Supplementary information

Theoretical densities of the single phase materials

Theoretical densities of the single phase materials ρ_{theo} are calculated to

$$\delta_{\text{theo}} = [ZM] / [AV]$$
(S1)

(A - Avogadro's constant, M - molar mass, V - unit cell volume, Z - formula units per unit cell). For the compositions $x = \{2, 2.72, 2.90, 3\}$ the unit cell volume V is gained from the lattice parameter refinements in this work, otherwise from literature data (Table 1, main text).

For x = 2.90 we find a discrepancy: The density $\rho_{\text{theo}} = 7.16$ g cm⁻³ is based on *Magnéli*'s model with perfectly undistorted [WO₆] octahedra between the CS planes **[35]**. This represents the least dense packing of the octahedra. Thus, every real structure wherein tilting and distortion occur must yield a density $\rho_{\text{theo}} > 7.16$ g cm⁻³ as observed in previous experimental work **[11, 21]**. However, we gain a ρ_{theo} from the PXRD data which is considerably lower than predicted by *Magnéli*'s model. Also none of the published values clearly exceeds the density of the room temperature phases γ -WO₃ (7.19 g cm⁻³) and δ -WO₃ (7.29 g cm⁻³) although the CS planes in WO_{2.90} are supposed to result in a distinct compression of the WO₃ parent structure **[42]**.

Table S1. Mass density ρ_{theo} of tungsten oxides calculated from their molar mass M and unit cell volume V (see **Table 1** in main text). The relative mass density ρ_{rel} is obtained by measuring the density ρ_{m} .

X	М	Phase	Ζ	$ ho_{^{theo}}$	$ ho_m$	$ ho_{rel}$	Ref.
	g mol-1			g cm-3	g cm-3	%	
2	215.84	WO ₂	4	10.77	-	-	[30]
			4	10.78	9.64	89.42	this work
2.72	4093.12	W18O49	1	7.69	n.a.	n.a.	[31]
			1	7.71	n.a.	n.a.	[32]
			1	7.73	n.a.	n.a.	[33]
			1	-	7.70	100	[11]
			1	7.72	7.49	97.02	this work
2.90	4604.80	W20O58	1	7.17	-	-	[21]
			1	7.16	-	-	[35]
			1	7.20	6.95	98	[11]
			1	7.11	7.05	99.12	this work
2.92	5580.16	W25O73	2	6.88	-	-	[14]
3	231.84	ε-WO ₃	4	7.39	-	-	[43]
		δ-WO ₃	8	7.29	-	-	[44]
		δ- & γ –WO3	-	-	7.19	-	this work
		γ–WO ₃	8		-	-	this work
		γ-WO ₃	8	7.19	-	-	[36]
		β-WO ₃	8	7.12	-	-	[36]
		α-WO ₃	8	7.03	-	-	[36]

Thermoelectric properties

In **Figure S1a** the electrical conductivities of the known compositions x = 2, 2.72 and 2.90 are compared. WO_{2.90} shows $\sigma(T) = 77(4) \cdot 10^3$ S m⁻¹ over the whole temperature range and a local maximum at 635 K. WO₂ and WO_{2.72} reveal a metallic behaviour with the typical dependency $\sigma(T) \propto 1/T$ over a wide temperature range (**Figure S1b**).

Figure S1. (a) Electrical conductivity $\sigma(T)$ of the reference materials WO₂, WO_{2.72} and WO_{2.90}. No measurement was possible for WO₃ due to its insulating character. (b) A linear interpolation (black line) shows the metallic behaviour of WO₂ and WO_{2.72} with $\sigma(T) \propto 1/T$ dependency. An extrapolation (dashed lines) reveals a deviation from this behaviour for WO₂ at high temperatures T > 500 K.

As expected due to its semiconducting behaviour WO_{2.90} exhibits the highest negative Seebeck coefficient among the known compositions (**Figure S2a**). Therefore WO_{2.90} also shows the highest figure of merit *ZT* for temperatures > 535 K whilst for T < 535 K the low electrical conductivity is disadvantageous and WO_{2.72} exhibits the higher *ZT* (**Figure S2b**).

Figure S2. (a) Seebeck coefficient $\alpha(T)$ and (b) the resulting figures of merit *ZT* of the reference materials WO₂, WO_{2.72} and WO_{2.90}. No measurement was possible for WO₃ due to its insulating character.

Reference sample WO_{2.90}

In the samples WO_x prepared with SPS-1420 K / 10 min we find the phase "WO_{2.82}" for $2.72 \le x \le 2.90$ which might be W₁₂O₃₄. This phase cannot be formed due to SPS-specific effects since it is also observed in WO_{2.90} material which was synthesized in an evacuated silica tube for 72 h at 1370 K (**Figure S3a**).

Figure S3. PXRD patterns of WO_{2.90} obtained **(a)** from heating in an evacuated silica tube at 1370 K for 72 h and **(b)** from SPS synthesis at similar temperature for 3 h. Reflections of the new phase "WO_{2.82}" which might be W₁₂O₃₄ appear for both routines. Radiation was Cu-K_{α 1}.

c_P measurements of WO_x materials from differential scanning calorimetry (DSC)

Preliminary $c_P(T)$ measurements were performed for WO_x materials which were synthesized with SPS-1320 K / 10 min. Differences between the measured $c_P(T)$ values were non-systematic and smaller than the 10 % error of the *DSC 404 C Pegasus* (Netzsch, Selb, Germany) device (**Figure S4**, error bars). Thus, for calculations of the thermoelectric properties of WO_x and WO₂ theoretical values of WO₃ and WO₂ from the *NIST-JANAF* database were used respectively (**Figure S4**, dotted lines).

Figure S4. Specific heat capacity $c_P(T)$ of WO_x materials show values close to calculations from the NIST-JANAF database (dotted lines) and differed by less than 10 % (error bars).