: there is no content] and [image: there is no content]:


[image: there is no content]



(35)







In addition to the bulk dissipation, the vacancy creation and absorption at the boundaries must be a dissipative process. Following (29), the dissipation rate at a boundary point can be equivalently assumed to be proportional either to the lattice growth rate [image: there is no content], or to the normal vacancy flux [image: there is no content]:


[image: there is no content]



(36)







The total dissipation rate is then


[image: there is no content]



(37)







For isothermal processes, the 2nd law of thermodynamics requires


[image: there is no content]



(38)







The linear constitutive law with positive mobilities [image: there is no content]:


[image: there is no content]



(39)




and the slip constitutive law which guaranties [image: there is no content], will satisfy the requirement (38). An acceptable slip constitutive law may be the viscous regularization of a yield condition:


[image: there is no content]



(40)




accompanied by the appropriate hardening law for [image: there is no content] (see, e.g., [16]).




3.3. Power Balance


The boundary tractions [image: there is no content] expand power on the boundary velocity [image: there is no content]. The power balance for an isothermal process can be written as


[image: there is no content]



(41)







We define the tangential component of boundary velocity to be equal to the tangential components of lattice velocity, so that, with (29) the power expanded by tractions can be written as


[image: there is no content]



(42)







Upon substitution of (32), (35), (36) and (42) into (41), the power balance takes the form


[image: there is no content]



(43)









4. Principle of Virtual Power and Governing Equations


Following (43), at any instant t, the fields [image: there is no content] are subject to independent variations [image: there is no content], arbitrary except at points where the essential boundary conditions are prescribed (allowable variations). The principle of virtual power provides the weak form of the initial-boundary value problem. The integral equation representing power expanded by actual power conjugates on virtual rates:


[image: there is no content]



(44)




must be satisfied for arbitrary allowable variations.



Compared to the problem discussed previously [23], only the last two terms are new. Nevertheless, we summarize all the components of the strong form implied by (44). The usual manipulation and the argument based on independence of variations yields:

	
Stress (quasi-) equilibrium with standard boundary conditions:


[image: there is no content]



(45)







	
The diffusion potential [image: there is no content] and [image: there is no content], resulting in the coupled, moving-boundary diffusion problem with an unusual boundary condition:


[image: there is no content]



(46)







	
The power conjugate of the true slip rate as the resolved shear stress component of the stress tensor [image: there is no content]:


[image: there is no content]



(47)







	
The power conjugate of the climb/sink rate:


[image: there is no content]



(48)












With constitutive equations for elasticity, slip rate (41) and climb rate (40), this completes the initial-boundary value problem. The diffusion portion of the problem (46) differs from the previously discussed case [23] only by the sink term. The resolved shear stress (47) is the standard concept in crystal plasticity. The climb power conjugate (48) requires a more detailed discussion.



The 2nd term in (48), [image: there is no content], is the normal (compressive) stress on the plane with normal [image: there is no content]. Since slip and climb are defined consistently in the intermediate configuration, the relevant stress tensor is [image: there is no content]. Compression on a lattice plane favors the loss of lattice planes, while the tension favors creation of new planes.



The 3rd term in (48), [image: there is no content], is recognized as the osmotic stress [29,30]. It is instructive to consider its linearized version (small elastic-compositional deformation gradient and small vacancy concentration), in conjunction with the regular solution model [31]. In that case [23]:


[image: there is no content]



(49)




where [image: there is no content] is the Boltzman constant, [image: there is no content] is the temperature, [image: there is no content] and [image: there is no content] are the equilibrium vacancy concentrations at the temperature [image: there is no content]—the first at zero pressure, the second at the current pressure [image: there is no content] The Vegard’s law coefficient [image: there is no content] describes the volumetric compositional strain as [image: there is no content].



The last term in (48) simply accounts for the fact that each lattice site carries internal energy. When a lattice site is lost, its internal energy is dissipated. This term is probably negligible in most cases. Compared to the terms [image: there is no content], its relative magnitude is of the order of elastic-compositional strains, which is not expected to exceed [image: there is no content].



Finally, to understand the first term in (48), consider the case where the only non-zero climb rate is [image: there is no content] and the only non-zero slip rate is [image: there is no content]. With (17), the power expenditure from the first term in (48) can then be written as


[image: there is no content]



(50)




Thus, this term provides the additional power expanded by the resolved shear stress [image: there is no content] on the difference between the effective and true slip rates, this difference being the result of the climb [image: there is no content] (see Figure 3). Imagine a (cubic) element loaded by tractions [image: there is no content]. The expanded power is [image: there is no content]. But the power expanded on glide, i.e., the power expanded by the Peirels–Nabarro stress to move dislocations along the slip plane, is [image: there is no content]. The difference is made up for by (50).



Compared to the terms [image: there is no content], the relative magnitude of this term is of the order of plastic strains and cannot in general be neglected, except in the initial stages of deformation when plastic strains are small. Its relative importance increases with increasing plastic deformation. This may be puzzling until one recalls that (50) represents power density (i.e., power per unit volume), and that the changes in volume resulting from lattice loss compensate for increasing power density (50). To illustrate this point, consider the example shown in Figure 4, specifically, the work done and the power expanded by the constant shear stress [image: there is no content].



The total work (per unit area of the constant horizontal base) is [image: there is no content]. The power is


[image: there is no content]



(51)




where we have used [image: there is no content].



Assume ideal plasticity without hardening and constant rates of true slip [image: there is no content], and climb [image: there is no content] (Constant climb rate in this example is not realistic. To sustain the climb rate, vacancies would have to be injected into the crystal at a prohibitive energetic cost. This is ignored in the idealized example, intended only to illustrate the thermodynamics aspect of climb–glide interaction.) Upon solving [image: there is no content], we obtain unbounded exponential increase in effective slip and the slip work density:


[image: there is no content]



(52)







However, with [image: there is no content], the total work (per unit base area) is bounded:


[image: there is no content]



(53)








5. Conclusions


To describe the coupled dislocation creep and diffusional creep, a lattice continuum theory with a lattice sink/source is developed. The kinematics includes a number of deformation mechanisms: elasticity with diffusion controlled eigenstrains, glide and climb plasticity, and the lattice growth/loss at the boundaries. Building on the previous results for diffusional creep and glide plasticity, we focus on the climb and its interaction with other mechanisms, which can be summarized as follows.

	(1)

	
Climb is the sink/source for the lattice itself and is thus embedded in the basic kinematic fields. Given that the vary basis of the continuum is created and vanishes during the deformation process, definition of the Lagrangean variables, specifically the reference and the intermediate configurations, is non-trivial. Moreover, the reference configuration is fictitious and necessarily discontinuous and multiple-valued. The problem is resolved by first defining all fields on the current configuration, which is real and well-defined. Definition of the deformation gradient as a material field in the current configuration, carried by the lattice and created with the new lattice with continuity, enables the formal definition of other Lagrangean fields.




	(2)

	
Climb as the sink/source of vacancies provides the bulk sink/source term in the diffusion equation (which would otherwise only have sinks/sources at grain boundaries).




	(3)

	
The coupled climb–glide kinematics requires a distinction between the true slip (glide-only) and the effective slip (the true slip modified by climb). Neither the effective nor the true slips are easily eliminated from the formulation. Thus, when solving the coupled glide–climb problem (presumably numerically), both true and effective slip rates must be updated in each time step.




	(4)

	
The glide–climb interaction provides an additional driving force for climb: the glide coupling force. Owing to the kinematic coupling, the resolved shear stresses on slip systems not parallel to α expand power on the climb rate [image: there is no content].









Finally, note that the present formulation is a simple continuum where slip and climb are not the primary unknown fields, but rather, the state variables evaluated from local constitutive laws. Consequently, the energetics and dissipation associated with dislocation-interface relaxations are not included. These require a size-dependent theory in which slip and climb are independent fields subject to field equations. Such formulations exist for slip [32,33], but not for climb.
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Appendix A. True Slip and Effective Slip


With reference to Figure 3 and Figure 4, let the current true slip on the only slip system be [image: there is no content], measured as the number [image: there is no content] of Burgers vector lengths [image: there is no content] crossed by dislocation passing through the cubic volume [image: there is no content]: [image: there is no content]. Let the small amount of climb [image: there is no content] on other slip systems destroy some lattice planes parallel to the slip planes, so that the same material now has [image: there is no content] parallel lattice planes. The new value of slip is


[image: there is no content]








when [image: there is no content]:


[image: there is no content]











Now, interpret [image: there is no content] as the rate of change arising from the specific component of climb on other systems, i.e., the difference between the effective and true slip rates: [image: there is no content]. Then, observe that the component [image: there is no content] which affects the slip system [image: there is no content], is the projection of all climbs to [image: there is no content]


[image: there is no content]











Thus, we obtain (16):


[image: there is no content]












Appendix B. Diffusion, Transport and Mass Balance


The number of atoms per unit volume in the current configuration is [image: there is no content]. In the mix of vacancies and atoms with mass m, mass density is given as [image: there is no content], so that


[image: there is no content]



(A1)




Let the average velocity of atoms be [image: there is no content]. The local mass conservation requires:


[image: there is no content]











The material derivative is then


[image: there is no content]



(A2)







Upon equating (A1) and (A2), we obtain


[image: there is no content]



(A3)







The vacancy flux [image: there is no content], relative to the lattice, is the negative of the atomic flux [image: there is no content]:


[image: there is no content]



(A4)







Substitution of (A4) into (A3) yields the diffusion Equation (24).



Let the quantity [image: there is no content] be a specific quantity given per lattice site. Consider the lattice volume [image: there is no content], i.e., the volume that follows the prescribed set of lattice sites. The rate of change of the total quantity is:


[image: there is no content]











Using (5) and (6), we obtain the transport theorem for the material volume with a sink:


[image: there is no content]



(A5)







For a variable crystal domain [image: there is no content], with the lattice growing/vanishing with the rate [image: there is no content] at the boundary [image: there is no content], the transport theorem will have the form:


[image: there is no content]



(A6)







We apply (A6) to the mass density to obtain the mass balance for a grain (27):


[image: there is no content]












Appendix C. Rate of Change of the Free Energy


We seek the time derivative of the total free energy in the variable crystal domain [image: there is no content], with the lattice growing/vanishing with the rate [image: there is no content] at the boundary [image: there is no content]. Starting from (31) and applying the transport theorem (A6), and transformations (13) and (14):


[image: there is no content]



(A7)







Since the change of lattice density can only result from lattice stretching:


[image: there is no content]



(A8)




the material rate of change of the lattice density in intermediate configuration vanishes: [image: there is no content] The second term in the integrand of (A7) can be written as


[image: there is no content]



(A9)




with the symmetric lattice Cauchy stress


[image: there is no content]








and the non-symmetric stress tensor [image: there is no content]. We substitute (A9) and the diffusion Equation (24) into (A7). With the shorthand [image: there is no content]:


[image: there is no content]



(A10)







Finally, we substitute (19) for [image: there is no content] into (A10):


[image: there is no content]








and, with the notation (34), we obtain (32).
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